
The Tiled Bitmap Forensic Analysis Algorithm
Kyriacos E. Pavlou and Richard T. Snodgrass, Senior Member, IEEE

Abstract—Tampering of a database can be detected through the use of cryptographically strong hash functions. Subsequently,

applied forensic analysis algorithms can help determine when, what, and perhaps ultimately who and why. This paper presents a novel

forensic analysis algorithm, the Tiled Bitmap Algorithm, which is more efficient than prior forensic analysis algorithms. It introduces the

notion of a candidate set (all possible locations of detected tampering(s)) and provides a complete characterization of the candidate set

and its cardinality. An optimal algorithm for computing the candidate set is also presented. Finally, the implementation of the Tiled

Bitmap Algorithm is discussed, along with a comparison to other forensic algorithms in terms of space/time complexity and cost. An

example of candidate set generation and proofs of the theorems and lemmata and of algorithm correctness can be found in the

appendix, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TKDE.2009.121.

Index Terms—Database management, security, integrity, and protection, temporal databases.

Ç

1 MOTIVATION

WIDESPREAD news coverage of collusion between audi-
tors and the companies they audit (e.g., Enron and

WorldCom) helped accelerate recent passage of federal
laws (e.g., Health Insurance Portability and Accountability
Act: HIPAA [12], Sarbanes-Oxley Act [13]) that mandate
better controls on electronic data. Compliant records are those
required by myriad laws and regulations to follow certain
“processes by which they are created, stored, accessed,
maintained, and retained” [2].

We previously proposed an innovative approach in
which cryptographically strong one-way hash functions
allow the detection of a corruption event (CE), which is any
event that corrupts the data and compromises the database.
The corruption event could be due to an adversary,
including an auditor or an employee or even an unknown
bug in the software (be it the DBMS or the file system or
somewhere in the operating system), or a hardware failure,
either in the processor or on the disk [10]. Tamper detection
is accomplished by hashing data manipulated by transac-
tions and periodically validating the audit log database to
detect when it has been altered. Validation involves sending
the hash value computed over all the database to an
external notarization service, which will indicate whether that
value matches one previously computed. Should tampering
have occurred, the two hash values will not match.

At this point, all that is known is that at some time in the
past, data somewhere in the database have been tampered.
Forensic analysis is needed to ascertain when the tampering
occurred, and what data were altered. Knowing the “when”
and “what” can give indirect clues to the CIO and CSO that
would perhaps allow them to ultimately determine who the
adversary is and why the corruption was done. The
identification of the adversary is not explicitly dealt with.

Validation provides a single bit of information: has the
database been tampered with? To provide more informa-
tion about when and what, we hash the data of various
sequences of transactions during validation. The database
transactions are hashed in commit order creating a hash
chain. Then, during forensic analysis of a subsequent
validation that detected tampering, those chains can be
rehashed to provide a sequence of truth values (success or
failure), which can be used to narrow down “what.”

We have elsewhere [7] proposed the Monochromatic,
RGB, and Polychromatic forensic analysis algorithms. These
algorithms differ in the amount of work necessary during
normal processing (computing additional hash chains during
periodic validation) and the precision of the when and what
estimates produced by forensic analysis. Here, we introduce
a more efficient algorithm, the Tiled Bitmap Algorithm.

We first present the threat model, then the Tiled Bitmap
Algorithm by way of an example. This algorithm requires
what we term as the candidate set. We then consider the
more general problem of characterizing the candidate set,
which can be utilized to produce two approaches for
computing that set. This is followed by an evaluation of the
implemented algorithm. We end with a discussion of
previous work and a summary.

2 PARTIES INVOLVED AND THREAT MODEL

In this section, we introduce the parties involved and the
underlying threat model.

The parties involved are:

. The DBMS.

. An external digital notarization service. This is a
company which can digitally notarize documents
and then validate their correctness.

. The validator. This is a DBMS application which
periodically contacts the digital notarization service.

. The forensic analyzer. This is a DBMS application
responsible for executing the chosen forensic analy-
sis algorithm.

