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Abstract Accurately aligning distant protein sequences is notoriously
difficult. A recent approach to improving alignment accuracy is to use
additional information such as predicted secondary structure. We intro-
duce several new models for scoring alignments of protein sequences with
predicted secondary structure, which use the predictions and their con-
fidences to modify both the substitution and gap cost functions. We
present efficient algorithms for computing optimal pairwise alignments
under these models, all of which run in near-quadratic time. We also
review an approach to learning the values of the parameters in these
models called inverse alignment. We then evaluate the accuracy of these
models by studying how well an optimal alignment under the model
recovers known benchmark reference alignments. Our experiments show
that using parameters learned by inverse alignment, these new secondary-
structure-based models provide a significant improvement in alignment
accuracy for distant sequences. The best model improves upon the accu-
racy of the standard sequence alignment model for pairwise alignment by
as much as 15% for sequences with less than 25% identity, and improves
the accuracy of multiple alignment by 20% for difficult benchmarks whose
average accuracy under standard tools is less than 40%.

Keywords Sequence alignment, protein secondary structure, inverse
parametric alignment, substitution score matrices, affine gap penalties.

1 Introduction

While sequence alignment is one of the most basic and well-studied tasks in
computational biology, accurate alignment of distantly-related protein sequences
remains notoriously difficult. Accurately aligning such sequences usually requires
multiple sequence alignment, and a succession of ideas have been employed by
modern multiple alignment tools to improve their accuracy, including: (a) hy-
drophobic gap penalties, which modify the alignment score to avoid gaps in re-
gions that may be in the structural core, and are employed by CLUSTAL W [34],
T-Coffee [28], and MUSCLE [10]; (b) polishing, which refines the alignment by
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realigning subgroups, and is used by MAFFT [18], MUSCLE, ProbCons [7], and
Opal [36]; and (c) consistency, both in its combinatorial [28] and probabilis-
tic [9, 7] settings, which favors matches in the alignment that have high support,
and is employed by T-Coffee, MAFFT, ProbCons, SPEM [39], PROMALS [29], and
ISPAlign [23]. These techniques all operate on the input sequences alone, and
do not require additional sources of information.

Recent techniques that recruit additional information beyond the input se-
quences, and that have afforded significant boosts in accuracy, include: (d) se-
quence profiles, which augments the input residues with profiles of amino acid
exchanges from closely related sequences found through database searches, and is
used by SPEM, PRALINE [32], PROMALS, and ISPAlign; (e) intermediate sequences,
which adds new sequences to the alignment that link distant input sequences
through chains of similar sequences, and is employed by MAFFT and ISPAlign;
and (f) predicted secondary structure, which annotates the input residues with
their predicted structural type and modifies the scoring of alignments to take
these types into account, used by SPEM, PRALINE, PROMALS, and ISPAlign. These
latter techniques, including secondary structure prediction, all involve database
searching to find sequences that are closely related to the input sequences, which
adds considerable overhead to the running time for alignment.

Of these latter techniques, incorporating secondary structure seems to have
the greatest scope for further improvement. The scoring models based on sec-
ondary structure employed by current tools [39, 32,29, 23] do not make full use
of predicted structural information when modifying the scores of substitutions
and gaps. Furthermore, recent advances in single-sequence secondary structure
prediction [1] suggest it may eventually be possible to make sufficiently accu-
rate predictions based on the input sequences alone, which would yield improved
alignment accuracy without the slowdown caused by sequence database searches.

In this paper, we introduce several new models for protein sequence align-
ment based on predicted secondary structure, and show they yield a substantial
improvement in accuracy for distant sequences. These models improve on those
used by current tools in several ways. They explicitly take into account the con-
fidences with which structural types are predicted at a residue, and use these
confidences in a rigorous way to modify both the scores for substitutions and the
penalties for gaps that disrupt the structure. Furthermore, optimal alignments
under these new models can be efficiently computed. Prior models tend to either
have a limited number of ad hoc parameters that are set by hand [39, 32, 23], or
have a large number of parameters that are estimated by counting frequencies
of observed events in comparatively small sets of reference alignments [24, 29,
33]. Our new models have multiple parameters whose values must be set, and we
show that recently developed techniques for parameter learning [19, 21, 22] can
be used to find values for these parameters that are optimal in a well-defined
sense. Finally, experimental results using our models show that our best model
improves on the accuracy of the standard model by 15% for pairwise alignment
of sequences with less than 25% identity, and by 20% for multiple alignment of
difficult benchmarks whose accuracy under standard tools is less than 40%.



Related work Structure is often conserved among related proteins even when
sequence similarity is lost [31], so incorporating structure has the potential to
improve the accuracy of aligning distant sequences. While deducing full three-
dimensional structure from protein sequences remains challenging, accurate tools
are available for predicting secondary structure from protein sequences [17]. Pre-
dicted secondary structure can be incorporated into the alignment model by en-
couraging substitutions between residues of the same secondary structure type,
and discouraging gaps that disrupt regions of secondary structure.

