
Ensemble Multiple Sequence Alignment via Advising

Dan DeBlasio
∗

Department of Computer Science
The University of Arizona
Tucson AZ 85721, USA

deblasio@cs.arizona.edu

John Kececioglu
Department of Computer Science

The University of Arizona
Tucson AZ 85721, USA

kece@cs.arizona.edu

ABSTRACT
The multiple sequence alignments computed by an aligner
for different settings of its parameters, as well as the align-
ments computed by different aligners using their default set-
tings, can differ markedly in accuracy. Parameter advising
is the task of choosing a parameter setting for an aligner to
maximize the accuracy of the resulting alignment. We ex-
tend parameter advising to aligner advising, which in con-
trast chooses among a set of aligners to maximize accuracy.
In the context of aligner advising, default advising selects
from a set of aligners that are using their default settings,
while general advising selects both the aligner and its pa-
rameter setting.

In this paper, we apply aligner advising for the first time,
to create a true ensemble aligner. Through cross-validation
experiments on benchmark protein sequence alignments, we
show that parameter advising boosts an aligner’s accuracy
beyond its default setting for virtually all of the standard
aligners currently used in practice. Furthermore, aligner
advising with a collection of aligners further improves upon
parameter advising with any single aligner, though surpris-
ingly the performance of default advising on testing data is
actually superior to general advising due to less overfitting
to training data.

The new ensemble aligner that results from aligner advis-
ing is significantly more accurate than the best single default
aligner, especially on hard-to-align sequences. This success-
fully demonstrates how to construct out of a collection of
individual aligners, a more accurate ensemble aligner.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and genetics;
F.2.2 [Nonnumerical Algorithms and Problems]: Com-
putations on discrete structures

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
BCB’15, September 09–12, 2015, Atlanta, GA, USA.
Copyright 2015 ACM ISBN 978-1-4503-3853-0/15/09...$15.00.
DOI: http://dx.doi.org/10.1145/2808719.2808766.

General Terms
Algorithms, Experimentation, Performance

Keywords
Multiple sequence alignment, parameter advising, aligner
advising, accuracy estimation, ensemble methods.

1. INTRODUCTION
While it has long been known that the multiple sequence
alignment computed by an aligner strongly depends on the
settings for its tunable parameters, and that different align-
ers using their default settings can output markedly different
alignments of the same input sequences, there has been rel-
atively little work on how to automatically choose the best
parameter settings for an aligner, or the best aligner to in-
voke, to obtain the most accurate alignment of a given set
of input sequences.

Automatically choosing the best parameter setting for an
aligner on a given input was termed by Wheeler and Ke-
cecioglu [34], parameter advising. In their framework, an
advisor takes a set of parameter settings, together with an
estimator that estimates the accuracy of a computed align-
ment, and invokes the aligner on each setting, evaluates the
accuracy estimator on each resulting alignment, and chooses
the setting that gives the alignment of highest estimated ac-
curacy. Analogously, we call automatically choosing the best
aligner for a given input, aligner advising.

To make this concrete, Figure 1 shows an example of ad-
vising on a benchmark set of protein sequences for which a
correct reference alignment is known, and hence for which
the true accuracy of a computed alignment can be deter-
mined. In this example, the Facet estimator of DeBlasio and
Kececioglu [4] is used to estimate the accuracy of two align-
ments computed by the Opal [35] and MUMMALS [23] aligners.
For these two alignments, the one of higher Facet value also
has higher true accuracy as well, so an advisor armed with
the Facet estimator would in fact output the more accurate
alignment to a user.

For a collection of aligners, this kind of advising is akin
to an ensemble approach to alignment, which selects a so-
lution from those output by different methods to obtain in
effect a new method that ideally is better than any indi-
vidual method. Ensemble methods have been studied in
machine learning [37], which combine the results of different
classifiers to produce a single output classification. Typi-
cally such ensemble methods from machine learning select a

!
d1flma 8 ... fevlknegvvAIATQgedgphlvntwnsylkv-ldgnrivvpvggmhkteanva-rde ... 63
d1ci0a 18 ... tkw-fn--------eakedpret-------------lpeaiTFSS-------Aelpsg ... 46
d1nrga 16 ... aaw-fe--------eavqcpdig-------------eanamCLAT-------Ct-rdg ... 43
d1ejea 22 ... hriltprptvMVTTVdeegninaapfsftmpvsidppvvafasapdhhtarnie-sth ... 78
d1i0ra 8 ... ykisyglyIVTSEsngrkcgqiant---vfqltskpvqiavclnkendthnavk-esg ... 61

(A) MUMMALS/SUP_080
Accuracy: 28.9%
Estimator: 0.540

d1flma 1 ... ------mlpgtffevlkne-----gvvAIATQg-edgph--lvntwnsylk---vldg ... 41
d1ci0a 12 ... d-dpidlftkwfneakedpretlpeaiTFSSAelpsgr----vssrillfk---eldh ... 59
d1nrga 9 ... sldpvkqfaawfeeavqcpdigeanamCLATCt-rdgk----psarmlllk---gfgk ... 56
d1ejea 11 ... s-mdfedfpvesahriltpr----ptvMVTTVd-eegn----inaapfsftmpvsidp ... 56
d1i0ra 1 ... --mdveafykisy------------glyIVTSE-sngrkcgqiantvfqlt---s-kp ... 39

(B) Opal/sup_080
Accuracy: 49.9%
Estimator: 0.578

!

(a) Lower-accuracy alignment computed by MUMMALS

!
d1flma 8 ... fevlknegvvAIATQgedgphlvntwnsylkv-ldgnrivvpvggmhkteanva-rde ... 63
d1ci0a 18 ... tkw-fn--------eakedpret-------------lpeaiTFSS-------Aelpsg ... 46
d1nrga 16 ... aaw-fe--------eavqcpdig-------------eanamCLAT-------Ct-rdg ... 43
d1ejea 22 ... hriltprptvMVTTVdeegninaapfsftmpvsidppvvafasapdhhtarnie-sth ... 78
d1i0ra 8 ... ykisyglyIVTSEsngrkcgqiant---vfqltskpvqiavclnkendthnavk-esg ... 61

(A) MUMMALS/SUP_080
Accuracy: 28.9%
Estimator: 0.540

d1flma 1 ... ------mlpgtffevlkne-----gvvAIATQg-edgph--lvntwnsylk---vldg ... 41
d1ci0a 12 ... d-dpidlftkwfneakedpretlpeaiTFSSAelpsgr----vssrillfk---eldh ... 59
d1nrga 9 ... sldpvkqfaawfeeavqcpdigeanamCLATCt-rdgk----psarmlllk---gfgk ... 56
d1ejea 11 ... s-mdfedfpvesahriltpr----ptvMVTTVd-eegn----inaapfsftmpvsidp ... 56
d1i0ra 1 ... --mdveafykisy------------glyIVTSE-sngrkcgqiantvfqlt---s-kp ... 39

(B) Opal/sup_080
Accuracy: 49.9%
Estimator: 0.578

!

