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Abstract. For as long as biologists have been computing alignments of
sequences, the question of what values to use for scoring substitutions
and gaps has persisted. While some choices for substitution scores are
now common, largely due to convention, there is no standard for choosing
gap penalties. An objective way to resolve this question is to learn the
appropriate values by solving the Inverse String Alignment Problem:
given examples of correct alignments, find parameter values that make
the examples be optimal-scoring alignments of their strings.

We present a new polynomial-time algorithm for Inverse String Align-
ment that is simple to implement, fast in practice, and for the first time
can learn hundreds of parameters simultaneously. The approach is also
flexible: minor modifications allow us to solve inverse unique alignment
(find parameter values that make the examples be the unique optimal
alignments of their strings), and inverse near-optimal alignment (find pa-
rameter values that make the example alignments be as close to optimal
as possible). Computational results with an implementation for global
alignment show that, for the first time, we can find best-possible values
for all 212 parameters of the standard protein-sequence scoring-model
from hundreds of alignments in a few minutes of computation.

Keywords: Sequence analysis, parametric sequence alignment, substi-
tution score matrices, affine gap penalties, supervised learning, linear
programming, cutting plane algorithms.

1 Introduction

Perhaps the most studied problem in computational biology is the alignment of
biological sequences with substitutions, insertions, and deletions. The standard
formulations of string alignment optimize a sum of scores for each type of op-
eration, often giving a penalty for a run of insertions or deletions, called a gap,
that is linear in the length of the gap. When performing sequence alignment in
practice, the question of what weights and penalties to use inevitably arises. An
interesting attack on this question is parametric sequence alignment, where for a
given pair of strings, the alignment problem is solved for effectively all possible
choices of the scoring parameters, thereby eliminating the need to specify any
weights and penalties. The problem with this approach is that it in effect defers
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the question, since eventually a user must choose one of the solutions, and on
what basis should this be done? Essentially one needs an example of a correct
alignment to discriminate among the welter of parametric solutions. When one
does solve the parametric problem and knows a biologically correct alignment
of the sequences, this alignment is used to decide what region of the parameter
space makes the correct alignment have optimal score.

This optimal parameter choice could be found much more directly, however, by
solving inverse parametric alignment. In this problem, the input is an alignment
of a pair of strings, and the output is a choice of parameters that makes the input
alignment be an optimal-scoring alignment of its strings. We present a simple and
fast algorithm for inverse parametric alignment that for the first time is capable
of determining all substitution weights and gap penalties simultaneously. Such
an algorithm, applied to a collection of benchmark protein-sequence alignments
that are constructed by aligning their three-dimensional structures, could provide
the first rigorous way of determining substitution scores and gap penalties for
characterized classes of proteins.

Related Work. The first algorithms for parametric alignment of two sequences
were discovered in the early 1990’s by Waterman, Eggert and Lander [16] and
Gusfield, Balasubramanian and Naor [7]. These algorithms handled two pa-
rameters, usually the gap open and extension penalties with fixed substitu-
tion scores. Zimmer and Lengauer [17] addressed numerical stability. Gusfield
et al. [7] also bounded the number of regions in the decomposition of the pa-
rameter space, and constructed the decomposition with one optimal alignment
computation per region. Fernández-Baca, Seppäläinen and Slutzki [4] showed
these bounds are asymptotically tight, and initiated the study of parametric
multiple-sequence alignment. Gusfield and Stelling [8] released a software im-
plementation called XPARAL, and were the first to consider inverse parametric
alignment, for which they gave a heuristic that attempted to avoid computing a
decomposition of the entire parameter space. Pachter and Sturmfels [13] explored
the relation of algebraic statistics to parametric sequence alignment.

Recently, Sun, Fernández-Baca and Yu [15] gave the first direct algorithm
for inverse parametric alignment. While they consider three parameters, their
solution effectively fixes one parameter value at zero. For two strings of length n,
their algorithm runs in O(n2 log n) time. Their approach is involved, and does
not appear to have been implemented.

In contrast to prior work, our algorithm for inverse parametric alignment is
simple to implement, does not compute a decomposition of the entire parameter
space, solves both the near-optimal and unique-optimal inverse alignment prob-
lems, handles a set of input alignments, and for the first time can quickly solve
problems with hundreds of free parameters.