The first work on incorporating secondary structure into the alignment scor-
ing model appears to be by Liithy, McLachlan and Eisenberg [24], who applied
the log-odds scoring methodology of Dayhoff et al. [6] to derive substitution
score matrices that take both the amino acids and the secondary structure types
of the aligned residues into account when scoring a substitution. For the three
secondary structure types of a-helix, g-strand, and other, Liithy et al. derive
three log-odds substitution score matrices, where a given matrix applies when
both of the aligned residues have the same structural type. In particular, their
work does not provide matrices that apply to substitutions between residues with
differing structural types. Moreover, the log-odds methodology for substitution
scores does not provide appropriate gap penalties for these matrices.

Modern multiple alignment tools that take predicted secondary structure
into account include PRALINE [32], SPEM [39], PROMALS [30], and ISPAlign [23].
PRALINE uses the three substitution matrices of Liithy et al. [24] when aligned
residues have the same predicted structure type, plus the BLOSUM62 matrix [16]
when they have differing types. PRALINE also employs four pairs of hand-chosen
affine gap penalties (a gap open and extension penalty), one pair per matrix.
SPEM modifies a standard substitution matrix by adding a bonus of x to the sub-
stitution score when aligned residues have the same type, and a penalty of —x
when they have differing types, where z is a single hand-chosen constant. No
gaps are permitted following a residue predicted to be in an a-helix or -strand;
otherwise, a fixed gap open and extension penalty is used. PROMALS employs a
hidden Markov model approach where match, insert, and delete states also emit
secondary structure types. Emission and transition probabilities for each of these
states are set by counting frequencies of events in a collection of reference align-
ments. When scoring an alignment by the logarithm of its emission and transition
probabilities, the relative contribution to the alignment score of secondary struc-
ture emission probabilities versus amino acid emission probabilities is controlled
by a hand-chosen weighting constant. ISPAlign uses the hidden Markov model
of ProbCons [7], where match states are modified to emit secondary structure
types. The probability of emitting a pair of the same type is set to x for all three
types, while the probability for a pair of differing types is 1—z, where z is a single
hand-chosen constant. The transition probabilities of ProbCons that correspond
to gap open and extension penalties are used, shifted by factor y to compensate
for the effect of the structure type emission probabilities on the substitution
score, where y is a second hand-chosen constant. In increasing accuracy, these
tools are ranked: PRALINE, SPEM, PROMALS, and ISPAlign.



In contrast to the above approaches, we develop general scoring models with
no ad hoc parameters that modify substitution scores on the basis of the pair of
secondary structure states of the aligned residues, and that use a suite of affine
gap penalties whose values depend on the degree of secondary structure in the
region disrupted by the gap. A unique feature is that at each residue we also
take into account the confidence of the prediction for the three structure types.
(Confidences are output by tools such as PSIPRED [17].) While our models are
more complex, especially in how gap costs are determined, we show that opti-
mal pairwise alignments under the models can still be computed efficiently. And
though these models have many parameters, we rigorously learn their values us-
ing inverse alignment [19, 21, 22] applied to training sets of reference alignments.

Overview In Section 2, we present several new models for scoring alignments
of protein sequences based on their predicted secondary structure. Section 3 de-
velops efficient algorithms for computing optimal alignments of two sequences
under these models. Section 4 reviews an approach called inverse alignment that
uses these optimal alignment algorithms to learn parameter values for the models
from examples of biological reference alignments. Section 5 then presents exper-
imental results that compare the accuracy of these models when used for both
pairwise and multiple alignment on standard benchmark reference alignments.

2 Scoring alignments with predicted secondary structure

We now introduce several models for scoring an alignment of two protein se-
quences A and B that make use of predicted secondary structures for A and B.
These models score an alignment 4 by specifying a cost function f(.A), where an
optimal alignment minimizes f. The features of an alignment that f scores are:
(i) substitutions of pairs of residues, (ii) internal gaps, and (iii) external gaps.
A gap is a maximal run of either insertions or deletions. A gap is external if it
inserts or deletes a prefix or a suffix of A or B; otherwise it is internal.

Substitutions and gaps are scored in a position-dependent manner that takes
into account the predicted secondary structure. A substitution in alignment A
of residues A[i] and B[j] is denoted by a tuple (A, i, B, j). An internal gap is de-
noted by a tuple (S, 4, j, T, k), where substring S[i: j] is deleted from sequence S
and inserted between positions k£ and k+1 of sequence T. An external gap is
denoted by a pair (i, ), where prefix or suffix S[i:j] is deleted from A or B.

In general, the alignment cost function f(.A) uses two other functions: func-
tion s for the cost of substitutions, and function g for the cost of internal gaps.
External gaps use standard affine gap costs [12]. The general form of f is then

fA) = > s(AdBg) + > g(Si 4Tk +
substitutions internal gaps
(Ai,Bj)eA (S,i,4,T k) € A

> G+ G-+, (1)

external gaps

(1,7) € A
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where 7, \ are the respective gap open and extension penalties for external gaps.
We next describe substitution cost function s, and internal gap cost function g.

2.1 Scoring substitutions

Consider a substitution of two residues in an alignment, where these residues
have amino acids a and b, and are involved in secondary structures of types ¢
and d. For secondary structures, we consider the standard three types of alpha-
helix, beta-strand, and loop, which we represent by the symbols «, 3, and ¢,
respectively. In the following, T' = {a, 8, ¢} denotes the alphabet of secondary
structure types, and ¥ denotes the alphabet of amino acids.

