The maximum weight trace problem
in multiple sequence alignment

John Kececioglu

Computer Science Department, University of California at Davis, Davis, California 95616

Abstract. We define a new problem in multiple sequence alignment, called
mazimum weight trace. The problem formalizes in a natural way the com-
mon practice of merging pairwise alignments to form multiple sequence align-
ments, and contains a version of the minimum sum of pairs alignment problem
as a special case.

Informally, the input is a set of pairs of matched characters from the
sequences; each pair has an associated weight. The output is a subset of the
pairs of maximum total weight that satisfies the following property: there is a
multiple alignment that places each pair of characters selected by the subset
together in the same column. A set of pairs with this property is called a
trace. Intuitively a trace of maximum weight specifies a multiple alignment
that agrees as much as possible with the character matches of the input.

We develop a branch and bound algorithm for maximum weight trace.
Though the problem is NP-complete, an implementation of the algorithm
shows we can solve instances on as many as 6 sequences of length 250 in a
few minutes. These are among the largest instances that have been solved to
optimality to date for any formulation of multiple sequence alignment.

1 Introduction

Multiple sequence alignment is among the outstanding problems of computational
biology for which a satisfactory solution is unknown.

Briefly, multiple alignment may be defined as the following general problem.
Given a set of sequences S;, 52, ..., Sk -and a scoring function d, find a multiple
sequence alignment A = (a;j)1<i<k that minimizes

Y d(ayjaz--- arj).
i

The entries a;; of matrix A are either symbols from the sequence alphabet X or
the null character ¢, which is the identity under concatenation. The only constraint
on A is that, concatenating characters a;; a;2 - - - in any row i of the matrix, we must
obtain the ith sequence S;. Function d assigns a score to a column based on the
characters that appear in it. In words, we seek an alignment A4 that minimizes the
sum of the scores of its columns.

All the standard multiple sequence alignment problems may be cast in this form.
For example in the shortest common supersequence problem, d counts the number of
distinct symbols from X' that appear in a column. The score of a multiple alignment
. is then the length of the supersequence it encodes.

107

In the longest common subsequence problem, d assigns the value —1 to a col-
umn consisting of k copies of a symbol from ¥, and assigns any other column the
value 0. Minimizing the alignment score then maximizes the length of the common
subsequence.

In the minimum sum of pairs alignment problem of Carrillo and Lipman (2],

d(a1jaz;j -+ ar;) = Y _ 6(ap;,aq),
r<g

where 8 is a scoring function for pairs of symbols, including ¢, satisfying 6(c,¢) = 0.
In this problem the score of a multiple alighment is the sum of the scores of its
pairwise alignments.

Even the problem of multiple alignment under o fized evolutionary tree, in which
we have a tree T with leaves labelled Si, ..., Sk and we seek ancestral sequences to
label the internal nodes of T’ so as to minimize the sum of the edit distances along
its edges, can be reduced to this general form, as shown by Sankoff [14].

As can be expected for a problem of such generality, multiple sequence alignment,
as formulated above, is NP-complete. This follows from the NP-completeness of the
longest common subsequence problem for a set of sequences [12], which we have
noted is a special case of general multiple alignment.

On the other hand, by the early 1970s it was known that multiple sequence
alignment could be solved by dynamic programming for k sequences of length n
using O(ank) evaluations of the scoring function d and O(n*) space. Thus for a
fixed number of sequences, the problem is polynomial-time solvable.

This is hardly a practical solution, however. For a reasonable sized problem such
as five sequences of length 100, the space requirements for dynamic programming are
already more than ten gigabytes, even if the user-could afford to wait for completion
of the algorithm.

Consequently biologists have opted for suboptimal methods, such as the follow-
ing. For every pair of sequences an optimal pairwise alignment is computed; then a
set of pairwise alignments is selected that connect the sequences, and the pairwise
alignments are merged to form a multiple alignment. Such an approach is fast, usu-
ally O(k?n?) time to compute the pairwise alignments and O(k?logk + kn) time to
select a subset and merge them, and there is a well-developed theory for alignment
of two sequences. S

In the method of Feng and Doolittle [4] for instance, a maximum weight spanning
tree of pairwise alignments is selected, where the weight of a pairwise alignment is
its similarity score. This exploits the fact that any tree T of pairwise alignments can
be merged into a multiple alignment that agrees with the alignments in T

The main drawback of this and similar methods is that less than k of all
(’2“) pairwise alignments are used. Indeed, it is not hard to construct instances in
which the merged alignment agrees with only the k — 1 alignments of the tree, and
none of the remaining alignments, even when there is a multiple sequence alignment
that agrees with more than (5) — k of the pairwise alignments [11].