Overview. In the next section we give a precise statement of the inverse para-
metric alignment problem and two variations: inverse near-optimal and unique-
optimal alignment. Section 3 reduces all three variations to linear programming.
Section 4 explains how the resulting linear programs, even though they have an
exponential number of inequalities, can be solved in polynomial time. Section 5
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then discusses a version of this approach, called a cutting-plane algorithm, that
is highly effective in practice. Finally Section 6 presents experimental results
with an implementation for inverse optimal and near-optimal global alignment.

2 Inverse Alignment and Its Variations

The standard string alignment problem is: given a pair of strings A and B and a
function f that scores alignments, where f usually has several parameters that
weight substitutions, insertions, deletions, and identities, find an alignment A
of A and B that has optimal score under f . The inverse alignment problem
turns this around: given an alignment A, find values for the parameters of f
that make A be an optimal alignment. (From the view of machine learning, this
learns the parameters for optimal alignment from training examples of correct
alignments.) Of course to find reliable values when f has many parameters may
require several alignments. Formally, we define inverse alignment as follows.

Definition 1 (Inverse Optimal Alignment). The Inverse String Alignment
Problem is the following. The input is a collection of alignments A1, . . . , Ak of
strings, and an alignment scoring function fw with parameters w = (w1, . . . , wp).
The output is values x = (x1, . . . , xp) for the parameters such that each Ai is
an optimal alignment of its strings under fx. ��

For example, the Ai might be structural global alignments of pairs of protein se-
quences, and f might score alignments using substitution scores σab for all pairs
of amino acids a, b together with a gap-open penalty γ and a gap-extension
penalty λ. In this case, scoring function f has 212 parameters. For another ex-
ample, the Ai might be local alignments of pairs of strings, also scored using
substitutions and gap penalties, or the Ai might even be alignments of align-
ments [11] scored using the weighted sum-of-pairs measure.

Note that Inverse Optimal Alignment may have no solution: it may be that
no choice x for the parameter values makes the Ai all be optimal alignments.
An algorithm for inverse alignment must detect this situation, and report that
no solution exists.

Given that it may be impossible to find parameters that make the alignments
in a collection all be optimal, we might instead seek the next-best thing: pa-
rameters that make the alignments all be near-optimal. When the objective is
to minimize scoring function f , we say an alignment A of a set of strings S is
ε-optimal for some ε ≥ 0 if

f(A) ≤ (1+ε) f(A∗), (1)

where A∗ is an optimal alignment of S under f . Note that when ε = 0, an
ε-optimal alignment is optimal.

Definition 2 (Inverse Near-Optimal Alignment). The Inverse Near-
Optimal Alignment Problem is: given a collection of alignments Ai, scoring
function f , and a real number ε ≥ 0, find parameter values x such that each
alignment Ai is ε-optimal under fx. ��
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For large enough ε, Inverse Near-Optimal Alignment always has a solution. In
practice though we might not know an appropriate value of ε in advance. Nev-
ertheless an algorithm for Inverse Near-Optimal Alignment can be used to ef-
ficiently find the smallest value ε∗ for which there is a solution, to any desired
accuracy ξ > 0. First, by repeated doubling, find an upper bound b on ε∗ by iter-
atively solving Inverse Near-Optimal Alignment with ε = 2i ξ for an i of 1, 2, . . .
until a solution is found. Then, given upper bound b and lower bound a = b/2
on ε∗, perform binary search on the real values in interval [a, b] that are spaced
distance ξ apart. This finds the best possible ε to within accuracy ξ using
O(log(ε/ξ)) calls to an algorithm for Inverse Near-Optimal Alignment. As we
show in Section 6, such an approach is very fast in practice.

Finally, in some applications of inverse alignment we may need to find pa-
rameter values that make a given alignment be the unique optimal alignment
of its strings. (For example, suppose we have alignment software that attempts
to optimize a scoring function; when testing how well the software performs at
recovering a benchmark alignment, the best parameter values to use would be
those that make the benchmark be the unique optimal alignment.) To be the
unique optimal alignment, every other alignment must score worse. We quantify
how much worse as follows. When the objective is to minimize scoring function f ,
we say an alignment A of a set of strings S is δ-unique for some δ > 0 if

f(B) ≥ f(A) + δ,

for every alignment B of S other than A.

Definition 3 (Inverse Unique-Optimal Alignment). The Inverse Unique-
Optimal Alignment Problem is: given a collection of alignments Ai, scoring
function f , and a real number δ > 0, find parameter values x such that each
alignment Ai is a δ-unique alignment of its strings under fx. ��
Note that using the same doubling and binary-search idea described above
to find the smallest ε for Inverse Near-Optimal Alignment, we can find the
largest δ > 0 for which the Ai are all δ-unique, to within accuracy ξ > 0,
using O(log(δ/ξ)) calls to an algorithm for Inverse Unique-Optimal Alignment.