Function s scores a substitution of amino acids a,b € Y with secondary
structure types ¢,d € T' using two costs: o(a,b), the cost for substituting amino
acids a and b, and p(c, d), an additive modifier for the residues having secondary
structure types c and d. Values o4, = 0(a,b) and p.q = p(c, d) are parameters to
our substitution model. In the model, both a, b and ¢, d are unordered pairs. This
results in 210 substitution costs o4, plus 6 secondary structure modifiers i,
for a total of 216 parameters that must be specified for the substitution model.

We consider two forms of prediction, which we call lumped or distributed.

Lumped prediction In lumped prediction, which is a special case of dis-

tributed prediction, the prediction at each residue is a single secondary struc-

ture type. The predicted secondary structure for protein sequence A can then be

represented by a string S,4, where residue i of A has predicted type Sy[i] € T.
For lumped prediction, the substitution cost function s is

s(A,4,B,5) = o(A[i], Blj]) + n(Salil, Splj])- (2)

The modifer p(c,d) may be positive or negative. When the residues have the
same secondary structure type, u(c,¢) < 0, which makes it more favorable to
align the residues. When the residues have different types, u(c,d) > 0, making it
less favorable to align them. These constraints on the modifiers can be enforced
during parameter learning, as described in Section 4.

Distributed prediction The most accurate tools for secondary structure
prediction, such as PSIPRED [17], output a confidence that the residue is in each
possible type. For residue ¢ of sequence A, we denote the predictor’s confidence
that the residue is in secondary structure type ¢ by P4(i,c¢) > 0. In practice, we
normalize the confidences output by the predictor at each residue i to obtain a
distribution with ) . Pa(i,c) = 1.

For distributed prediction, the substitution cost function s is

s(A,i,B,j) = o(A[i,Blj]) + Y Pa(i,c) Pp(j,d) p(c,d).  (3)
c,del

When the predictor puts all its confidence on one structure type at each residue,
this reduces to the lumped prediction substitution function.



2.2 Scoring gaps

With standard affine gap costs [12], the cost of inserting or deleting a substring
of length k is v+ Ak, where v and A are respectively the gap open and extension
costs. The new gap scoring models generalize this to a suite of gap open and
extension costs whose values depend on the secondary structure around the gap.
The basic idea is that the gap open cost v depends on a global measure of how
disruptive the entire gap is to the secondary structure of the proteins, while the
gap extension cost A charged per residue depends on a local measure of disruption
at that residue’s position. We define these notions more precisely below.

For an internal gap that deletes the substring S[i:j], and inserts it after the
residue T'[k], the gap cost function g has the general form,

9(S,i,5, k) = y(H(S,0.0.TR) + S A(RSpT.R).

1<p<y

The first term is a per-gap cost, and the second term is a sum of per-residue
costs. Functions H and h are respectively the global and local measures of
secondary structure disruption. Both H and A return integer values in the
range L = {1,2,...,¢} that give the discrete level of disruption. The corre-
sponding values for the gap open and extension costs, v; = (i) and \; = A(7)
for ¢ € L, are parameters to our model. For £ levels, the internal gap cost model
has 2¢ parameters ; and \; that must be specified.

The gap costs at these levels satisfy 0 <y < ... <ppand 0 < A\ < ... < Ap.
In other words, a higher level of disruption incurs a greater gap cost. These
constraints are enforced during parameter learning, as described in Section 4.

Functions H and h, which give the level of secondary structure disruption,
depend on two aspects: (i) how strongly a position is involved in secondary
structure, and (ii) which positions are considered when determining the level.
We call the first aspect the degree of secondary structure, and the second aspect
the context of the gap.

Measuring the degree of secondary structure As described in Section 2.1,
the predicted secondary structure for the residues of a protein sequence A may
be represented by string S 4 of structure types in the case of lumped prediction,
or vector P4 of confidences for each type in the case of distributed prediction.
We consider three ways of using such predictions to determine the degree of
secondary structure at residue position i in sequence A. This degree W 4 (i) is in
the range [0, 1], where 0 corresponds to no involvement in secondary structure,
and 1 corresponds to full involvement.

(1) The lumped-binary approach assumes a lumped prediction, and produces
a binary value for the degree: W (4) is 1 if S4[i] € {a, 5}, and 0 otherwise.

(2) The distributed-binary approach assumes a distributed prediction, and
produces a binary degree: W4 (i) = 1 iff P4(i, ) + Pa(i,3) > Pa(i, ¢).

(3) The distributed-continuous approach assumes a distributed prediction,
and produces the real value W 4 (i) = Pa(i, @) + Pa(i, 5).