(b) Higher-accuracy alignment computed by Opal

Figure 1: Aligner choice affects the accuracy of computed
alignments. (a) Part of an alignment of benchmark sup_125

from the SABRE [32] suite computed by MUMMALS [23] using its
default parameter choice; this alignment has accuracy value
28.9%, and Facet [14] estimator value 0.540. (b) Alignment
of the same benchmark by Opal [34] using its default param-
eter choice, which has 49.9% accuracy, and higher Facet

value 0.578. In both alignments, the positions that corre-
spond to core blocks of the reference alignment, which should
be aligned in a correct alignment, are highlighted in bold.

result by voting. In contrast, an advisor combines the results
of aligners by selecting one via an estimator.

In this paper, we extend the framework of parameter ad-
vising to aligner advising, and obtain by this natural ap-
proach a true ensemble aligner. Moreover as our experi-
mental results show, the resulting ensemble aligner is signif-
icantly more accurate than any individual aligner.

1.1 Related work
We very briefly summarize prior work on alignment advis-
ing. Wheeler and Kececioglu [34] first introduced the notion
of parameter advisors; Kececioglu and DeBlasio [14] inves-
tigated the construction of alignment accuracy estimators,
resulting in the Facet estimator [4]; DeBlasio and Kece-
cioglu [6] investigated how to best form the set of parameter
choices for an advisor, called an advisor set, developing an
efficient approximation algorithm for finding a near-optimal
advisor set for a given estimator. This prior work applied
parameter advising to boosting the accuracy of the Opal

aligner [35]. In contrast, this paper applies parameter advis-
ing to all commonly-used aligners, and aligner advising to
combine them into a new, more accurate, ensemble aligner.

To our knowledge, the only prior work on combining align-
ers is by Wallace, O’Sullivan, Higgins, and Notredame [33]
on M-Coffee, and by Muller, Creevey, Thompson, Arendt,
and Bork [21] on AQUA. The AQUA tool chooses between an
alignment computed by MUSCLE [9] or MAFFT [13] based on
their NorMD [31] score; our prior work [14] shows that for
choosing the more accurate alignment, the NorMD score used
by AQUA is much weaker than the Facet estimator used here
for aligner advising. M-Coffee uses a standard progressive
alignment heuristic to compute an alignment under position-
dependent substitution scores whose values are determined
by alignments from different aligners. As Section 4.3 later
shows, when run on the same set of aligners, M-Coffee is
strongly dominated by the ensemble approach of this paper.

1.2 Plan of the paper
In the next section, we review our approach to learning an
alignment advisor. An advisor selects aligners and param-

eter values from a small set of choices that is drawn from
a larger universe of all possible choices. Section 3 describes
how we construct this universe of aligners and their param-
eter choices for advisor learning. Section 4 then experimen-
tally evaluates our approach to ensemble alignment on real
biological benchmarks. Finally, Section 5 gives conclusions,
and offers directions for further research.

2. LEARNING AN ALIGNMENT ADVISOR
To make the paper self-contained, we briefly review our prior
work on how to learn an alignment advisor. We first review
the concept of parameter advising, which requires an esti-
mator of alignment accuracy and a set of parameter choices
for the advisor, and then summarize our prior techniques
for learning both an estimator and an advisor set. In Sec-
tion 4, we apply these techniques for the first time to aligner
advising to yield a new ensemble aligner.

2.1 Parameter advising
The goal of parameter advising is to find the parameter set-
ting for an aligner that yields the most accurate alignment of
a given set of input sequences. The accuracy of a computed
alignment is measured with respect to the “correct” align-
ment of the sequences (which often is not known). For spe-
cial benchmark sets of protein sequences, the gold-standard
alignment of the proteins, called their reference alignment,
is usually obtained through structural alignment by find-
ing the best superposition of the known three-dimensional
structures of the proteins. Columns of the reference align-
ment that contain a residue from every protein in the set
(where a residue is the amino acid at a particular position
in a protein), and for which the residues in the column are
all mutually close in space in the superposition of the struc-
tures, are called core columns. Runs of consecutive core
columns are called core blocks, which represent the regions
of the structural alignment with the highest confidence of
being correct. Given such a reference alignment with identi-
fied core blocks, the accuracy of a different, computed align-
ment is the fraction of the pairs of residues aligned in the
core blocks of the reference alignment that are also aligned
in the computed alignment. (So a computed alignment of
100% accuracy completely agrees with the reference on its
core blocks, though it may disagree elsewhere.) The best
computed alignment is one of highest accuracy, and the task
of a parameter advisor is to find a setting of the tunable pa-
rameters of an aligner that yields an accurate output align-
ment. This setting can be highly input dependent, as the
best choice of parameter values for an aligner can vary for
different sets of input sequences.

When aligning sequences in practice, a reference align-
ment is almost never known, in which case the true accuracy
of a computed alignment cannot be measured. Instead our
parameter advisors rely on an accuracy estimator E that for
an alignment A, gives a value E(A) in the range [0, 1] that
estimates the true accuracy of alignment A. An estimator
should be efficiently computable and positively correlated
with true accuracy.

To choose a parameter setting, an advisor takes a set of
choices P , where each parameter choice p ∈ P is a vec-
tor that assigns values to all the tunable parameters of an
aligner, and picks the choice that yields a computed align-
ment of highest estimated accuracy.

Alignment Accuracy
0 0.2 0.4 0.6 0.8 1

F
a
c
e
t

V
a
lu

e

0

0.2

0.4

0.6

0.8

1

Alignment Accuracy
0 0.2 0.4 0.6 0.8 1

T
C

S
 V

a
lu

e

0

0.2

0.4

0.6

0.8

1

Figure 2: Relationship of estimators to true accuracy. Each
point in a scatterplot corresponds to an alignment whose
true accuracy is on the horizontal axis, and whose value
under a given estimator is on the vertical axis. Both scat-
terplots show the same set of 3,000 alignments (randomly
sampled from the more than 209,000 alignments generated
by the experiments in Section 4) under the accuracy estima-
tors Facet [14] and TCS [3].

Formally, given an accuracy estimator E and a set P of
parameter choices, a parameter advisor tries each parameter
choice p ∈ P , invokes an aligner to compute an alignment Ap

using choice p, and then selects the parameter choice p∗ that
has maximum estimated accuracy:

p∗ ∈ argmax
p∈P

{
E(Ap)

}
.

Since the advisor runs the aligner |P | times on a given set
of input sequences, a crucial aspect of parameter advising
is finding a small set P for which the true accuracy of the
output alignment Ap∗ is high.