When the alignment scoring function f is linear in its parameters—as is the
case for most forms of alignment used in practice (including the standard formu-
lations of global and local alignment)—all three variations of inverse alignment
can be solved using linear programming, as we show next.

3 Reduction to Linear Programming

For most standard forms of alignment, the alignment scoring function f is a
linear function of its parameters. We make this precise as follows. In general
suppose that f scores an alignment A by measuring p+1 features of A through
functions f0, f1, . . . , fp, and combines these measures into one score through a
weighted sum involving p parameters w1, . . . , wp, by

f(A) := f0(A) + f1(A)w1 + · · · + fp(A)wp. (2)
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Then we say f is linear in parameters w1, . . . wp. (Note that f0 is not weighted
by a parameter.) When we want to indicate the dependence of function f on all
its parameters w = (w1, . . . , wp), we write fw.

For a concrete example, consider standard global alignment of two protein
sequences with linear gap penalties, where a substitution of letter a by b has
similarity value σab, and a gap of length � incurs a penalty of γ + λ�. (A gap in
an alignment is a maximal run of either insertions or deletions; the length of the
gap is the number of letters in the run. Here γ is the gap-open penalty and λ is
the gap-extension penalty.) Suppose we have fixed all the similarity values σab

by choosing one of the standard substitution-score matrices (such as a PAM [2] or
BLOSUM [9] matrix). If the only parameter values we want to find through inverse
alignment are the gap open and extension penalties, we have p = 2 parameters:
γ and λ. For an alignment A, let

• g(A) be the number of gaps in A,
• �(A) be the total length of all gaps in A, and
• s(A) be the total score of all substitutions (including identities) in A.

Then the similarity score of alignment A is

f(A) := s(A) − g(A) γ − �(A)λ. (3)

Here (f0, f1, f2) = (s, g, �) and (w1, w2) = (−γ, −λ) in the notation of (2).
On the other hand, if no parameters are fixed and we want to find values for

all the substitution scores σab and gap penalties simultaneously, then the scoring
function becomes

f(A) :=
(∑

a,b

hab(A)σab

)
− g(A) γ − �(A)λ, (4)

where a and b range over all letters in the alphabet, and the functions hab(A)
count the number of substitutions in A that replace a by b. For the protein
alphabet of 20 amino acids, there are 210 substitution parameters σab. These
plus the two gap parameters gives p = 212 total parameters. Here f0(A) = 0 in
the notation of equation (2).

When the scoring function f is linear in its parameters, we can solve Inverse
Optimal, Near-Optimal, and Unique-Optimal Alignment using linear program-
ming. Recall that the Linear Programming Problem is: given a collection of
variables x = (x1, . . . , xn), a system of linear inequalities in the variables x, and
a linear objective function in the variables x, find an assignment x∗ of real val-
ues to the variables that satisfies all the inequalities and minimizes the objective
function. In matrix notation, given a system of m inequalities in the n variables
whose left-hand sides are specified by an m × n coefficient matrix A and whose
right-hand sides are specified by an m-vector b, together with an n-vector c of
coefficients for the objective function, Linear Programming finds

x∗ := argmin
x≥0

{
cx : Ax ≥ b

}
.

Here x∗ is an optimal solution to the linear program, and any x ≥ 0 that satis-
fies Ax ≥ b is a feasible solution. In general a linear program may be infeasible
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(has no feasible solution), bounded (has an optimal feasible solution), or un-
bounded (has feasible solutions that are arbitrarily good under the objective).

Inverse Optimal Alignment. We can solve Inverse Optimal Alignment for a
linear scoring function in a very natural way by linear programming. The vari-
ables x = (x1, . . . , xp) in the linear program correspond to the scoring-function
parameters w = (w1, . . . , wp). Note that the condition x ≥ 0 for linear programs
is not a restriction. We can scale any linear scoring function by a positive amount
(without changing the relative rank of alignments) so its parameters lie in the
interval [−1, 1]. Then replacing every occurrence of parameter wi by xi −1 yields
variables satisfying x ≥ 0.