Specifying the gap context The gap context is specified by the positions
that functions H and h consider when measuring the global and local secondary
structure level. Both functions use the above secondary structure degree ¥(i).
To measure the local level h at position i in a sequence S of length n, we
consider a small window W (i, n) of consecutive positions centered around i:

h(S,i) = < 3 \Ils(p)/‘W(i,n))>.

p€W(in)

Here the notation {x) maps real value x € [0, 1] to the discrete levels 1,2,...,¢
by (z) := |({—1)z] + 1. In words, the local level h at position i is the average
secondary structure degree ¥ for the residues in a window around 7. Generally
all windows have the same width ‘W(z, n)| = w, except if ¢ is too close to 1 or n
to be centered in a window of width w, then W (i,n) shrinks on one side of 1.
In our experiments in Section 5, we consider three ways of specifying the gap
context, depending on whether we take an insertion view, a deletion view, or a
mixed view of a gap. (The same context applies to all gaps in an alignment.)
(1) The deletion context views the disruption caused by the gap in terms of
the secondary structure lost by deleting substring S[i: j]. For the global measure
of disruption, this context takes the maximum local level of secondary structure
over the positions in the deleted substring, which gives the gap cost function,

9(8,i,4,7.k) = (max h(S,p) + S A(h(S.p)- (4)

1<p<j ipei

(2) The insertion context views the disruption in terms of the secondary
structure displaced at residues T'[k] and T'[k + 1] where the insertion occurs. For
both the global and local measures of disruption this context uses

H(T,k) = <%h(T, k) + %h(T,k+1)>,
which gives the gap cost function,
9(S,0,5,T.k) = y(H(Tk)) + (G=i+1) A(H(T.F)). (5)

(3) The mized context combines the above global measure H of the insertion
context with the local measure h of the deletion context, which gives

9(S,0,5,T.k) = y(HTR) + > A(h(S.p)). (6)

1<p<j

To summarize, the parameters of the scoring model for protein sequence
alignment are the 210 substitution costs o4, the 6 substitution modifiers ficq,
the 2¢ gap costs 7; and \; for internal gaps, and the two gap costs ¥ and A
for external gaps. This is a total of 218 4 2¢ parameters. In general, the model
depends on the window width w, the number of levels ¢, whether the secondary
structure prediction is lumped or distributed, the choice of measure ¥ for the
degree of secondary structure, and the choice of gap context.



3 Computing optimal alignments efficiently

We can efficiently compute an optimal alignment of sequences A and B under
scoring function f given by equation (1) using dynamic programming. Let C(z, )
be the cost of an optimal alignment of prefixes A[1:4] and BJ[1:j]. This alignment
ends with either a substitution of residues A[i] and BJj], or a gap involving sub-
string A[k:4] or B[k:j] for some k. In each case, the alignment must be preceded
by an optimal solution over shorter prefixes. This leads to the recurrence,

C(Z_L.]_l) + S(A7iaBaj)a

C(i,j) := min 12111%{0(1{7_1"7) +g(A7k7i,B,j)}, (7)

llénklrslj{C’(z,kfl) + g(B,k,],A,z)}.
(To simplify the presentation, this ignores boundary conditions and the special
case of external gaps.) For two sequences of length n, the straightforward algo-
rithm that directly evaluates this recurrence in a table, and recovers an optimal
alignment using the table, takes ©(n?) time. (This assumes evaluating g takes
O(1) time, which can be achieved through preprocessing, as discussed later.)
By studying gap cost function g, the time to compute an optimal alignment
for all three gap contexts can be reduced to nearly O(n?), as discussed next.

Insertion and mixed contexts For the insertion context, function g given by
equation (5) is very close to a standard affine gap cost function. The same tech-
nique developed by Gotoh [12] for standard affine gap costs, namely (1) keeping
track of three separate quantities at each entry (4, j) of the dynamic programming
table, depending on whether the alignment ends by a substitution, insertion, or
deletion, and (2) considering the last two columns of an alignment to decide
whether or not the gap open cost should be charged, can be used to reduce the
total time to compute an optimal alignment to O(n?). For the mized context,
given by equation (6), this same approach also leads to an O(n?) time algorithm.

Deletion context For the deletion context, function g given by equation (4)
involves a maximization to determine the gap open cost, which complicates mat-
ters. For this context, the total time can be sped up significantly using the can-
didate list technique originally developed for alignment with convex gap costs
by Miller and Myers [26] and Galil and Giancarlo [11]. While our gap cost func-
tion g is not convex in their original sense, their technique still applies. We briefly
review its ideas below.

The candidate list technique speeds up the evaluation of the two inner mini-
mizations in equation (7) for C(¢,j). The minimization involving g(B, k, j, 4, %)
can be viewed as computing the function

Fi(j) := min {Gi(k’j)}v

1<k<j



where G;(k,j) = C(i,k—1) + g(B, k, j, A,7). Similarly, the minimization in-
volving g(A, k,i, B,j) can be viewed as computing a function Z;j (7) that is the
minimum of another function éj(k,z) At a high level, when filling in row ¢ of
the table for C(¢,7), the candidate list approach maintains a data structure for
row ¢ that enables fast computation of F;(j) across the row for increasing j.
Similarly, it maintains a separate data structure for each column j that enables
fast computation of F;(¢) down the column. When processing entry (i, j) of the
dynamic programming table, the data structures for row i and column j permit
evaluation of F;(j) and Fj(i) in O(logn) amortized time. Evaluating the recur-
rence at the O(n?) entries of the table then takes a total of O(n?logn) time. A
very readable exposition is given by Gusfield [15, pp. 293-302].

More specifically, for a fixed row ¢ the candidate list technique computes F(j)
as follows. (When 1 is fixed, we drop subscript ¢ on F; and G;.) Each index k in
the minimization of G(k, j) over 1 <k <j is viewed as a candidate for determining
the value of F'(j). Candidate k contributes the curve G(k,j), which is viewed as
a function of j for j > k. Geometrically, the set of values of F(j) for 1<j<n,
which is the minimum of these curves, is known as their lower envelope [4].