To construct a good advisor, we need to find a good es-
timator E and a good set P . The estimator and advisor
set are learned on training data consisting of benchmark
sets of protein sequences for which a reference alignment is
known. The learning procedure tries to find an estimator E
and set P that maximize the true accuracy of the resulting
advisor on this training data, which we subsequently assess
on separate testing data.

Note that the process of advising is fast: for a set P of
k parameter choices, advising involves computing k align-
ments under these choices, which can be done in parallel,
evaluating the estimator on these k alignments, and taking
a max. (Section 4.8 gives actual running times.) The sepa-
rate process of training an advisor, by learning an estimator
and an advisor set as we review next, is done once, off-line,
before any advising takes place.

2.2 Learning an accuracy estimator
Kececioglu and DeBlasio [7, 14] present an efficient approach
for learning an accuracy estimator that is a linear combi-
nation of real-valued alignment feature functions, based on
solving a large-scale linear programming problem. This ap-
proach resulted in the Facet estimator [4], which is currently
the most accurate estimator for parameter advising [14, 6].

This approach assumes we have a collection of d real-
valued feature functions g1(A), . . . , gd(A) on alignments A,
where these functions gi are positively correlated with true
accuracy. The alignment accuracy estimator E is a linear
combination of these functions, E(A) =

∑
1≤i≤d ci gi(A),

where the coefficents ci specify the estimator E. When the
feature functions have range [0, 1] and the coefficients form a
convex combination, the resulting estimator E will also have

range [0, 1]. Facet uses a collection of five feature functions,
many of which make use of predicted secondary structure for
the protein sequences [14]. Figure 2 shows the relationship
to true accuracy of both the Facet and TCS [3] estimators.

A parameter advisor uses the estimator to effectively rank
alignments, so an estimator just needs to be monotonic in
true accuracy. The difference-fitting approach learns the
coefficients of an estimator that is close to monotonic by
fitting the estimator to differences in true accuracy for pairs
of training alignments.

Let function F (A) give the true accuracy of alignment A,
and set P be a collection of ordered pairs of alignments
from training data, where every pair (A,B) ∈ P satsifies
F (A) < F (B). Difference fitting tries to find an estima-
tor E that increases at least as much as accuracy F on the
pairs in P, by minimizing the amount that E falls short.
Formally, we find the estimator E∗ given by the vector of
coefficients c∗ ∈ Rd that minimizes∑
(A,B)∈P

wAB max

{(
F (B)−F (A)

)
−
(
E(B)−E(A)

)
, 0

}
,

where wAB weights the above error for a pair (A,B). Find-
ing the optimal coefficients c∗ can be reduced to solving a
linear programming problem as follows.

The linear program has a variable ci for each estimator co-
efficient, and an error variable eAB for each pair (A,B) ∈ P.
The constraints are ci ≥ 0 and

∑
i ci = 1, which ensure

the coefficients form a convex combination, together with
eAB ≥ 0, and

eAB ≥
(
F (B) − F (A)

)
−
(
E(B) − E(A)

)
.

(Note that the expressions E(A) and E(B) are linear in
the variables ci, while the quantities F (A) and F (B) are
constants.) The linear program then minimizes the objective
function

∑
(A,B)∈P wAB eAB .

For the linear program to be of manageable size for a large
number of training alignments, the set P of pairs must be
quite sparse. Kececioglu and DeBlasio [14] describe how
to find a good sparse set P together with a good set of
weights wAB by an efficient graph algorithm.

Learning an accuracy estimator with d feature functions
using a set P of p pairs, involves solving the above linear pro-
gram with p+d variables and Θ(p+d) inequalities. Evaluat-
ing the Facet estimator on an alignment with m sequences
and n columns, after secondary structure has been predicted
for the protein sequences, takes Θ(m2n) time.

2.3 Learning an advisor set
DeBlasio and Kececioglu [5, 6] present an efficient approxi-
mation algorithm for learning a near-optimal set of param-
eter choices for an advisor that uses a given estimator. The
approximation algorithm follows a greedy strategy, so we
call the sets found by the approximation algorithm greedy
sets, in contrast to exact sets that are optimal for the train-
ing data, and which can be found by exhaustive search for
small instances. These greedy sets tend to generalize bet-
ter than exact sets, with the remarkable behavior that the
greedy sets often outperform exact sets on testing data [6].

The problem of learning an optimal set P of parameter
choices for an advisor is formulated as follows. Let U be
the universe of possible parameter choices that might be
included in advisor set P . (Section 3 describes how we con-

struct the universe U for aligner advising.) The training
data is a collection of reference alignments Ri, one for each
benchmark Bi, and a collection of alternate alignments Aij ,
where each alignment Aij is computed by running the aligner
on the sequences in benchmark Bi using parameter choice j ∈
U . By comparing each alternate alignment to the reference
alignment for its benchmark, we can measure the true accu-
racy aij of each alignment Aij .

For a candidate set P ⊆ U of parameter choices for an
advisor that uses estimator E, the set of parameter choices
from P that could potentially be output by the advisor on
benchmark Bi is

Oi(P) = argmax
j ∈P

{
E(Aij)

}
,

where the argmax gives the set of parameter choices j ∈ P
that are tied for maximizing the estimator E on the bench-
mark. The advisor could output any parameter choice from
Oi(P), as all of them appear equally good under the estima-
tor, so we assume the advisor selects a choice uniformly at
random from this set. Then the expected accuracy achieved
by the advisor on benchmark Bi using parameter set P is

Ai(P) =
1∣∣Oi(P)

∣∣ ∑
j ∈Oi(P)

aij ,

where again aij is the true accuracy of alignment Aij .
In learning an advisor set P , we seek a set P that maxi-

mizes the advisor’s expected accuracy Ai(P) on the training
benchmarks Bi. Formally, we want a set P that maximizes
the objective function

f(P) =
∑
i

wi Ai(P) ,

where i indexes the benchmarks, and wi is the weight placed
on benchmark Bi. (The benchmark weights correct for sam-
pling bias in the training data, as discussed in Section 4.) In
words, we want to find an advisor set P ⊆ U that maximizes
the expected accuracy of the parameter choices selected by
the advisor, averaged across weighted training benchmarks.

DeBlasio and Kececioglu [6] prove that for a given bound k
on the size of advisor set P , finding an optimal set P ⊆ U
with |P | ≤ k that maximizes objective f(P) is NP-complete.

2.3.1 Greedy sets
While this NP-completeness result implies it is unlikely we
can efficiently find an optimal advisor set, there is a natural
greedy algorithm that is guaranteed to efficiently find a near-
optimal set. For any constant `, the optimal advisor set of
cardinality at most ` can be found in polynomial time by
exhaustive search. The following procedure Greedy builds
on this idea to find a near-optimal advisor set for cardinality
bound k, by starting with an optimal set of size at most `,
where ` ≤ k, and greedily augmenting it.

procedure Greedy(k, `) begin
Find an optimal subset P ⊆ U of size |P | ≤ `

that maximizes f(P).