We use the following system of inequalities. Let Si be the set of strings that Ai

aligns. For each Ai and every alignment B of Si, we have an inequality

fx(B) ≥ fx(Ai). (5)

These inequalities simply express that Ai is a minimum-score alignment of
strings Si, and hence Ai under parameter values x is an optimal alignment.
(Note that if the objective is to maximize scoring function f , the direction of in-
equality (5) should be reversed. Then negating all the inequalities puts them into
the canonical form Ax ≥ b for the linear program.) Written in terms of x1, . . . , xp,
inequality (5) is by equation (2) equivalent to the linear inequality

∑
1≤j≤p

(
fj(B) − fj(Ai)

)
xj ≥

(
f0(Ai) − f0(B)

)
. (6)

Note that for any given alignments Ai and B, the quantities fj(B) − fj(Ai) in
inequality (6) are constants that serve as the coefficients of the variables x.

Of course this yields a linear program with a huge number of inequalities.
Suppose Ai aligns two strings of length n. The number of alignments of this pair
of strings [5] is Θ((3+

√
2)n/n1/2) = Ω(4n), which is the number of alignments B.

Every such B generates an inequality in the linear program. So an inverse align-
ment problem with p parameters and k input alignments, each of which aligns
two or more strings of length n or greater, generates a linear program with
Ω(k 4n) inequalities in p variables.

Surprisingly, for many forms of sequence alignment this linear program can
be solved in polynomial time—even though it has an exponential number of
inequalities—due to a deep result that we call the Separation Theorem. In
Section 4 we discuss how this theorem guarantees that we can efficiently solve
this linear programming formulation.

One advantage of this linear programming-based approach is that we may also
specify any linear objective function that we wish for the linear program. While
every feasible solution x ≥ 0 that satisfies the above inequalities Ax ≥ b yields
a choice of parameters that makes the Ai optimal, some choices may be more
biologically desirable. For instance with linear gap penalities, biologists generally
prefer a large gap-open penalty γ and a small gap-extension penalty λ, since real
alignments typically consist of a few long gaps. We are free to use any objective
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function that is linear in x to pick out a feasible solution that is more desirable.
Section 5 discusses some objective functions that are appropriate for standard
global alignment.

Near-Optimal Alignment. To extend this to Inverse Near-Optimal Align-
ment simply involves modifying the inequalities (5). Given ε ≥ 0, we use the
system

(1 + ε) fx(B) ≥ fx(Ai), (7)

which for each Ai again has an inequality for every alignment B of strings Si.
This is a linear inequality as well in the variables x1, . . . , xp. Note that if in-
equality (7) holds for every B, then in particular it holds for B = A∗ where A∗ is
an optimal alignment of Si under fx—and vice versa. So by the definition given
in inequality (1), the system ensures each Ai is ε-optimal.

Unique-Optimal Alignment. To solve Inverse Unique-Optimal Alignment
for a given δ > 0, the system simply has an inequality

fx(B) ≥ fx(Ai) + δ, (8)

for each Ai and every alignment B of Si with B �= Ai, which is again a linear
inequality in x.

We next explain how this linear programming formulation can be solved in
polynomial time for most forms of sequence alignment.

4 Solving the Linear Program

One of the truly far-reaching results in linear programming is what we call
the Separation Theorem. This result was discovered in the early 1980’s by
Grötschel, Lovász and Schrijver [6], Padberg and Rao [14], and Karp and Pa-
padimitriou [10]. To explain it requires a few concepts. Linear programming
optimizes a linear function of real variables over a domain given by linear in-
equalities. Geometrically this domain, which is an intersection of half-spaces, is a
convex body called a polyhedron. If the inequalities have rational coefficients, the
polyhedron is rational. A polyhedron that contains no infinite rays is bounded.

The optimization problem for a rational polyhedron P ⊆ Rd is: Given ratio-
nal coefficients c that specify the objective function, find a point x ∈ P that
minimizes cx, or determine that P is empty. The separation problem for P is:
Given a point y ∈ Rd, either (1) find rational coefficients w and b that specify
an inequality such that wx ≤ b for all x ∈ P , but wy > b; or (2) determine
that y ∈ P . In other words, a separation algorithm that solves the separation
problem for polyhedron P determines whether point y lies inside P , and if it
lies outside, finds an inequality that is satisfied by all points in P but is violated
by y. Such a violated inequality gives a hyperplane that separates y from P .