When computing F'(j) across the row for each successive j, a representation
of this lower envelope is maintained at all 7' > j, only considering curves for
candidates k& with & < j. This representation for j* > j is a partition of the
interval [4,n] into maximal subintervals such that across each subinterval the
minimum is given by exactly one curve. The process of adding a candidate’s curve
to the lower envelope exploits the following property of the gap cost function.

Lemma 1 (Dominance property) Consider candidates a and b with a < b.
Suppose G(a,c) < G(b,c) at some ¢ > b. Then G(a,d) < G(b,d) at all d > c.

Proof The key is to show that the difference

(G(b, d) — G(b, c)) - (G(a,d) - G(a,c)) (8)

is nonnegative, as adding G(b, ¢) — G(a,c) implies the lemma. For the deletion
context, quantity (8) above equals

(S, b,) = (H(S.b,0))) = ((H(S,a.d) = V(H(S,a,0))),  (9)

where function H (S, z,y) is the maximum of h(S, p) over the interval p € [z, y].
Considering where h(S, p) attains its maximum on the intervals [b, d], [b, ], [a, d],
[a, ], and noting that v((z)) is nondecreasing in x, shows quantity (9) above is
nonnegative, which proves the lemma. a

A key consequence of Lemma 1 is that the curves for any pair of candidates
cross at most once. More precisely, for a pair a < b of candidates and an inter-
val x, either one candidate dominates the other across xz, or  can be split into
two pieces ¥, z such that the later candidate b dominates on the left piece y, and
the earlier candidate a dominates on the right piece z. Using this property, we
update the lower envelope as follows.
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Given a new candidate j, we compare it on intervals of the current parti-
tion pq, ..., pt, starting with the leftmost. When comparing against the ith inter-
val x = (p;—1, p;], we first examine its right endpoint ¢ = p;. If G(j, ¢) < G(k;, ¢),
then candidate j dominates across x, so we delete interval ¢ from the partition
(effectively merging it with the next interval), and continue comparing j against
interval ¢+ 1. If G(j,¢) > G(k;,c), then by Lemma 1, j is dominated on in-
tervals ¢ + 1,...,t by their corresponding candidates, so those intervals do not
change in the partition. Interval ¢ may change, though if it does, it at worst splits
into two pieces with j dominating in the left piece. In the case of a split, we insert
a new leftmost interval [j, p] into the partition with j as the corresponding candi-
date. To find the split point p (if it exists), we can use binary search to identify
the rightmost position such that G(j,p) < G(k,p), where k is the candidate
corresponding to the current interval. (The proof of Lemma 1 implies that the
difference between the curves for candidates k and j is nonincreasing.) During
the binary search, gap cost function g is evaluated O(logn) times.

In general, updating the partition when considering a new candidate in-
volves a series of deletes, followed by an insert. Assuming g can be evaluated in
O(1) time, a delete takes O(1) time while an insert takes O(logn) time. While
a given update can involve several deletes, each delete removes an earlier candi-
date, which is never reinserted. Charging the delete to the removed candidate, the
total time for deletes is then O(n?). The total time for all inserts is O(n?logn).

The final issue is the time to evaluate ¢(S5,1,7,T, k) for the deletion con-
text. With O(n) time preprocessing, we can evaluate the sum of gap extension
penalties A in the definition of ¢ in O(1) time, by taking the difference of two
precomputed prefix sums. With O(n?) time and space preprocessing, we can look
up the gap open penalty v in O(1) time, by precomputing H(S, 4, j) for all 4, j.
(Alternately, we can use a range tree [4] to find the maximum for H(S,4,j) on-
line when evaluating the cost of a gap; this only requires O(n) time and space
preprocessing, but it evaluates g in O(logn) time, which is slightly slower.) In
short, using O(n?) time and space preprocessing, we can evaluate g in O(1) time.

We summarize the total time for the alignment algorithm below.

Theorem 1 (Deletion context running time) For the deletion gap context,
optimally aligning two sequences of lengths m < n takes O(n? + mnlogn) time.

This provides a significant speedup in practice as well as in theory.

4 Learning model parameters by inverse alignment

We now show how to learn values for the parameters of the alignment scor-
ing models using the inverse alignment approach developed in Kim and Kece-
cioglu [21], modified to incorporate a loss function as introduced by Yu, Joachims,
Elber and Pillardy [38]. The goal of parameter learning is to find values for which
the optimal scoring alignment is the biologically correct alignment. Inverse align-
ment takes as input a collection of ezamples of correct reference alignments, and
outputs an assignment of values for the parameters that makes the reference
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alignments score as close as possible to optimal scoring alignments of their se-
quences. The approach of Kim and Kececioglu [21] finds a parameter assignment
that minimizes the average absolute error in score across the examples, while Yu
et al. [38] also incorporate the error in recovery between an optimal scoring align-
ment and the reference alignment. We briefly review these approaches below.
The reference alignments of protein sequences that are widely available for
parameter learning, which are generally based on aligning the known three-
dimensional structures of families of related proteins, are actually only partial
alignments. In a partial alignment, columns are labeled as reliable or unreliable.
Reliable columns typically correspond to core blocks, which are gapless regions
of the alignment where common three-dimensional structure is shared across the
family. At unreliable columns, the alignment is effectively left unspecified. In a
complete alignment, all columns are reliable. We follow the presentation of Kim
and Kececioglu [22], which first develops an algorithm for inverse alignment from
examples that are complete alignments, and then extends it to partial examples.