This leads to the question we address in this paper, namely,

Given a set of pairwise alignments, how can we find a multiple alignment
that is as close as possible to all pairwise alignments in the set?

108

2 The maximum weight trace problem

To answer our question we must define “as close as possible.”

The set of pairwise alignments may be represented by a graph, whose vertices are
the characters! of the sequences, and whose edges are the pairs of characters matched
in the alignments. The interpretation of vertices as characters in a sequence can be
maintained by a vertex relation that captures the ordering of characters within a
sequence.

Definition 1. An alignment graph (V,E,<) for a set S of sequences is a
graph (V, E) whose vertices V' correspond to the characters of the sequences in S,
together with a relation < on V. Relation v < w holds if and only if character v
immediately precedes character w in a sequence of S. o

Consider a path of edges in an alignment graph. Each edge on the path is a pair
of aligned characters; transitively the path is a set of characters to be aligned in
one column. The connected components? then of a set of edges correspond to the
columns of a multiple alignment. These columns form a valid alignment if they can
be ordered so as to respect < character by character.

We can represent this ordering of columns by shrinking each component to a
supervertex, and directing an edge from one supervertex to another if a character
in one component immediately precedes a character in the other. We express this
formally by extending < to a relation <* on sets of vertices. For subsets X and Y
of V,

X <*Y if and only if (3z€X) (Jy€Y) such that < y.

Relation <*, unlike <, may not be a partial order. Figure 1 gives an example. The
point is that a multiple alignment exists that agrees with a set E' of edges precisely
when the components of E have a linear ordering under <*.

Definition 2. A multiple sequence trace of an alignment graph (V, E, <) is a subset
T C E of the edges such that <* on the connected components of T is acyclic. 0O

A trace of maximum cardinality agrees with as many of the matches in an align-
ment graph as possible. We gain a little more flexibility by weighting edges and
seeking a trace of maximum total weight.

Definition 3. The mazimum weight trace problem is, given alignment graph
(V, E, <) and edge weight function w, find a trace T C E maximizing Y,y w(e).

Maximum weight trace was originally defined in [11] as a way of forming a
multiple alignment from pairwise overlaps to determine a consensus sequence for
DNA sequence reconstruction. We make a few remarks on the problem.

! Throughout the paper, a character of a sequence S is a position in S together with the
symbol at that position.

2 A connected component of a graph (V, E) is a maximal set C C V such that every pair
of vertices in C is joined by a path in E. Mazimal means C is not contained in a larger
set with this property.

'

()

N

Fig.1. (a) An alignment graph on three sequences. We use the convention of drawing
the characters in a sequence horizontally left to right. (b) Relation <* on its connected
components.

First, notice that multiple sequence trace, when restricted to two sequences, coin-
cides with the definition of trace in sequence comparison [15, page 12]. It generalizes
the definition and conforms to established terminology.

Second, when the alignment graph is a complete graph, maximum weight trace
contains the minimum sum of pairs alignment problem [2], for symbol-independent
insertion and deletion costs, as a special case. To see this, note that we can treat
the minimum sum of pairs problem as a maximization problem by negating the cost
function, and then by adding twice the insertion or deletion cost to all substitution
scores we can transform the objective function so that the set of solutions is un-.
changed, while making all insertion and deletion scores zero. Weighting the edges
of the complete alignment graph by the resulting substitution scores reduces this
version of the minimum sum of pairs problem to maximum weight trace. When the
alignment graph is not complete, we can score the multiple alignments considered
by our maximum weight trace algorithm with the minimum sum of pairs objective
function by performing the same transformation and simply taking the transitive
closure of the input alignment graph, as will become clear in Section 4.1.