The Separation Theorem says that, remarkably, optimization and separation
are equivalent: an efficient separation algorithm for a linear program yields an
efficient algorithm for solving that linear program, and vice versa.
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Theorem 1 (Equivalence of Separation and Optimization [6, 14, 10]).
The optimization problem on a bounded rational polyhedron can be solved in
polynomial time if and only if the separation problem can be solved in polyno-
mial time. ��

The precise definition of polynomial time in the above is rather technical, but
essentially means polynomial in the number n of variables in the system of
inequalities describing the polyhedron (really, polynomial in its dimension and
the number of digits in the rational coefficients). The import is that a linear
program that is implicitly described by a list L of 2Ω(n) inequalities can be
solved in nO(1) time if, for any candidate solution y, one can in nO(1) time
determine that y satisfies all the inequalities in L, or if it does not, report an
inequality in L that y violates. Of course a separation algorithm that simply
scans list L and tests each inequality will not achieve this time bound.

The proof of Theorem 1 exploits properties of the ellipsoid algorithm for linear
programming. As a consequence, the polynomials bounding the running times
have high degree, so the theorem does not directly yield algorithms for quickly
solving exponentially-large linear programs in practice. Its main use is in proving
that a polynomial-time algorithm exists.

To solve a linear program in practice using a separation algorithm, the fol-
lowing iterative approach is usually taken.

(1) Start with a small subset S of the inequalities in L.
(2) Compute an optimal solution x to the linear program given by subset S.
(3) Call the separation algorithm for L on x. If the algorithm reports that x

satisfies L, output x and halt: x is an optimal solution for L.
(4) Otherwise, add the violated inequality returned by the separation algo-

rithm to S, and loop back to Step (2).

This kind of approach is known as a cutting-plane algorithm. Such algo-
rithms often find optimal solutions very quickly in practice, even if they are not
guaranteed to run in polynomial time. In Section 6 we show that the result-
ing cutting-plane algorithm for global alignment is indeed fast, solving instances
with hundreds of parameters and alignments in a few minutes of computation.

In the remainder of this section we show that a polynomial-time alignment
algorithm (in other words, an algorithm that computes an optimal alignment
given fixed values for the parameters) yields a polynomial-time separation
algorithm for our linear programming formulations of inverse alignment.
Combined with Theorem 1, this proves our main result.

Theorem 2 (Complexity of Inverse Alignment). Inverse Optimal and
Near-Optimal Alignment can be solved in polynomial time for any form of
alignment in which: (1) the alignment scoring-function is linear in its param-
eters, (2) the parameters values can be bounded, and (3) for any fixed parameter
choice, an optimal alignment can be found in polynomial time. Inverse Unique-
Optimal Alignment can be solved in polynomial time if in addition, for any fixed
parameter choice, a next-best alignment can be found in polynomial time. ��
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Optimal and Near-Optimal Alignment. We now give separation algo-
rithms for each variation of inverse alignment. Recall that given an assignment
of values x for the scoring-function parameters, a separation algorithm decides
whether x satisfies all the inequalities in the linear program, and if it does not,
identifies a violated inequality.

For inverse optimal alignment, the linear program consists of inequalities (5)
for each input alignment Ai. Conceptually we have a different separation algo-
rithm for the inequalities associated with each Ai. To separate all inequalities,
run the separation algorithms for A1, . . . , Ak consecutively. As soon as one al-
gorithm finds a violated inequality, we halt and return the inequality. If no
algorithm finds a violated inequality, we report x satisfies the linear program.

To separate the system of inequalities associated with a particular Ai, simply
compute an optimal alignment B∗ under scoring function fx over the strings Si

that Ai aligns. If fx(B∗) ≥ fx(Ai), then by transitivity inequality (5) holds for
all B, so x satisfies this system. On the other hand if fx(B∗) < fx(Ai), this gives
a violated inequality to report.

For inverse near-optimal alignment, we use an identical approach on inequal-
ities (7). Note that this runs in O(kt) time, where t is the time to compute an
optimal alignment and k is the number of input alignments. So if t is polynomial,
this separation algorithm runs in polynomial time.

Unique-Optimal Alignment. For inverse unique-optimal alignment, to sep-
arate the system of inequalities (8) associated with Ai, we again compute an
optimal alignment B∗ of Si under fx. If B∗ �= Ai, then fx(B∗) ≥ fx(Ai) + δ
is a violated inequality. If B∗ = Ai, compute a next-best alignment C∗ of Si. If
fx(C∗) ≥ fx(Ai) + δ, then by transitivity x satisfies the system; otherwise, this
gives a violated inequality. Note that this runs in polynomial time if a next-best
alignment can be computed in polynomial time (which is the case for standard
string alignment [3]).