Complete examples In the following, we define inverse alignment under a
new optimization criterion that we call discrepancy. The discrepancy criterion
generalizes the score error approach of Kim and Kececioglu [21] and the recovery
error approach of Yu et al. [38]. In our experiments, it is superior to both.

For the alignment scoring function f, let p1,pa, ..., p; be its parameters. We
view the entire set of parameters as a vector p = (p1,...,p;) drawn from do-
main D. When we want to emphasize the dependence of f on its parameters p,
we write f,. The input to inverse alignment consists of many example align-
ments A;, where each example aligns a corresponding pair of sequences S;. We
denote the average length of the sequences in S; by ||S;]|.

For an alignment B; of sequences S; for example A;, let function d(Al-, Bi)
be the fraction of reliable columns of example A; that are not present in align-
ment B;. In other words, function d measures the error in recovering example A;
by alignment B;. Yu et al. [38] call d a loss function.

Definition 1 (Inverse alignment with complete examples) Inverse Align-
ment from complete examples under the discrepancy criterion is the following

problem. The input is a collection of complete alignments A; of sequences S;

for 1<i<k. The output is parameter vector z* := argmin ., D(x), where

D(z) = % Z n}gx{(l—a) folAs) = f+(Bi) + ad(Ai,Bi)}. (10)

52 ISl

In the above, the max is over all alignments B; of S;, and a € [0,1] is a con-
stant that controls the relative weight on score error versus recovery error. Func-
tion D(x) is the average discrepancy of the examples under parameters . O

The discrepancy criterion reduces to the approach of Kim and Kececioglu [21]
when o = 0, and to the approach of Yu et al. [38] when a = %, upon removing
the length normalization of score error by setting ||S;|| = 1. Intuitively, when
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minimizing discrepancy D(x), the recovery error term d(.A;, B;) drives the align-
ments B; that score better than example A; (which have a positive score error
term under f,) toward also having low recovery error d. In other words, the
recovery error term helps make the best scoring alignments agree with the ex-
ample on its columns. On the other hand, the scale of recovery error d € [0,1] is
small, while the score error f,(A;) — fz(B;) can grow arbitrarily big, especially
for long sequences. So correctly tuning the relative contribution of score error
and recovery error is impossible for examples A; of varying lengths, unless score
error is length normalized, which leads to the above discrepancy formulation.

For the alignment scoring functions f presented in Section 2, inverse align-
ment from complete examples can be reduced to linear programming. The pa-
rameters of scoring function f, are the variables = of the linear program. The
domain D of the parameters is described by a set of inequalities that includes
the bounds (0, —1,0,0) < (0ap, fhed, Vis Mi) < (1,1,1,1). The description of D also
contains the inequalities 044 < Tap, ttee < 0, ticd = 0, vi < Yir1, and A < Ajg1.

The remaining inequalities measure discrepancy D(z). Associated with each
example A; is an error variable §;. For example A;, and every alignment B; of
sequences S;, the linear program has an inequality

—a fw(Az) - fz(Bz)
(=0 =5

+ ad(Ai,B) < 6 (11)

Note this is a linear inequality in the variables x, since function f, is linear in x.

The objective function for the linear program is to minimize % > <i<k 0;.
Minimizing this objective forces each §; to equal the term with index 7 in the
summation for D(x) in equation (10). Thus, an optimal solution z* to the linear
program minimizes the average discrepancy of the examples.

This linear program has an exponential number of inequalities of form (11),
since for an example A;, the number of alignments B; of S; is exponential in
the lengths of the sequences [13]. Nevertheless, this program can be solved in
polynomial time by a far-reaching result from linear programming theory known
as the equivalence of separation and optimization [14]. This equivalence result is
that a linear program can be solved in polynomial time iff the separation problem
for the linear program can be solved in polynomial time. The separation problem
is, given a possibly infeasible vector x of values for the variables, to report an
inequality from the linear program that is violated by Z, or to report that &
satisfies the linear program if there is no violated inequality.

We can solve the separation problem in polynomial time for the above linear
program, given a concrete parameter choice Z, by the following. We consider
each example A;, and find an alignment B} that maximizes the left-hand side
of inequality (11), where for scoring function f we use parameters Z. If for this
alignment B the left-hand side is at most d;, then all inequalities of form (11)
involving A; are satisfied by z; if the left-hand side exceeds §;, then this B}
gives the requisite violated inequality. Finding this extreme alignment B} can
be reduced to computing an optimal scoring alignment where scoring function f
is modified slightly to take into account the contribution of substitutions that
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coincide with the columns of A; to the recovery error d(A;, B;). (More details are
provided in [38] and [22].) For an instance of inverse alignment with &k examples,
solving the separation problem for the linear program involves computing at
most k optimal scoring alignments, which can be done in polynomial time.