Third, we note that the alignment graph in the definitions may be a hypergraph,
in which edges can be triples or quadruples of vertices, rather than simply pairs. The
connected components for a set of edges are then given by the partition of vertices
induced by successive union of intersecting edges. As before a trace is a collection
of edges such that <* on its connected components is acyclic. This accomodates a
very general notion of trace.

One advantage of the trace formulation is that a combinatorial structure is im-
posed on the problem from the start. When the edges of the graph come from an
optimal alignment for each pair of sequences, this structure can often be exploited to
speed up the computation. We call a graph whose edges between pairs of sequences
form pairwise traces, a pairwise alignment graph.

In this paper we design an exact algorithm for the class of pairwise alignment
graphs. Much of what we develop can be extended to more general inputs, and as

110

we shall see in the next section, even for pairwise alignment graphs the problem
remains hard.

3 The complexity of maximum weight trace

Theorem 4. Mazimum weight trace is NP-complete.

Proof. Certainly maximum weight trace is in NP, as a trace can be guessed, tested
for acyclicity, and its weight determined, all in polynomial time. The NP-hardness
of maximum weight trace can be shown by a simple reduction from the feedback edge
set problem [5]. In feedback edge set we are given a directed graph (V, E) together
with an integer m, and we ask whether there is a subset F C FE called a feedback
edge set with at most m edges such that (V, E—F) is acyclic.

Given an instance (V, E) of feedback edge set, we construct an instance (V', E’, <
) of maximum weight trace as follows. For every vertex v € V we create a vertex
sequence S,, and for every edge (v,w) € F we create an edge sequence Sy,. Se-
quence S, contains one character, while sequence Sy, contains two. Edges in F’
connect the first character of Sy, to S,, and the second character of Sy to Sy.
The effect is that the connected components of (V’, E') are star graphs centered on

vertex sequences, which are ordered under <* by the edge sequences.

‘ It is straightforward to show that, giving the edges of E' unit weight, (V, F) has
a feedback edge set of at most m edges if and only if (V’, E’, <) has a trace of weight
at least |E| — m. O

We remark that a consequence of this reduction is that maximum weight trace is
NP-complete even if every sequence has only two characters and the edges between
every pair of sequences form a pairwise trace. In other words, maximum weight trace
is NP-complete for pairwise alignment graphs over sequences of bounded length.

4 A branch and bound algorithm

As with the general alignment problem of the introduction, maximum weight trace
can be solved by dynamic programming, which in turn can be expressed as a shortest
or longest path problem. The standard breadth-first search solution of longest path
on an acyclic graph is the starting point of our branch and bound algorithm. In
order to describe the algorithm, we quickly review dynamic programming and its
expression as a path problem.

Recall that a multiple alignment given by a maximum weight trace ends in a col-
umn containing a subset of the characters Sy[n] --- Si[n], where for convenience all
sequences have length n. Remove this last column from the alignment. The remain-
ing columns correspond to a maximum weight trace over the prefix of the sequences
obtained by deleting the characters of the final column.

This gives a recurrence for the weight of an optimal trace. Writing D(zy - - - zy)
for the weight of an optimal trace over prefixes S1[1, 1], ..., Sk[1, z&), the recurrence

111

has the form3

D) = max {D(@r=b)-+(ou=b) + d(Sla)" - (Sue)™) .

where

o (by---b;) is a binary vector from the set {0,1}* — {0}*,
e a! denotes the character a, and
o a® denotes the null character ¢.

Function d gives the score of a column; which is the total weight of the edges in the
subgraph induced by the column. Value D(n---n) is the weight of an optimal trace
of the alignment graph.

One can evaluate D by filling in a k-dimensional table in order of lexicographi-
cally increasing coordinates. Each entry involves a maximum over 2% — 1 terms, and
evaluating d for a term takes O(k?) time. As there are O(n*) entries, evaluating the
dynamic program takes O(2¥n*k?) time and O(n*) space.

In turn one can view the dynamic program as finding a longest path through an
acyclic graph. Each vertex of the graph is associated with a subproblem (z; - - - z).
Edges correspond to columns, and are weighted by the score of the column. An edge
is directed from vertex (z1 « -+ o) to (41 -+ - yx) if yi —z; € {0,1} for each coordinate,
and the vertices are distinct. A maximum weight trace alignment corresponds to a
longest path from the source vertex (0---0) to the sink vertex (n---n).