In the next section we use Theorem 2 to show that for global alignment, all
variations of inverse alignment can be solved in polynomial time. The key point
is showing how to bound the values of alignment parameters.

5 Application to Global Alignment

To obtain a cutting-plane algorithm for a particular form of alignment, such as
global or local alignment of two strings, several details must be worked out to
apply the general approach of Section 4. These include how to find an initial
subset of the inequalities that yields a bounded linear program, and how to
choose an appropriate objective function. Here we discuss these in the context
of global alignment, but similar ideas apply to local alignment as well.

We use the definition of standard global alignment given at the beginning
of Section 3, in which matches between pairs of letters are weighted by arbi-
trary substitution scores, and gaps are penalized using gap open and extension
penalties. For inverse global alignment we separately consider two forms of the
scoring function: when substitution scores are varying as given by equation (4),
and when they are fixed as given by equation (3).
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Initializing the Cutting-Plane Algorithm. Typically cutting-plane algo-
rithms take as their initial set of inequalities just the trivial inequalities x ≥ 0
of the linear program. For objective functions of biological interest, however, this
trivial linear program is unbounded in the direction of the objective function. Con-
sequently with this choice the first iteration of the cutting-plane algorithm would
fail, as the first call to the linear programming solver to find an initial candidate
solution x would report that the problem is unbounded, and return no solution.

When the substitution costs and gap penalties are all varying, we can set
absolute upper and lower limits on the values of the parameters, and solve the
linear program within the resulting bounding box as follows. By scaling the linear
scoring-function by a positive factor (which does not change the relative rank
of alignments), we can always make the largest parameter value hit 1. Then all
parameters lie in the bounding box 0 ≤ x ≤ 1, which we take as the initial set
of inequalities for the cutting-plane algorithm.

When substitution costs are fixed, however, the bounding-box approach does
not work (as the linear program may be unbounded). Instead we take the fol-
lowing approach. The linear programming problem is now a two-dimensional
problem in the (γ, λ)-plane, where we associate γ with the vertical axis and λ
with the horizontal axis. We say inequality I is a bounding inequality if the lin-
ear program consisting of I and the trivial inequalities (γ, λ) ≥ 0 is bounded. In
general, the linear program is bounded if and only if there exists (1) a bounding
inequality, or (2) two inequalities where one is a downward halfspace, the other
is an upward halfspace, and the slope of the downward inequality is less than
the slope of the upward inequality. Furthermore, if they exist, these inequalities
together with the trivial inequalities yield an initial set for the cutting-plane
algorithm of at most four inequalities that give a bounded linear program.

We can find this set if it exists by identifying a downward inequality D of
minimum slope and an upward inequality U of maximum slope. If D or U is a
bounding inequality, or D’s slope is less than U ’s, the linear program is bounded,
and if not it is unbounded. For near-optimal inverse alignment, the general form
of an inequality is γ ∆g + λ∆� ≤ −∆s, where ∆g := g(A) − (1+ε) g(B) for
input alignment A, and similarly for ∆� and ∆s. This inequality is downward
if ∆g > 0, upward if ∆g < 0, and its slope is − ∆�

∆g . Thus for fixed A and ε,
the direction and slope of an inequality is strictly a function of g(B) and �(B).
For the two strings A aligns, functions g and � range over a linear number
of integer values, so the problem of finding a downward or upward inequality
of optimal slope is certainly solvable. With further analysis, one can find the
optimal inequalities in O(1) time. Due to page limits we omit the details.

Choosing an Objective Function. As mentioned in Section 3, we are free
to use any objective function we wish for the linear program, and we can exploit
this freedom to pick a feasible solution that is biologically more desirable.

With fixed substitution scores, the parameters are γ and λ. Biologists gen-
erally prefer large γ and small λ, as in this regime optimal alignments tend to
consist of a few long gaps, which is observed in biologically correct alignments.
So one possibility for an objective is the linear combination max{γ − λ}.
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With varying substitution scores, the parameters are γ, λ, and all σab. When
the alignment problem seeks to minimize the alignment scoring function, so
the σab are treated as costs, we might want to maximize the separation between
true substitution costs σab (where a �= b) and identity costs σaa. Then one
possibility for the objective is to maximize the difference between the minimum
true substitution cost and the maximum identity cost (so they are as far apart as
possible). We can express this in our linear programming formulation by adding
two new variables: s, which will equal the minimum true substitution cost, and i,
which will equal the maximum identity cost. Using the objective max{s−i}, and
adding the inequalities s ≤ σab for all a �= b, and i ≥ σaa for all a, will achieve
this goal. (Another possibility is to maximize the difference between the average
true substitution cost and the average identity cost, which is also an objective
that is linear in the parameters.) This objective on substitution scores can be
combined with our objective on gap penalties by max{s − i + γ − λ}.