In practice, we solve the linear program using a cutting plane algorithm [5].
This approach starts with a small subset P of all the inequalities £. An optimal
solution Z of the linear program restricted to P is found, and the separation al-
gorithm for the full linear program L is called on z. If the separation algorithm
reports that z satisfies £, then z is an optimal solution to £. Otherwise, the
violated inequality that is returned is added to P, and the process is repeated.
(See [22] for more details.) While such cutting plane algorithms are not guar-
anteed to terminate in polynomial time, they can be fast in practice. We start
with P containing just the trivial inequalities that specify parameter domain D.

Partial examples As mentioned earlier, the examples that are currently
available are partial alignments. Given such a partial example A for sequences S,
a completion A of A is a complete alignment of S that agrees with the reliable
columns of A. In other words, a completion A can change A on the substrings
that are in unreliable columns, but must not alter A in reliable columns.

When learning parameters by inverse alignment from partial examples, we
treat the unreliable columns as missing information.

Definition 2 (Inverse alignment with partial examples) Inverse Align-
ment from partial examples is the following problem. The input is a collection
of partial alignments A; for 1 <i<k. The output is parameter vector
¥ = argmin _min _ D(z),
z€D Ay, Ag

where the min is over all possible completions A; of the partial examples. a

Kim and Kececioglu [21] present the following iterative approach to partial
examples. Start with an initial completion (A;)o for each partial example A;,
which may be formed by computing alignments of the unreliable regions that
are optimal with respect to a default parameter choice (x)g. Then iterate the
following for j = 0,1,2,.... Compute an optimal parameter choice (x);41 by

solving inverse alignment on the complete examples (A;);. Given (z);41, form
a new completion (A;);+1 of each example A; by computing an alignment of
each unreliable region that is optimal with respect to parameters (x);4+1, and
concatenating these alignments of the unreliable regions alternating with the
alignments given by the reliable regions. Such a completion optimally stitches
together the reliable regions, using the current parameter estimate.

The discrepancy for successive parameter estimates forms a monotonically
decreasing sequence, and hence converges [21]. In practice, we iterate until the
improvement is too small, or a limit on the number of iterations is reached [22].
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5 Experimental results

To evaluate these scoring models, we studied how well an optimal alignment
under the model recovers a biological benchmark alignment, when using the
models for both pairwise alignment and multiple alignment.

Pairwise alignment For the experiments on pairwise alignment, we col-
lected examples from the following suites of reference alignments: BALiBASE [2],
HOMSTRAD [27], PALI [3], and SABMARK [35]. From each suite, we selected a subset
of 100 pairwise alignments as examples. The corresponding subsets of BA1iBASE
are denoted by B; similarly, H for HOMSTRAD, P for PALI, and S for SABMARK.
We also define the union U = BUHUPUS, and for a set X € {B,H,P,S}
we denote the complement with respect to U by X = U — X. Gap level £ =8,
window width w =7, and discrepancy weight o= 0.1 are used throughout. To
predict secondary structure, we used PSIPRED [17]; to solve linear programs, we
used GLPK [25]. Recovery is measured in terms of the SPS score [2]: the percent-
age of residue pairs in the core blocks of all induced pairwise alignments of the
reference alignment that are correctly aligned in the computed alignment.

The first set of experiments, shown in Table 1, study the effect of the substi-
tution models alone (without the new gap models). We compared the recovery
rates of the lumped and distributed prediction models for secondary structure
modifiers; gap costs use the standard affine model of a gap open and extension
penalty for internal gaps, and a separate gap open and extension penalty for ter-
minal gaps. The new substitution models are also compared with the standard
model that does not use modifiers, called “none.” These experiments use hold-
out cross validation, where parameters learned on training set B are applied to
test set B, and so on for each suite of examples. As the table shows, the highest
recovery is achieved using the distributed prediction model.

Table 2 studies the effect of the gap models alone (without substitution mod-
ifiers). The table compares each of the three models of gap context, combined
with each of the three measures of the degree of secondary structure. Due to page
limits, only results where the test and training sets are both U are shown. As the
table shows, the highest recovery is achieved using the mixed contert combined
with the distributed-continuous degree measure of secondary structure.

Table 3 shows the improvement in recovery over the standard model (that
does not use the new substitution or gap models), upon first adding the best
new substitution model (distributed prediction), and then adding the best new
gap model (distributed-continuous degree with mixed context). As can be seen,
adding the new substitution model gives a large improvement in recovery; adding
the new gap model gives a further, but smaller, improvement.

Figure 1 plots the improvement in recovery for pairwise alignment for exam-
ples that are ranked according to the dissimilarity of their sequences. We sorted
the examples from set U in order of decreasing normalized alignment cost [36],
where their cost is scored according to the standard alignment model using the
default parameter values of the multiple alignment tool Opal [37]. Each value



Table 1 Recovery rates comparing only the new substitution models

Modifier model
Training set Test set mnone lumped distributed

73.52  80.99 81.57
79.92  82.44 83.58
67.87  74.67 76.60
68.76 72.58 72.55
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Table 2 Recovery rates comparing only the new gap models