This longest path problem may be solved by a breadth-first search from the
source. The search maintains a queue of vertices with the property that the length
of a longest path is known from the source to the vertex at the head of the queue. The
generic step removes vertex v from the head of the queue, examines all edges (v, w)
leaving v, compares the length of the best known path to w with the length of the
longest path to v followed by (v, w), and adds w to the queue in lexicographic order
if it is not already queued.

We can recast this breadth-first search in the framework of a branch and bound
algorithm. We view examining the edges (v, w) leaving v as a branch step, in which
a set of subproblems, namely the vertices w, are generated.? The dynamic program
generates 2% — 1 subproblems by considering all possible columns with which to ex-
tend an alignment. Section 4.1 describes how to consider a smaller set of subproblems
and still gunarantee optimality.

We can add a bound step before placing w on the rear of the queue. Suppose we
have a lower bound L on the length of a longest path from the source to the sink, for
instance the weight of a multiple sequence trace computed by a heuristic. If we can
quickly determine an upper bound U(w) on the length of the longest path from w to
the sink, or equivalently, an upper bound on the weight of an optimal trace over a
suffix of the sequences, we may be able to avoid adding subproblem w to the queue.
Writing £(v) for the length of the longest path from the source to v, and d(v,w) for

3 To avoid cluttering the equation we have left out the boundary conditions. The conditions
are that no term with a coordinate less than zero is evaluated and that D(0---0) = 0.

% Instead of the computation tree of a standard branch and bound algorithm, we have a
computation dag.

112

the weight of the column represented by edge (v, w), we can avoid adding w to the
queue if
£Lv) + d(v,w) + U(w) < L.

Section 4.2 describes how to compute bounds L and U(w).

4.1 The branch step

Given vertexv = (z1---¥k), which edges (v,w) do we have to consider? Recall
that v represents the problem S1[1,z1], ..., Sk(l,], and (v, w) represents a column
over {S;[z;+1]}.

Call set {S;[z;+1]} the ezposed characters on the frontier (zy---), as shown
in Figure 2. The alignment subgraph exposed by the frontier consists of all edges
that touch an exposed character at one end, and touch a character on or to the right
of the frontier at the other end.

S, [

Fig. 2. The alignment subgraph exposed by frontier (z; - - - zx).

Any column that extends frontier (z; - - - zx) is a subset of the exposed characters.
Our first observation is that we never have to consider subsets that are disconnected.

Observation 1. It suffices to consider columns of characters that are connected in
the alignment graph.

Proof. Any column that contains two or more connected components can be divided
into columns of one component without changing the weight of the alignment. O

Given that we can consider columns over each connected component of the ex-
posed subgraph separately, which connected components do we have to consider?

Figure 3 shows a set of components on the frontier, together with edges of the
exposed subgraph that leave the components. A maximum weight trace avoids cut-
ting edges as much as possible, where an edge is cut if it is not included. Trying to
avoid cutting exposed edges sets up a precedence among components.

113

¢

Fig. 3. (a) Components on the frontier, together with their exposed edges. (b) Avoiding
cutting the exposed edges imposes an ordering on components.

()

e i — S S i

e —

For a set X of exposed characters, let us write X* for set X together with the
characters strictly to the right of the frontier that are joined to X by an exposed
edge. Imagine shrinking each component of exposed characters to a supervertex in a
graph G, and directing an edge in G from component X to component Y if X <* Y™,
as in part (b) of the figure.

Counsider a component C' with no in-edges in G. A column consisting of the char-
actersin C cuts no edges of the alignment graph, which is optimal. As any alignment
over the characters to the right of the frontier must eventually output a column con-
taining characters from C, we might as well output the column consisting of C, and
advance the frontier. The maximum weight trace alignment can do no better.

But what if every component has an in-edge in G? In that case we can gen-
eralize C' to a set of components with the property that no in-edges enter the set
in G. In the following, a strongly connected supercomponent is a maximal set C of
components such that, for every pair X,Y of components in C, there is a path in G
from X to Y and from Y to X. We use the term supercomponent to distinguish this
set from a component, which is a connected set of exposed characters.