Finally, note that for every objective, we can select two extreme solutions:
xlarge, which is the optimal solution under the objective, and xsmall, which is the
optimal solution in the direction opposite to the objective. Since the domain of
feasible solutions for a linear program is convex, any convex combination of these
two extremes, xα := (1−α)xlarge + α xsmall, where 0 ≤ α ≤ 1, is also a feasible
solution. For example, x1/2 may tend to be a more central parameter choice that
generalizes to alignments outside the training set of input alignments Ai (which
is borne out by our experiments of the next section).

6 Computational Results

We now present results from computational experiments on biological data with
an implementation of our algorithms for inverse optimal and near-optimal global
alignment. The implementation solves the problem both with fixed substitution
scores (where p = 2 gap-penalty parameters are found), and with varying substi-
tution scores (where for protein sequences all p = 212 parameters of the scoring
function are simultaneously found). To solve linear programs we use the GNU
Linear Programming Kit. For the linear programs we use the objective func-
tion max{s − i + γ − λ}, where s and i are the minimum substitution and
maximum identity costs, as described in Section 5. To find violated inequalities
quickly, we maintain a queue Q of alignments Ai that generated a violated in-
equality the last time their separation algorithm was called. To find the next
violated inequality, we remove an Ai from the front of Q, call its separation
algorithm, and add it to the rear of Q if it generates another violated inequality.
Figure 1 illustrates solving an instance with this implementation.

We ran several types of experiments on biological data. For the experiments,
we chose six multiple sequence alignments from the PALI database [1] of struc-
tural protein alignments. (For each protein family in the SCOP protein clas-
sification database [12], PALI contains a multiple sequence alignment of the
family based on aligning protein structures.) Table 1 describes the PALI fam-
ilies we chose, which are: T-boxes (box), NADH oxidoreductases (nad), Kunitz
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Fig. 1. Finding gap penalties by the cutting-plane algorithm. Labeled points are suc-
cessive solutions for inverse near-optimal global alignment using PAM250 substitution
scores on the pec dataset at the best possible ε = 0.06 (see Tables 1 and 2). Solutions
found when maximizing the linear program objective γ−λ are large points; those found
when minimizing this objective are small points. The optimal solutions for maximiza-
tion and minimization are the two final points. Successive violated inequalities are also
plotted, along with their half-space direction of up or down. Numbers labeling points
give the order in which solutions were computed. The solid line-segment between the
final large and small points is the blend line between these extremes.

inhibitors (kun), Sir2 transcription regulators (sir), apolipoproteins (apo), and
pectin methylesterases (pec). Each family was reduced to 20 members by remov-
ing outlier sequences. For the training and testing experiments described next,
these 20 members were partitioned into two groups of 10 members each, called
the training set and the test set.

To investigate whether it is possible to learn scoring parameters from a train-
ing set of pairwise alignments that will apply to other alignments, we ran the
following experiment. For each dataset with varying substitution scores, we found
the smallest ε for the training set such that each induced pairwise alignment on
the training set is ε-optimal; we call this smallest value εtrain. We also computed
the same quantity for the test set, called εtest. Then for each training set, we
computed two extreme choices of parameters at εtrain, xlarge and xsmall, which
are the parameter choices that respectively maximized and minimized the linear
programming objective. We then searched for the convex combination between
these two extremes that yielded a parameter choice for the test set with the small-
est ε. For a given 0 ≤ α ≤ 1, the convex combination is α xlarge + (1−α)xsmall.
The α that gave the smallest ε for the test set is called αblend, and its corre-
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sponding ε is called εblend. These values are shown for the six datasets in Table 1.
The table also gives the value of ε for the convex combinations α ∈ {0, 1

2 , 1}.
Notice that ε1/2 is surprisingly close to εblend, which is within roughly one per-
cent of εtest. This indicates that the best blend from the training set was nearly
a best possible parameter choice for the test set. Notice also on this data the
central parameter α = 1/2 always yields a smaller ε than the extremes α = 0, 1,
indicating that central parameters generalize better.