Secondary structure Gap context model

degree model deletion insertion mixed
lumped-binary 75.63  75.59 76.51
distributed—binary 75.86  75.90 76.43

distributed—continuous 75.96  76.22 76.63

Table 3 Recovery rates comparing both the substitution and gap models

Substitution and gap model

std sub new sub new sub
Training set Test set std gap std gap new gap
B B 73.51 81.57 82.88
H 79.92 83.58 84.62
P 67.87 76.60 77.32
S 68.76 72.55 75.52
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Figure1l Improvement in recovery rate in relation to percent identity.
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of n along the horizontal axis corresponds to using as a test set the first n exam-
ples in this ranking. The uppermost curve plots the average percent identity for
these corresponding test sets, which generally increases as the average normal-
ized alignment cost decreases along the horizontal axis. The lower two curves
plot the improvement in recovery as measured on these test sets for parameter
values learned on training set U. Improvement is measured with respect to the
standard model with no substitution modifiers and no gap context. The low-
est curve adds only substitution modifiers to the standard model, and the next
higher curve adds both substitution modifers and gap context. Note that the
greatest improvement is generally achieved for examples with the lowest percent
identity. For examples with less than 25% identity, the combined improvement
in recovery using both substitution modifiers and gap context is as much as 15%.

To give an idea of the running time, solving an inverse alignment instance
with 300 examples took at most 55 minutes on a Pentium IV running at 3 GHz
with 1 Gb of RAM, and involved around 18,600 cutting planes.

Multiple alignment To evaluate these models when used for multiple se-
quence alignment, we incorporated them into the alignment tool Opal [37]. Opal
is unique in that it constructs multiple sequence alignments using an algorithm
for optimally aligning two multiple alignments under the sum-of-pairs scoring
function [20, 36]. Since its subalignments have optimal score in this sense, it is a
good testbed for comparing scoring models, as effects due to suboptimality with
respect to the scoring function are reduced. The baseline version of Opal uses the
BLOSUM62 substitution matrix [16] with affine gap penalties (specifically, a gap
open and extension penalty for internal gaps, and another open and extension
penalty for terminal gaps). We modified Opal to incorporate predicted secondary
structure, still using the BLOSUM62 substitution matrix, but now combined with
parameters learned using our best scoring model (namely, the distributed predic-
tion model for substitution modifiers, and the distributed-continuous measure
with mixed context for gap costs). In these experiments, we rank benchmarks
according their hardness: their average recovery rate under MAFFT, ProbCons,
and baseline Opal (which all have comparable recovery rates [36]).

Figure 2 shows a scatter plot of the improvement in recovery of Opal when
using secondary structure, over all benchmarks in the BA1iBASE [2], PALI [3],
and HOMSTRAD [27] suites. Note that for the more difficult benchmarks (with
lower baseline recovery), the boost in recovery using secondary structure tends
to be greater. Notice also that using the secondary structure scoring model
occasionally worsens the recovery. (This is to be expected, as structure prediction
is imperfect, and no universal parameter choice will improve all benchmarks).

Figure 3 shows the recovery rates on these same benchmarks for three variants
of Opal: (1) the baseline version with no secondary structure model, (2) using
the new substitution model with secondary structure but the baseline gap model,
and (3) using the new substitution model and the new gap model with secondary
structure. Benchmarks are binned according to their baseline recovery in Opal;
at the top of each bar in parentheses is the number of benchmarks in its bin.
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Figure 2 Improvement in recovery using secondary structure within Opal.
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Note that the substitution model provides the largest boost in recovery, which
is generally greatest for the hardest examples.

Finally, Figure 4 compares the improvement in recovery achieved using sec-
ondary structure in two multiple alignment tools: ISPAlign [23] and Opal.
(ISPAlign has the best recovery among the competing tools PRALINE, SPEM,
and PROMALS that use secondary structure.) ISPAlign was modified to not add
sequence profiles or intermediate sequences (which are not used by Opal), so the
effect of its secondary structure scoring model could be isolated. The recovery
boost in ISPAlign is measured with respect to ProbCons, since without sec-
ondary structure ISPAlign uses ProbCons to compute alignments. (ProbCons
and baseline Opal have comparable accuracy [36].) The same benchmarks are
used, binned by hardness. The boost in recovery for Opal is much greater than for
ISPAlign, suggesting that the more involved secondary structure scoring model
used in Opal may be more effective than the simpler model used in ISPAlign.

6 Conclusion

We have presented new models for protein sequence alignment that incorporate
predicted secondary structure, and have shown through experimental results
on reference alignments that when model parameters are learned using inverse
alignment, the models significantly boost the accuracy of both pairwise and
multiple alignment of distant protein sequences. Incorporating secondary struc-
ture into the substitution scoring function provides the largest benefit, with
distributed prediction giving the most accurate substitution scores, while the
new gap penalty functions provide a lesser yet still substantial benefit. Com-
paring with other multiple alignment tools that incorporate secondary structure
shows our models provide a larger increase in accuracy compared to not using
secondary structure, which suggests that the additional complexity of our models
is offset by their correspondingly greater increase in accuracy.

There remain many avenues for further research. In particular, given that
improved substitution scores provided the largest boost in accuracy, it would be
interesting to learn a model with a substitution scoring function o(a, b, ¢, d) that
directly scores each pairing {(a,c)7 (b, d)} of amino acids a,b with secondary
structure types c¢,d respectively. Such a model has 1,830 substitution param-
eters oupeq alone, and will require a very large training set, combined with a
careful procedure for fitting default values for unobserved parameters.
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