Observation 2. It suffices to consider columns over the components in a strongly
connected supercomponent of G with no incoming edges.

Proof. Let C;Cy -+ be the strongly connected supercomponents of G. Certainly con-
sidering all columns over all components in the C; is correct.

Notice however that columns from supercomponents that are incomparable in G
may be arbitrarily ordered without affecting the weight of an alignment. Thus consid-
ering columns from one supercomponent is also correct, as long as supercomponents
are considered in topological order. Choosing a supercomponent with no incoming
edges effectively chooses one of the many topological orders. m]

Now that we know we can guarantee optimality by considering columns over

each component X in one supercomponent, which columns over X do we have to
consider?

114

If there are no exposed edges leaving component X, simply outputing the column
consisting of X is correct. But if there are edges leaving the component, we are forced
to cut an edge. Figure 4 shows the three kinds of edges that affect a component.

%31
" / ou

(a) (b) (c)

Fig. 4. The three types of edges that affect a component, and the constraints they induce.

Unless we are willing to look arbitrarily far past the frontier, we cannot tell in
general which of the edges leaving a component will be cut in a maximum weight
trace. If an edge of type (a) is not cut, we must output a column from component X
that contains a character from the sequence to which e is incident; in the figure,
this is character v. We represent this by placing an in-constraint on vertex v, which
means we will consider a column that contains v.

Now consider an edge of type (b). If edge e is not cut, we must reserve character v
so that it may be aligned with the other endpoint of e. This is represented by an
out-constraint on v, which means we will consider a column that does not contain v.

Finally, an edge of type (c) is handled similarly to types (a) and (b). We place
an in-constraint on vertex w and an out-constraint on vertex v.

The combination of edges not cut by an optimal trace assigns some set of in- and
out-constraints to the characters of X. For a given constraint assignment, we can
find the optimal column over X that meets the constraints by solving a minimum
cut problem.®

Figure 5 shows the construction. Every character of the component has either
the in-constraint, the out-constraint, or it has no constraint, in which case we say it
is free. We construct a graph H that contains a vertex for every free character, and
an additional source and sink vertex. An exposed edge between a free character and
an in-contrained character is mapped to an edge of H touching the source, and an
exposed edge between a free character and an out-constrained character is mapped
to an edge touching the sink. Any parallel edges that arise are collapsed to a single
edge that is given the sum of the weights of the parallel edges.

5 A minimum weight cut of a graph is a partition of the vertices into two non-empty sets,
such that the total weight of the edges that span the partition is minimized. A minimum
cut can be found in polynomial time by a maximum flow computation [6].

115

Free ’ ‘free
c
" free
I \ 1
Source SIh/(c W

Fig. 5. Meeting a constraint assignment by constructing a minimum cut problem H.

Let F be the set of exposed edges that leave components on the frontier and are
not cut by a maximum weight trace, and consider the assignment of constraints that
F induces on component X. The effect of the construction is that the set of free
characters that are in the source-half of a minimum weight source-sink cut of H,
together with the in-constrained characters, form an optimal column over X that
does not cut the edges of F. This gives our final observation.

Observation 3. For each combination of constraints on the vertices in a component,
it suffices to consider the column given by a minimum weight cut of H.

Proof. Let E be the set of edges that leave components on the frontier, X be the
component we are considering columns over, and C be a set of characters from X
that are together in a column of a maximum weight trace alignment.

The maximum weight trace uses some subset F' of the edges in F, and cuts the
rest. Using F constrains some characters of X to be in or out of C, as in Figure 4.
Solving the associated minimum cut problem of Figure 5 over H yields a column C
that satisfies the same constraints.

Since C is given by a minimum cut, the weight of the edges cut by C is no
more than the weight of the edges cut by C. Thus C is also optimal for the given
component X and the given choice of edges F. O

Combining our observations, we get the following branch step.

1. Collect the connected components of exposed characters on the frontier
for v.
. Construct G and determine its strongly connected supercomponents.
Find a supercomponent C with no incoming edges in G.
4. For each connected component C' € C, and for every combination of con-
straints on C, branch® on the column (v, w) given by a minimum cut of H.