P̃ := P˜̀ := |P |
for cardinalities ˜̀+1, . . . , k do begin

Find parameter choice j∗ ∈ U−P̃ that

maximizes f(P̃ ∪ {j∗}).
P̃ := P̃ ∪ {j∗}
if f(P̃) ≥ f(P) then

P := P̃
end
output P

end

DeBlasio and Kececioglu [6] prove that procedure Greedy

is an (`/k)-approximation algorithm for finding an optimal
advisor set, for any constant ` with ` ≤ k.

Learning a greedy advisor set for cardinality bound k
when ` = 1, which is the value we use in practice, for the
Facet estimator on a universe of u parameter choices and a
training set of t benchmarks, takes Θ(k2ut) time.

2.3.2 Oracle sets
A useful notion in parameter advising introduced by Wheeler
and Kececioglu [34] is the concept of an oracle, which is a
perfect advisor that has access to the true accuracy of an
alignment. For a given advisor set P , an oracle selects pa-
rameter choice argmaxp∈P

{
F (Ap)

}
, where again function F

gives the true accuracy of an alignment. (Equivalently, an
oracle is an advisor that uses the perfect estimator F .) An
oracle always picks the parameter choice that yields the
highest accuracy alignment.

While an oracle is impossible to construct in practice, it
gives a theoretical limit on the accuracy achievable by ad-
vising with a given set. Furthermore, if we can find the opti-
mal advisor set for an oracle for a given cardinality bound k,
which we call an oracle set, then the performance of an or-
acle on an oracle set gives a theoretical limit on how well
advising can perform for a given bound k on the number of
parameter choices.

Kececioglu and DeBlasio [14] show that finding an oracle
set is NP-complete, and give the following integer linear pro-
gram for finding an optimal oracle set. In our prior notation,
an optimal oracle set for cardinality bound k is a set P ⊆ U
with |P | ≤ k that maximizes

∑
i wi maxj∈P aij . To formu-

late this as an integer linear programming problem, let yj
for all j ∈ U , and xij for all benchmarks Bi and all j ∈ U ,
be integer variables that either have the value 0 or 1, where
yj = 1 iff parameter choice j is selected for oracle set P , and
xij = 1 iff choice j is used by the oracle on benchmark Bi.
The constraints are 0 ≤ xij ≤ yj ≤ 1,

∑
j yj ≤ k, and for

each benchmark Bi the constraint
∑

j xij = 1. The objec-

tive function is to maximize
∑

i wi

∑
j xij aij . An optimal

solution to this integer linear program gives an optimal or-
acle set P ∗ = {j ∈ U : yj = 1}.

Learning an optimal oracle set of cardinality k, for a uni-
verse of u parameter choices and a training set of t bench-
marks, involves solving the above integer linear program
with Θ(ut) variables and Θ(ut) inequalities. Kececioglu and
DeBlasio [14] show that using the CPLEX integer linear pro-
gramming solver, this formulation permits finding optimal
oracle sets in practice even for cardinalities up to k = 25.

3. CONSTRUCTING THE UNIVERSE FOR
ALIGNER ADVISING

We extend parameter advising with a single aligner to aligner
advising with a collection of aligners, by having the choices
in the advisor set now specify both a particular aligner and
a parameter setting for that aligner. To specify the universe
that such an advisor set is drawn from during learning, we
must determine what aligners to consider, and what param-
eter settings to consider for those aligners.

3.1 Determining the universe of aligners
For default aligner advising, where the advisor set consists of
distinct aligners, each using their default parameter setting,
we learned advisor sets over a universe containing as many
of the commonly-used aligners from the literature as possi-
ble. Specifically, the universe for default advising consisted
of the following 17 aligners: Clustal [30], Clustal2 [15],
Clustal Omega [27], DIALIGN [28], FSA [2], Kalign [16],
MAFFT [13], MUMMALS [23], MUSCLE [10], MSAProbs [19],
Opal [34], POA [17], PRANK [20], Probalign [25], ProbCons [8],
SATé [18], and T-Coffee [22].

3.2 Determining the universe of parameter
settings

For general aligner advising, we selected a subset of the
above aligners on which we enumerated values for their tun-
able parameters, to form a universe of parameter settings.
We selected this subset of aligners by the following process.
First, we computed an optimal oracle set of cardinality k=5
(as described in Section 2.3.2) over the universe of 17 align-
ers for default advising listed above. This set consisted of
Kalign, MUMMALS, Opal, Probalign, and T-Coffee. We then
expanded this set further by adding four aligners that are
used extensively in the literature: Clustal Omega, MAFFT,
MUSCLE, and ProbCons. In the experiments described later
in Section 4.2, we constructed greedy advisor sets over the
universe of 17 aligners for default aligner advising, and no-
ticed a large increase in advising accuracy at cardinality [6, 8]
(which can be seen in Figure 8). The greedy advisor sets at
these cardinalities contained all of the aligners already cho-
sen so far, with the addition of the PRANK aligner. Finally, we
added PRANK to our set for this reason. The above 10 aligners
comprise the set we considered for general aligner advising.

Table 1 lists the universe of parameter settings for these
aligners for general advising. For each aligner, we enumer-
ated parameter settings by forming a cross product of values
for each of its tunable parameters. We determined the val-
ues for each tunable parameter by one of two ways. For
aligners with web-server versions (namely Clustal Omega

and ProbCons), we used all values recommended for each
parameter. For all other aligners, we chose either one or two
values above and below the default value for each parame-
ter, to attain a cross product with less than 200 parameter
settings. If a range was specified for a numeric parameter,
values were chosen to cover this range as evenly as possible.
For non-numeric parameters, we used all available options.
Table 1 summarizes the resulting universe for general advis-
ing of over 800 parameter settings.

4. EVALUATING ENSEMBLE ALIGNMENT
We evaluate the performance of advising through experi-
ments on a collection of protein multiple sequence alignment

42%	
44%	
46%	
48%	
50%	
52%	
54%	
56%	
58%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

Ad
vi
si
ng
	 A
cc
ur
ac
y	

Advisor	 Set	 Cardinality	

	 	 MUMMALS	 	 	 T-‐Coffee	 	 	 PRANK	
	 	 Probalign	 	 	 MAFFT	 	 	 Kalign	
	 	 Opal	 	 	 MUSCLE	 	 	 Clustal	 Omega	
	 	 ProbCons	

Figure 3: Accuracy of parameter advising using Facet. The
plot shows advising accuracy for each aligner from Table 1,
using parameter advising on greedy sets with the Facet es-
timator learned by difference fitting. The horizontal axis
is the cardinality of the advisor set, and the vertical axis
is the advising accuracy on testing data averaged over all
benchmarks and folds, under 12-fold cross-validation.

benchmarks. A full description of the benchmark collection
is given in [14], and is briefly summarized below. The ex-
periments compare the accuracy of parameter and aligner
advising to the accuracy of individual aligners using their
default parameter settings.