To get a feel for how much closer to optimal we could make the induced
pairwise alignments in a dataset by varying the substitution scores versus using
a standard substitution matrix, we performed the following experiment. For all
20 members of each of the PALI datasets, we computed the minimum ε for the
set of all 190 induced pairwise alignments, with varying substitution scores and
the fixed PAM [2] and BLOSUM [9] substitution scores shown in Table 2. As might

Table 1. Generalizing from training to test sets. For each multiple sequence align-
ment dataset listed below, best possible parameters computed on a training subset are
applied to a disjoint test subset. For each dataset the table lists the PALI accession
number, the average sequence length, and the average percent-identity over all induced
pairwise alignments. The meaning of the closeness entries is given in the text; values
for ε are reported as percentages. All substitution scores and gap penalties are free
parameters in these experiments.

Dataset PALI Sequence Percent Closeness ε
number length identity εtrain εtest εblend αblend ε0 ε1/2 ε1

box 333 183 14.3 1.7 1.2 1.5 0.47 1.7 1.5 2.6
nad 419 151 16.1 2.8 2.8 3.1 0.37 3.7 3.1 4.7
kun 409 172 15.0 3.9 3.7 4.2 0.49 4.4 4.2 4.8
sir 633 197 16.8 3.1 2.2 3.0 0.55 4.3 3.0 4.4
apo 99 143 17.8 1.9 1.7 3.2 0.22 3.6 3.4 4.6
pec 483 299 17.0 1.2 2.0 3.1 0.65 4.4 3.1 4.4

Table 2. Closeness to optimality for fixed and varying substitution scores. For each
PALI dataset and for fixed or varying substitution scores, the smallest ε such that all
induced pairwise alignments are ε-optimal is reported as a percentage.

Dataset Closeness ε
varying fixed

PAM250 PAM120 BLO45 BLO80

box 2 5 9 8 9
nad 4 9 15 12 18
kun 5 8 11 9 12
sir 4 11 16 12 16
apo 3 21 45 34 58
pec 3 6 9 8 11
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be expected, the minimum ε when substitution scores are free parameters is
smaller than the minimum ε for a fixed substitution matrix. Notice that on these
datasets PAM250 gave the smallest ε of the four matrices considered. On the other
hand, the optimal substitution matrix found when substitution scores were free
parameters has roughly at most half the ε for PAM250, and is sometimes much
better. Notice also that with varying substitution scores, one can consistently
come very close to optimal on every dataset.

Finally, Table 3 gives running times and number of violated inequalities
for the cutting-plane algorithm on the experiments of Table 2. Running times
are wall-clock times in seconds to solve Inverse Near-Optimal Alignment for a
given ε during the binary search for the smallest ε. Each binary search con-
cluded in at most 8 iterations. Every iteration, while considering an input of
190 alignments, finished in roughly under a minute for fixed substitution scores,
and under roughly 4 minutes for varying substitution scores while finding val-
ues for 212 parameters. Experiments were on a 3 GHz Pentium 4 with 1 GB
of RAM.

Table 3. Running time and number of violated inequalities. For each PALI dataset,
times and number of inequalities are reported for computing the ε of Table 2. Columns
report the median and extreme values across the binary search iterations.

Dataset Time (sec) Violated inequalities
fixed varying fixed varying

med max med max min med max min med max

box 24 25 5 123 4 11 23 5 32 972
nad 17 18 7 46 3 12 21 5 118 590
kun 23 30 11 83 2 13 22 7 176 681
sir 29 31 13 96 2 11 20 5 196 832
apo 16 16 14 264 6 17 22 13 236 1398
pec 63 65 23 226 2 10 20 3 238 1087

7 Conclusion

We have presented a new approach to inverse parametric sequence alignment.
The approach is actually quite general, and solves inverse parametric opti-
mization in polynomial time for any optimization problem (not just sequence
alignment) whose objective function is linear in its parameters, whose param-
eters can be bounded, and that can be solved in polynomial time when all
parameters are fixed. Experiments on structural alignments from a protein fam-
ily database show we can find all 212 parameters of the standard protein-
sequence scoring-model from hundreds of pairwise alignments in a few minutes of
computation.

Many lines of investigation remain open. Can parameter values be learned
from both positive and negative examples? Can our algorithm aid the eval-
uation of alignment software by testing programs at parameter settings that
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make benchmark alignments score as close to optimal as possible? Can cut-
ting planes be efficiently found for inverse alignment that are facet-defining
inequalities?
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