[

® By branch we mean update the length of the best path to the new frontier w, and add w
to the queue if not pruned by the bound step.

J -

116

Theorem 5. The set of columns considered by the branch step is sufficient to guar-
antee optimality.

Proof. By Observations 1, 2, and 3. a

4.2 The bound step

The bound step requires a lower bound L on the weight of an optimal trace and an
upper bound U on the weight of an optimal trace over a suffix of the sequences.

We can obtain L by the following greedy heuristic. Instead of computing a min-
imum cut for every assignment of constraints to the characters in a component,
compute one cut for each component, in which every character is free. From all the
components in the chosen supercomponent, select that column that has the mini-
mum cut weight, and advance the frontier. This chooses the column that gives up
the least immediate trace weight.

For upper bound U in a pairwise alignment graph, we can take the total weight
of the edges in the alignment graph over the suffixes of the sequences. More elaborate
upper bounds are also possible, such as computing a maximum weight trace over
the suffixes for all triples of sequences, summing the weights of the optimal traces,
and dividing by the number of sequences minus two, which is the number of times
a pair of sequences is counted in triples.

5 Preliminary computational results

We have implemented a version of the branch and bound algorithm that exploits
branching to reduce the search space, but at present does no bounding,.

The current implementation is roughly 2,000 lines of C. The code computes min-
imum cuts using the push-relabel maximum flow algorithm of Goldberg and Tar-
jan [6]. Vertices of the longest path graph are stored and looked up by coordinate
using the lexicographic splay tree of Sleator and Tarjan [16]. Since this effectively
factors vertex coordinates in a trie, the space per vertex in practice is less than O(k)
for k sequences.

We give an example in Figure 6 of a maximum weight trace alignment of
6 tyrosine kinase protein sequences of length 273 to 285. The alignment graph con-
sisted of one optimal alignment from each pair of sequences. Pairwise alignments were
computed using a standard scoring scheme: the PAM 250 matrix of Margaret Day-
hoff to score substitutions, which contains integer similarities in the range 0 to 25,
with insertions and deletions receiving similarity 0 and a length-independent gap
penalty of 8. Edges of the alignment graph were weighted by the substitution ma-
trix. Notice that, as is common with protein sequences, there are many substitutions
and few gaps in the alignment.

This problem was solved to optimality in 176.6 seconds (roughly 3 minutes) and
2.6 megabytes on a NeXT machine running at 33 megahertz. The branch and bound
algorithm explored a subgraph of 119,046 vertices, out of a dynamic programming
graph of 4.14 x 10 vertices. This is less than .00000003% of the dynamic program-
ming graph.

117

===-~GLA-K-DAWEIPRESLRLEAKLGQGCFGEVWMGT-WND-TTRVAIKTLK-PGTMSPEA-FLQEAQVMKKLRHEK
----- GLA-K-DAWEIPRESLRLEVKLGQGCFGEVWMGT-WNG-TTKVAIKTLK~LGTMMPEA-FLQEAQIMKKLRHDK
TIY-~GVSPNYDKWEMERTDITMKHKLGGGQYGEVYEGV-WKKYSLTVAVKTLKE-DTMEVEE~-FLKEAAVMKEIKHPN
-VLNRAVP-K~DKWVLNHEDLVLGEQIGRGNFGEVFSGRLRAD-NTLVAVKSCRETLPPDIKAKFLQEAKILKQYSHPN
-VLTRAVL-K-DKWVLNHEDVLLGERIGRGNFGEVFSGRLRAD-NTPVAVKSCRETLPPELKAKFLQEARILKQCNHPN
------- 5-S-YYWKMEASEVMLSTRIGSGSFGTVYKGK-WHG~DVAVKILKVVDPTPEQLQA-FRNEVAVLRKTRHVN