The benchmark suites used in our experiments consist of
reference alignments that are largely induced by performing
structural alignment of the known three-dimensional struc-
tures of the proteins. Specifically, we use the BENCH suite of
Edgar [11], supplemented by a selection of benchmarks from
the PALI suite [1]. The entire benchmark collection consists
of 861 reference alignments.

As is common in benchmark suites, easy-to-align bench-
marks are highly over-represented in this collection, com-
pared to hard-to-align benchmarks. To correct for this bias
when evaluating average advising accuracy, we binned the
861 benchmarks in our collection by difficulty, where the dif-
ficulty of a benchmark is its average accuracy under three
commonly-used aligners, namely Clustal Omega, MAFFT, and
ProbCons, using their default parameter settings. We then
divided the full range [0, 1] of accuracies into 10 bins with
difficulties [(j−1)/10, j/10] for j = 1, . . . , 10. The weight wi

of benchmark Bi falling in bin j that we used for train-
ing is wi = (1/10)(1/nj), where nj is the number of bench-
marks in bin j. These weights wi are such that each diffi-
culty bin contributes equally to the advising objective func-
tion f(P). Note that with this weighting, an aligner that
on every benchmark gets an accuracy equal to its difficulty,
will achieve an average advising accuracy of roughly 50%.

4.1 Parameter advising
We first examine the results of parameter advising for a sin-
gle aligner using the Facet estimator. We learned the coeffi-
cients for Facet by difference fitting on computed alignments
obtained using the oracle set of cardinality k=17 found for
the parameter universe for each aligner. (We trained the es-
timator on an oracle set of this cardinality to match the size
of the universe for default aligner advising.) Given this esti-
mator, we constructed greedy advisor sets for each aligner.

Table 1: Universe of Parameter Settings for General Aligner Advising

Parameter Tunable
Aligner settings parameters Version Parameter name Default value, v Alternate values

Clustal Omega [27] 1201 5 1.2.0

Number of guide tree iterations 0 1, 3, 5
Number of HMM iterations 0 1, 3, 5
Number of combined iterations 0 1, 3, 5
Distance matrix calculations, initial mBed Full alignments
Distance matrix calculations, iterations mBed Full alignments

Kalign [16] 162 4 2.04

Gap open penalty 55 40, 70
Gap extension penalty 8.5 7, 10
Terminal gap penalty 4.25 3.5, 5
Bonus No Yes

MAFFT [13] 100 3 6.923b
Substitution matrix BLSM62 BLSM80, VTML120, VTML200
Gap open penalty 1.53 1

4
v, 1

2
v, 3

2
v, 2v

Gap extension penalty 0.123 1
2
v, 2v, 4v

MUSCLE [10] 80 3 3.8.31
Profile score Log-expectation: VTML240 Sum-of-pairs: PAM200, VTML240
Objective function2 spm dp, ps, sp, spf, xp
Gap open penalty, profile dependent v3 1

2
v, 3

4
v, 5

4
v, 3

2
v

MUMMALS [23] 29 34 1.01
Differentiate match states in unaligned regions Yes No
Solvent accessibility categories 1 2, 3
Secondary structure types 3 1

Opal [34] 162 5 3.0b

Substitution matrix VTML2005 BLSM625, VTML405

Internal gap open penalty γ = 45 70, 95
Terminal gap open penalty 0.4γ 0.05γ, 0.75γ
Internal gap extension penalty λ = 42 40, 45
Terminal gap extension penalty λ− 3 λ

PRANK [20] 50 3 .140603
Gap rate 0.005 1

5
v, 1

2
v, 3

2
v, 2v

Gap extension 0.5 1
5
v, 1

2
v, 3

2
v, 2v

Terminal gaps Alternate scoring Normal scoring

Probalign [25] 64 3 1.4
Consistency repetitions 2 0, 1, 3
Iterative refinement repetitions 100 0, 500
Pre-training repetitions 0 1, 2, 3, 4, 5, 20

ProbCons [8] 486 3 1.12
Thermodynamic temperature 5 3, 5
Gap open 22 11, 33
Gap extension 1 0.5, 1.5

T-Coffee [22] 36 3 10.00.r1613
Substitution matrix BLSM62 BLSM40, BLSM80
Gap open 0 -50, -500, -1000
Gap extension 0 -5, -10

Total 856

1Parameter settings retrieved from the Clustal Omega web-server at EBI (www.ebi.ac.uk/Tools/msa/clustalo).
2sp: sum-of-pairs score; spf: dimer approximation of sum-of-pairs score; spm: input dependent (sp if input is less than 100 sequences, spf otherwise); dp: dynamic
programming score; ps: average profile sequence score; xp: cross profile score.
3Default values for the gap open penalty are -2.9 when the log-expectation profile is chosen, -1439 for sum-of-pairs using PAM200, and -300 for sum-of-pairs using
VTML240. Alternate values are multiples of this default value.
4MUMMALS is distributed with 29 precomputed hidden Markov models, each of which is associated with a setting of three tunable parameters.
5The substitution matrices used by Opal are shifted, scaled, and rounded to integer values in the range [0, 100].
6Parameter settings retrieved from the ProbCons web-server at Stanford (probcons.stanford.edu).

52%	
53%	
54%	
55%	
56%	
57%	
58%	
59%	
60%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

Ad
vi
si
ng
	 A
cc
ur
ac
y	

Advisor	 Set	 Cardinality	

	 	 Default	 advisisng	 	 	 MUMMALS	
	 	 General	 advising	 	 	 Probalign	
	 	 Opal	 	 	 Opal	 (alternate)	

Facet

Figure 4: Aligner advising and parameter advising using
Facet. The plot shows default and general aligner advis-
ing accuracy, and parameter advising accuracy for Opal,
MUMMALS, and Probalign, using the Facet estimator. The
horizontal axis is the cardinality of the advisor set, and the
vertical axis is advising accuracy on testing data averaged
over all benchmarks and folds under 12-fold cross-validation.

Figure 3 shows the accuracy of parameter advising using
greedy advisor sets of cardinality k ≤ 15, for each of the
10 aligners in Table 1, under 12-fold cross-validation. The
plot shows advising accuracy on the testing data, averaged
over all benchmarks and folds.

Almost all aligners benefit from parameter advising,
though their advising accuracy eventually reaches a plateau.
While our prior work [6] showed that parameter advising
boosts the accuracy of the Opal aligner, Figure 3 shows this
result is not aligner dependent.

4.2 Aligner advising
To evaluate aligner advising, we followed a similar approach,
constructing an oracle set of cardinality k=17 over the union
of the universe for default advising from Section 3.1 and the
universe for general advising from Section 3.2, learning co-
efficients for Facet using difference fitting, and constructing
greedy sets using Facet for default and general advising.

Figure 4 shows the accuracy of default and general ad-
vising using greedy sets of cardinality k≤15, along with the
three best parameter advising curves from Figure 3, for Opal,
Probalign, and MUMMALS. The plot shows advising accuracy
on testing data, averaged over benchmarks and folds.

The dashed red curve in Figure 4 also shows the accuracy
of Opal for parameter advising with greedy sets computed
over an alternate universe of much more fine-grained param-
eter choices. To construct this alternate universe, we first
started with a set of over 16,000 parameter settings, and for
each training fold chose the 15 parameters with highest aver-
age accuracy on each difficulty bin. Unioning these choices
across the bins, and removing duplicates, gave a universe
of 147 to 150 settings for each fold. Note that the dashed
curve for parameter advising with Opal, using greedy sets
from these finer universes for each fold, essentially matches
the accuracy of general advising at cardinality k ≥ 4.

4.2.1 Testing the significance of improvement
To test the statistical significance of the improvement in de-
fault advising accuracy over using a single default aligner,

52%	
53%	
54%	
55%	
56%	
57%	
58%	
59%	
60%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

Ad
vi
si
ng
	 A
cc
ur
ac
y	

Advisor	 Set	 Cardinality	

	 	 General	 advising	 	 	 Probalign	
	 	 Default	 advising	 	 	 ProbCons	
	 	 MUMMALS	 	 	 Opal	

TCS

Figure 5: Aligner advising and parameter advising using
TCS. The plot shows default and general aligner advising ac-
curacy, and parameter advising accuracy for Opal, MUMMALS,
Probalign, and ProbCons, using the TCS estimator. The
horizontal axis is the cardinality of the advisor set, and the
vertical axis is advising accuracy on testing data averaged
over all benchmarks and folds under 12-fold cross-validation.

we used the one-tailed Wilcoxon sign test [36]. Performing
this test in each difficulty bin, we found a significant im-
provement in accuracy (p < 0.05) on benchmarks with diffi-
culty (0.3, 0.4] at all cardinalities 2≤k≤ 15, and on bench-
marks with difficulty at most 0.4 at cardinality 6≤k≤9.

We also tested the significance of the improvement of de-
fault advising over the best parameter advisor at each cardi-
nality k (namely MUMMALS for k≤4 and Opal for k≥5), and
found that at cardinality k≥5 there is again significant im-
provement (p<0.05) on benchmarks with difficulty (0.3, 0.4].

4.2.2 Advising with an alternate estimator
We also evaluated in the same way parameter advising and
aligner advising on greedy sets using the TCS estimator [3]
(the best other estimator for advising from the literature).
Figure 5 shows results using TCS for parameter advising (on
the four most accurate aligners), and for general and default
aligner advising. Note that while TCS is sometimes able to
increase accuracy above using a single default parameter,
this increase is smaller than for Facet; moreover, TCS often
has a decreasing trend in accuracy for increasing cardinality.

4.3 Comparing ensemble alignment to
meta-alignment

Another approach to combining aligners is the so-called
meta-alignment approach of M-Coffee [33] (described in Sec-
tion 1.1). M-Coffee computes a multiple alignment using
position-dependent substitution scores obtained from alter-
nate alignments generated by a collection of aligners. By
default, M-Coffee uses the following six aligners: Clustal2,
T-Coffee, POA, MUSCLE, MAFFT, Dialign-T [29], PCMA [24],
and ProbCons. The tool also allows use of Clustal,
Clustal Omega, Kalign, AMAP [26], and Dialign-TX. Fig-
ure 6 shows the average accuracy of both M-Coffee and our
ensemble approach with Facet, using the default aligner set
of M-Coffee (the dotted vertical line with large circles), as
well as oracle sets constructed over this M-Coffee universe
of 13 aligners.

49%	
50%	
51%	
52%	
53%	
54%	
55%	
56%	
57%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	

Av
er
ag
e	
Ac

cu
ra
cy
	

Advisor	 Set	 Cardinality	

	 	 Facet,	 oracle	 set	
	 	 M-‐Coffee,	 oracle	 set	
	 	 M-‐Coffee	 default	 cardinality	

Figure 6: Accuracy of aligner advising compared to
M-Coffee. The plot shows average accuracy for aligner ad-
vising using Facet, and meta-alignment using M-Coffee, on
oracle sets of aligners. Performance on the default M-Coffee
set of six aligners is indicated by large circles on the dotted
vertical line. The horizontal axis is cardinality of the oracle
sets, and the vertical axis is average accuracy on testing data
over all benchmarks and folds under 12-fold cross-validation.

4.4 Advising accuracy within difficulty bins
Figure 7 shows advising accuracy within difficulty bins for
default aligner advising compared to using the default pa-
rameter settings for the three aligners with highest average
accuracy, namely MUMMALS, Opal, and Probalign. The figure
displays the default advising result from Section 4.2 at car-
dinality k=5. The bars in the chart show average accuracy
over the benchmarks in each difficulty bin, as well as the av-
erage accuracy across all bins. (The number of benchmarks
in each bin is in parentheses above the bars.) Note that
aligner advising gives the greatest boost for the hardest-to-
align benchmarks: for the bottom two bins, advising yields
an 8% increase in accuracy over the best aligner using its
default parameter setting.

4.5 Generalization of aligner advising
The results thus far have shown advising accuracy averaged
over the testing data associated with each fold. We now
compare the training and testing advising accuracy to as-
sess how our method might generalize to data not in our
benchmark set.

Figure 8 shows the average accuracy of default and gen-
eral aligner advising on both training and testing data. Note
that the drop between training and testing accuracy is much
larger for general advising than for default advising, result-
ing in general advising performing worse than default advis-
ing though its training accuracy is much higher. This in-
dicates that general advising is strongly overfitting to the
training data, but could potentially achieve much higher
testing accuracy. Additionally, there is a drop in train-
ing accuracy for default advising with increasing cardinality,
though after its peak an advisor using greedy sets should re-
main flat in training accuracy as cardinality increases when
using a strong estimator.

4.6 Theoretical limit on advising accuracy
An oracle is an advisor that uses a perfect estimator, always
choosing the alignment from a set that has highest true ac-

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

Average	
0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1.0	

Ad
vi
si
ng
	 A
cc
ur
ac
y	

Benchmark	 Bins	

Default	 advising	
MUMMALS	 default	
Opal	 default	
Probalign	 default	

(12)	
(13)	

(29)	
(33)	

(35)	

(60)	
(51)	

(74)	
(136)	

(418)	

Figure 7: Accuracy of default aligner advising, and aligners
with their default settings, within difficulty bins. In the bar
chart on the left, the horizontal axis shows all ten bench-
mark bins, and the vertical bars show accuracy averaged
over just the benchmarks in each bin. The accuracy of de-
fault advising using the Facet estimator is shown for the
greedy sets of cardinality k = 5, along with the accuracy of
the default settings for Probalign, Opal, and MUMMALS. The
bar chart on the right shows accuracy uniformly averaged
over the bins. In parentheses above the bars are the number
of benchmarks in each bin.

curacy. To examine the theoretical limit on how well aligner
advising can perform, we compare the accuracy of aligner
advising using Facet with the performance of an oracle. Fig-
ure 9 shows the accuracy of both default and general aligner
advising using greedy sets, as well as the performance of an
oracle using oracle sets computed on the default and general
advising universes. (Recall an oracle set is an optimal advi-
sor set for an oracle.) The plot shows advising accuracy on
testing data, averaged over all benchmarks and folds. The
large gap in performance between the oracle and an advisor
using Facet shows the increase in accuracy that could po-
tentially be achieved by developing an improved estimator.