LVQLYAVYSE-EPIYIVIEYMSKGSLLDFLKGEMGKYLRLPQLVDMAAQIASGHAYVERMNYVHRDLRAANILVGENLV
LVPLYAVVSE-EPIYIVTEFMTKGSLLDFLKEGEGKFLKLPQLVDMAAQIADGMAYIERMNYIHRDLRAANILVGDNLY
LVQLLGVCTREPPFYIITEFMTYGNLLDYLRECNRQEVSAVVLLYMATQISSAMEYLEKKNFIHRDLAARNCLVGENHL
IVRLIGVCTQKQPIYIVMELVQGGDFLTFLRT-EGARLRMKTLLQMVGDAAAGMEYLESKCCIHRDLAARNCLVTEKNV
IVRLIGVCTQKQPIYIVMELVQGGDFLSFLRS-KGPRLKMKKLIKMMENAAAGMEYLESKHCIHRDLAARNCLVTEKNT
ILLFMGYMTK~DNLAIVTQWCEGSSLYKHLHV-QETKFQMFQLIDIARQTAQGMDYLHAKNIIHRDMKSNNIFLHEGLT

CKVADFGLARLIEDNEYTARQGAK-FPIKWTAPEA--ALY-GRFTIKSDVWSFGILLTELTTKGRVPYPGMVNRE-VLD
CKIADFGLARLIEDNEYTARQGAK-FPIKWTAPEA~-ALY-GRFTIKSDVWSFGILLTELVTKGRVPYPGMVNRE-VLE
VKVADFGLSRLMTGDTYTAHAGAK-FPIKWTAPES-~-LAY-NKFSIKSDVWAFGVLLWEIATYGMSPYPGIDLSQ-VYE
LKISDFGMSREAADGIYAASGGLRQVPVKWTAPEA-~LNY-GRYSSESDVWSFGILLWETFSLGASPYPNLSNQQ-TRE
LKISDFGMSRQEEDGVYASTGGMKQIPVKWTAPEA--LNY-GWYSSESDVWSFGILLWEAFSLGAVPYANLSNQQ-TRE
VKIGDFGLATVKSRWSGSQQVEQPTGSVLWMAPEVIRMQDDNPFSFQSDVYSYGIVLYELMA-GELPYAHINNRDQIIF

QVERGY~~-RMPCP-PECPESLHDLMCQCWRKDPEERPTFKYLQAQLLPACVLEVAE---~~-~
QVERGY~---RMPCP-QGCPESLHELMKLCWKKDPDERPTFEYIQS~FLEDYFTAAEPSG-~~~~
LLEKDY---RMERP-EGCPEKVYELMRACWQWNPSDRPSFAEIH-=~-- Q-AFETMFQESS-IS
FVEKGG---RLPCP-ELCPDAVFRLMEQCWAYEPGQRPSFSAIY~~~-~ Q-ELQSIRKRHR~-~
AIEQGV---RLEPP-EQCPEDVYRLMQRCWEYDPHRRPSFGAVH~-~~~~ Q-DLIAIRKRHR-~-
MVGRGYASPDLSRLYKNCPKAIKRLVADCVKKVKEERPLFPQIL-~---- S-SIELLQHSLPKIN

Fig. 6. An optimal maximum weight trace alignment of six tyrosine kinase sequences. The
alignment is wrapped to fit lines of a fixed width.

On this data set we could not add a seventh tyrosine kinase sequence and solve
the problem to optimality within 32 megabytes of memory. Incorporating the bound
step should extend the range of solution.

6 Conclusion

In summary, we have introduced a new problem in multiple sequence alignment,
maximum weight trace, which we believe is a natural formulation of merging par-
tial alignments to form multiple alignments. We have studied the problem from
the point of view of exact solution, developed a branch and bound algorithm, and
demonstrated that we can solve nontrivial instances to optimality in a reasonable
amount of time and space. We close with some lines for future research.

118

Further research

With an applied problem there are two basic questions: Does the problem have a
practical solution? and Is it a good model? One way to approach these questions is
with a computational study. Practicality could be examined by generating a random
sequence of length n, making k copies, editing each copy with € - n random errors,
computing a minimum edit distance alignment between every pair of copies, and then
measuring the mean and variance of the size of the subgraph explored by the branch
and bound algorithm, as function of k, n, and e. The modeling issue could then be
addressed by measuring how close the optimal maximum weight trace alignment is
to the “true alignment” of the generated sequences. These experiments, on a full
implementation of the branch and bound algorithm, are forthcoming for the final
journal paper.