4.7 Composition of advisor sets
Table 2 lists the greedy advisor sets for both default and
general advising for all cardinalities k ≤ 10. A consequence
of the construction of greedy advisor sets is that the greedy
set of cardinality k consists of the entries in a column in
the first k rows of the table. The table shows these sets
for just one fold from the 12-fold cross-validation. For gen-
eral advising sets, an entry specifies the aligner that is used,
and for aligners from the general advising universe, a tuple
of parameter values in the order listed in Table 1. The two
exceptions are MUMMALS, whose 6-tuple comes from its prede-
fined settings file, and whose last three elements correspond
to the three parameters listed in Table 1; and MSAProbs,
whose empty tuple stands for its default setting. It is in-
teresting that other than MSAProbs, the general advising set
does not contain any aligner’s default parameter settings,
though its values are close to the default setting.

4.8 Running time for advising
We compared the time to evaluate the Facet estimator on
an alignment to the time needed to compute that alignment
by the three aligners used for determining alignment diffi-
culty: Clustal Omega, MAFFT, and ProbCons. To compute
the average running time for these aligners on a benchmark,

54%	
55%	
56%	
57%	
58%	
59%	
60%	
61%	
62%	
63%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

Ad
vi
si
ng
	 A
cc
ur
ac
y	

Advisor	 Set	 Cardinality	

	 	 General	 advising,	 tes6ng	
	 	 Default	 advising,	 tes6ng	
	 	 General	 advising,	 training	
	 	 Default	 advising,	 training	

Figure 8: General and default aligner advising on training
and testing data. The plot shows general and default aligner
advising accuracy using Facet. Accuracy on the training
data is shown with dashed lines, and on the testing data with
solid lines. The horizontal axis is cardinality of the advisor
set, and the vertical axis is advising accuracy averaged over
all benchmarks and folds under 12-fold cross-validation.

Table 2: Greedy Default and General Advising Sets

Default advising General advising
1 MUMMALS MUMMALS (0.2, 0.4, 0.6, 1, 2, 3)
2 Opal Opal (VTML200, 45, 2, 45, 45)
3 Probalign Opal (BLSM62, 70, 3, 45, 42)
4 Kalign MUMMALS (0.15, 0.2, 0.6, 1, 1, 3)
5 MUSCLE Opal (BLSM62, 45, 33, 42, 42)
6 T-Coffee MSAProbs ()
7 PRANK Kalign (55, 8.5, 4.25, 0)
8 Clustal Omega MAFFT (VTML200, 0.7515, 0.492)
9 DIALIGN Opal (BLSM62, 95, 4, 45, 42)

10 ProbCons Opal (BLSM62, 45, 2, 45, 42)

we measured the total time for each of these aligners to align
all 861 benchmarks on a desktop computer with a 2.4 GHz
Intel i7 8-core processor and 8 Gb of RAM. The average run-
ning time for Clustal Omega, MAFFT, and ProbCons was less
than 1 second per benchmark, as was the average running
time for Facet. As stated in Section 2.2, the time com-
plexity for Facet is linear in the number of columns in an
alignment, and should take relatively less time than comput-
ing an alignment for benchmarks with long sequences; the
standard benchmark suites tend to include short sequences,
however, which are fast to align. This time to evaluate Facet
does not include the time to predict protein secondary struc-
ture, which is done once for the sequences in a benchmark,
and was performed using PSIPRED [12] version 3.2 with
its standard settings. Secondary structure prediction with
a tool like PSIPRED has a considerably longer running time
than alignment, due to an internal PSI-BLAST search during
prediction; on average, PSIPRED took just under 6 minutes
per benchmark to predict secondary structure.

5. CONCLUSION
In this work, we have extended parameter advising to aligner
advising, to yield a true ensemble aligner. Parameter advis-
ing gives a substantial boost in accuracy for nearly all align-
ers currently used in practice. Furthermore, default and
general aligner advising both yield further boosts in accu-

52%	
54%	
56%	
58%	
60%	
62%	
64%	
66%	
68%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

Ad
vi
si
ng
	 A
cc
ur
ac
y	

Advisor	 Set	 Cardinality	

	 	 Oracle,	 general	 advising	 	 	 Oracle,	 default	 advising	
	 	 Facet,	 general	 advising	 	 	 Facet,	 default	 advising	

Figure 9: Accuracy of aligner advising using a perfect es-
timator. The plot shows advising accuracy for default and
general aligner advising, both on oracle sets for a perfect
estimator, and on greedy sets for the Facet estimator. The
horizontal axis is the cardinality of the advisor set, and the
vertical axis is advising accuracy on testing data averaged
over all benchmarks and folds under 12-fold cross-validation.

racy, with default advising having better generalization. As
these results indicate, ensemble alignment by aligner advis-
ing is a promising approach for exploiting future advances
in aligner technology.

5.1 Further research
An important question left to explore is how to learn ad-
visor sets that have improved generalization. While greedy
advisor sets for general aligner advising achieve very high
accuracy on training data, this does not translate to similar
accuracy on testing data due to overfitting. Standard tech-
niques from machine learning for improving generalization
like regularization do not apply here, as the number of pa-
rameters for each aligner and the number of choices in the
advisor set are both fixed. Applying this advising framework
to DNA and RNA sequence alignment also seems fruitful.

6. ACKNOWLEDGEMENTS
We thank the reviewers for their helpful comments. This
work was supported by NSF Grant IIS-1217886 to J.K., and
a PhD fellowship to D.D. from NSF Grant DGE-0654435.

7. REFERENCES
[1] S. Balaji, S. Sujatha, S. S. C. Kumar, and

N. Srinivasan. PALI: a database of Phylogeny and
ALIgnment of homologous protein structures. Nucleic
Acids Research, 29(1):61, Jan. 2001.

[2] R. K. Bradley, A. Roberts, M. Smoot, S. Juvekar,
J. Do, C. Dewey, I. Holmes, and L. Pachter. Fast
statistical alignment. PLoS Computational Biology,
5(5):e1000392, May 2009.

[3] J. M. Chang, P. D. Tommaso, and C. Notredame. TCS:
A new multiple sequence alignment reliability measure
to estimate alignment accuracy and improve
phylogenetic tree reconstruction. Molecular Biology
and Evolution, Apr. 2014.

[4] D. F. DeBlasio and J. D. Kececioglu. Facet: software
for accuracy estimation of protein multiple sequence
alignments. facet.cs.arizona.edu, Jan. 2014.

[5] D. F. DeBlasio and J. D. Kececioglu. Learning
parameter sets for alignment advising. Proceedings of
the 5th ACM Conference on Bioinformatics,
Computational Biology, and Health
Informatics (BCB), pages 230–239, 2014.

[6] D. F. DeBlasio and J. D. Kececioglu. Learning
parameter-advising sets for multiple sequence
alignment. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 2015.

[7] D. F. DeBlasio, T. J. Wheeler, and J. D. Kececioglu.
Estimating the accuracy of multiple alignments and
its use in parameter advising. Proceedings of the 16th
Conference on Research in Computational Molecular
Biology (RECOMB), pages 45–59, 2012.

[8] C. B. Do, M. S. P. Mahabhashyam, M. Brudno, and
S. Batzoglou. ProbCons: probabilistic
consistency-based multiple sequence alignment.
Genome Research, 15(2):330–340, Jan. 2005.

[9] R. C. Edgar. MUSCLE: a multiple sequence alignment
method with reduced time and space complexity.
BMC Bioinformatics, 5(1):113, 2004.

[10] R. C. Edgar. MUSCLE: multiple sequence alignment
with high accuracy and high throughput. Nucleic
Acids Research, 32(5):1792–1797, May 2004.

[11] R. C. Edgar. BENCH. drive5.com/bench, Jan. 2009.

[12] D. T. Jones. Protein secondary structure prediction
based on position-specific scoring matrices. Journal of
Molecular Biology, 292(2):195 – 202, 1999.

[13] K. Katoh, K.-i. Kuma, H. Toh, and T. Miyata. MAFFT
version 5: improvement in accuracy of multiple
sequence alignment. Nucleic Acids Research,
33(2):511–518, Jan. 2005.

[14] J. D. Kececioglu and D. F. DeBlasio. Accuracy
estimation and parameter advising for protein
multiple sequence alignment. Journal of
Computational Biology, 20(4):259–279, Apr. 2013.

[15] M. A. Larkin et al. ClustalW and ClustalX version
2.0. Bioinformatics, 23(21):2947–2948, Nov. 2007.

[16] T. Lassmann and E. Sonnhammer. Kalign: an
accurate and fast multiple sequence alignment
algorithm. BMC Bioinformatics, 6(1):298, 2005.

[17] C. Lee, C. Grasso, and M. F. Sharlow. Multiple
sequence alignment using partial order graphs.
Bioinformatics, 18(3):452–464, Mar. 2002.

[18] K. Liu, T. J. Warnow, M. T. Holder, S. M. Nelesen,
J. Yu, A. P. Stamatakis, and C. R. Linder. SATé-II:
Very fast and accurate simultaneous estimation of
multiple sequence alignments and phylogenetic trees.
Systematic Biology, 61(1):90–106, Dec. 2011.

[19] Y. Liu, B. Schmidt, and D. L. Maskell. MSAProbs:
multiple sequence alignment based on pair hidden
markov models and partition function posterior
probabilities. Bioinformatics, 26(16):1958–1964, 2010.

[20] A. Loytynoja and N. Goldman. An algorithm for
progressive multiple alignment of sequences with
insertions. Proceedings of the National Academy of
Sciences, 102(30):10557–10562, July 2005.

[21] J. Muller, C. J. Creevey, J. D. Thompson, D. Arendt,
and P. Bork. AQUA: automated quality improvement
for multiple sequence alignments. Bioinformatics,
26(2):263–265, 2010.

[22] C. Notredame, D. G. Higgins, and J. Heringa.
T-Coffee: A novel method for fast and accurate
multiple sequence alignment. Journal of Molecular
Biology, 302(1):205–217, Sept. 2000.

[23] J. Pei and N. V. Grishin. MUMMALS: multiple sequence
alignment improved by using hidden Markov models
with local structural information. Nucleic Acids
Research, 34(16):4364–4374, Aug. 2006.

[24] J. Pei, R. Sadreyev, and N. V. Grishin. PCMA: fast and
accurate multiple sequence alignment based on profile
consistency. Bioinformatics, 19(3):427–428, 2003.

[25] U. Roshan and D. R. Livesay. Probalign: multiple
sequence alignment using partition function posterior
probabilities. Bioinformatics, 22(22):2715–2721, Nov.
2006.

[26] A. S. Schwartz and L. Pachter. Multiple alignment by
sequence annealing. Bioinformatics, 23(2):e24–e29,
2007.

[27] F. Sievers et al. Fast, scalable generation of
high-quality protein multiple sequence alignments
using Clustal Omega. Molecular Systems Biology,
7(1):539–539, Jan. 2011.

[28] A. R. Subramanian, M. Kaufmann, and
B. Morgenstern. DIALIGN-TX: greedy and progressive
approaches for segment-based multiple sequence
alignment. Algorithms for Mol. Biology, 3(1):6, 2008.

[29] A. R. Subramanian, J. Weyer-Menkhoff,
M. Kaufmann, and B. Morgenstern. DIALIGN-T: An
improved algorithm for segment-based multiple
sequence alignment. BMC Bioinformatics, 6(1), 2005.

[30] J. D. Thompson, D. G. Higgins, and T. J. Gibson.
ClustalW: improving the sensitivity of progressive
multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight
matrix choice. Nucleic Acids Research,
22(22):4673–4680, 1994.

[31] J. D. Thompson, F. Plewniak, R. Ripp, J.-C. Thierry,
and O. Poch. Towards a reliable objective function for
multiple sequence alignments1. Journal of Molecular
Biology, 314(4):937–951, Dec. 2001.

[32] I. Van Walle, I. Lasters, and L. Wyns. SABmark: a
benchmark for sequence alignment that covers the
entire known fold space. Bioinformatics,
21(7):1267–1268, 2005.

[33] I. M. Wallace, O. O’Sullivan, D. G. Higgins, and
C. Notredame. M-Coffee: combining multiple
sequence alignment methods with T-Coffee. Nucleic
Acids Research, 34(6):1692–1699, 2006.

[34] T. J. Wheeler and J. D. Kececioglu. Multiple
alignment by aligning alignments. Bioinformatics,
23(13):i559–68, July 2007.

[35] T. J. Wheeler and J. D. Kececioglu. Opal: software for
sum-of-pairs multiple sequence alignment.
opal.cs.arizona.edu, Jan. 2012.

[36] F. Wilcoxon. Individual comparisons by ranking
methods. Biometrics Bulletin, 1(6):pp. 80–83, 1945.

[37] Z. Zhihua. Ensemble Methods: Foundations and
Algorithms. Chapman and Hall, 2012.