While it is interesting to explore how large a problem can be solved to optimal-
ity, approximation algorithms will most likely be the choice in practice. Is there a
polynomial-time approximation algorithm for maximum weight trace with a constant
worst-case approximation factor? In particular, is the greedy heuristic of Section 4.2,
or a simple variant, such an algorithm?

Finally, much of the effort of the branch and bound algorithm is in untangling
edges where the sequences do not align well, yet we suspect users are less interested
in such areas of the alignment. This suggests constructing an alignment graph from
the set of all significant pairwise local similarities.” This would give a rigorous way
to form multiple alignments from local similarities, which we envision as the main
application of maximum weight trace.

Acknowledgements

We thank Dr. David Lipman for the protein sequences of Figure 6.

This research was supported by a postdoctoral fellowship from the Program in
Mathematics and Molecular Biology of the University of California at Berkeley under
NSF Grant DMS—8720208. Author’s electronic mail address: kece@cs.ucdavis. edu.

References

1. Altschul, Stephen F. and David J. Lipman. Trees, stars, and multiple biological se-
quence alignment. STAM Journal on Applied Mathematics 49:1, 197-209, 1989.

2. Carrillo, Humberto and David Lipman. The multiple sequence alignment problem in
biology. STAM Journal on Applied Mathematics 48, 1073-1082, 1988,

3. Chan, S.C., A.K.C. Wong and D.K.Y. Chiu. A survey of multiple sequence compari-
son methods. To appear in the Bulletin of Mathematical Biology, 1992.

4. Feng, Da-Fei and Russell F. Doolittle. Progressive sequence alignment as a prerequi-
site to correct phylogenetic trees. Journal of Molecular Evolution 25, 351-360, 1987.

5. Garey, Michael R. and David S. Johnson. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W.H. Freeman, New York, 1979.

7 A local similarity is an alignment between a substring of one sequence and a substring
of another. See [17] for a definition commonly used in practice.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

119

Goldberg, Andrew V. and Robert E. Tarjan. A new approach to the maximum flow
problem. Journal of the Association for Computing Machinery 35:4, 921-940, 1988.
Gotoh, Osamu. Consistency of optimal sequence alignments. Bulletin of Mathematical
Biology 52:4, 509-525, 1990.

Gusfield, Dan. Efficient methods for multiple sequence alignment with guaranteed
error bounds. Bulletin of Mathematical Biology 55:1, 141-154, 1993.

Hsu, W.J. and M.\W. Du. Computing a longest common subsequence for a set of
strings. BIT 24, 45-59, 1984.

Irving, Robert W. and Campbell B. Fraser. Two algorithms for the longest common
subsequence of three (or more) strings. In Proceedings of the 3rd Symposium on Com-
binatorial Pattern Matching, 211-226, 1992,

Kececioglu, John. FEzact and Approxzimation Algorithms for DNA Sequence Recon-
struction. PhD dissertation, Technical Report 91-26, Department of Computer Science,
The University of Arizona, Tucson, Arizona 85721, 1991.

Maier, David. The complexity of some problems on subsequences and supersequences.
Journal of the Association for Computing Machinery 25:2, 322-336, 1978.

Pevzner, Pavel. Multiple alignment, communication cost, and graph matching. To
appear in STAM Journal on Applied Mathematics.

Sankoff, David. Minimal mutation trees of sequences. SIAM Journal on Applied Math-
ematics 28:1, 35-42, 1975.

Sankoff, David and Joseph B. Kruskal, editors. Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison. Addison-Wesley, Read-
ing, Massachusetts, 1983.

Sleator, Daniel D. and Robert E. Tarjan. Self-adjusting binary search trees. Journal
of the Association for Computing Machinery 32:3, 652-686, 1985.

Smith, Temple F. and Michael S. Waterman. Identification of common molecular
sequences. Journal of Molecular Biology 147, 195-197, 1981.

Vingron, Martin and Patrick Argos. A fast and sensitive multiple sequence alignment
algorithm. Computer Applications in the Biosciences 5:2, 115-121, 1989.

Waterman, M.S. and R. Jones. Consensus methods for DNA and protein sequence
alignment. Methods in Enzymology 188, 221-237, 1990.