Few assumptions are made about the threat model. The
system is assumed to be secure until an adversary gets

590 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 4, APRIL 2010

. The authors are with the Department of Computer Science, University of
Arizona, PO Box 210077, 1040 E. Fourth St., Tucson, AZ 85721-0077.
E-mail: {kpavlou, rts}@cs.arizona.edu.

Manuscript received 30 Nov. 2007; revised 22 July 2008; accepted 24 Apr.
2009; published online 29 Apr. 2009.
Recommended for acceptance by V. Atluri.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2007-11-0581.
Digital Object Identifier no. 10.1109/TKDE.2009.121.

1041-4347/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

access, at which point he has access to everything: the
DBMS, the operating system, the hardware, and the data in
the database. We still assume that the notarization and
validation services remain in a trusted computing base. This
can be done by making them geographically and perhaps
organizationally separate from the DBMS and the database
[5], thereby effecting correct tamper detection even when
the tampering is done by highly motivated insiders. (A
recent FBI study indicates that almost half of attacks were
by insiders [1].) To prevent spoofing between the DBMS
and the validator, it is possible to use a combination of
Trusted Platform Modules (TPMs), mutual authentication,
and a secure communication channel. The specifics of this
scheme are beyond the scope of this paper.

The basic mechanism described in the next section
provides correct tamper detection. If an adversary modifies
even a single byte of the data or its time stamp, the
independent validator will detect a mismatch with the
notarized document, thereby detecting the tampering. The
adversary could simply reexecute the transactions, making
whatever changes he wanted, and then replace the original
database with his altered one. However, the notarized
documents would not match in time. Avoiding tamper
detection comes down to inverting the cryptographically
strong one-way hash function. An extensive presentation of
the approach, performance limitations, tamper detection,
threat model, and other forensic analysis algorithms can be
found elsewhere [8], [10].

3 AN EXAMPLE

Consider a database recording when privacy release
authorizations were signed by a patient (in the US, all
patients are now required by HIPAA [12] to sign such
authorizations). For ease of discussion, we’ll use a granu-
larity of an hour. Dr. Dan inadvertently revealed confiden-
tial health information to an insurance company on hour 30,
shortly before patient Pam actually signed the authorization
(on hour 31). Dr. Dan later realized his mistake, which is an
offense under HIPAA and can have significant legal
implications. So, on hour 51, Dr. Dan colludes with his
friend the database administrator to alter the database to
backdate that authorization from hour 31 to hour 28. The
database now implies that authorization had been received
on hour 28, just before the confidential information was
transferred on hour 30: everything looks fine.

In order to ensure HIPAA compliance, the health care
company that Dr. Dan works for uses a database management

system incorporating tamper detection and forensic analysis.
Each transaction is hashed when it is committed and linked to
the previous transaction. Every 16 hours the system runs the
validator, which rehashes all the transactions and compares
the value with the previously notarized and stored hash
value. The time interval between two successive validations
is termed the validation interval, or IV (see Table 1). The
validator also computes partial chains that will later be useful
in forensic analysis. Specifically, it computes the five hash
chains shown in Fig. 1, hash chain c0 through hash chain c4,
over the previous 16 hours, storing five hash values in a
secure database available only to an external digital notariza-
tion service. Each 16-hour collection of partial hash chains is
termed a tile.

When the validator runs at hour 64, it detects the
tampering. The forensic analysis algorithm springs into
action. It first reports to the compliance service that the
database was tampered sometime within the last 16 hours,
between hour 49 and hour 64. That helps bound the “when”
of the tampering. The algorithm then recomputes some of
the partial hash chains on the tampered data and sends the
new hash values to the notarization service, which responds
with “success” (the old and new values match) or “failure,”
for each hash chain queried.

Specifically, the algorithm linearly scans all the tiles in
the database to identify in which tile(s) the tampering
occurred. The “success” and “failure” response of the c0

chain of each tile will, in this case, narrow down the
tampering to the tile covering hours 17–32. Note that each
tile that includes a tampering can be independently
analyzed, and a corruption across tiles, say changing a
time stamp from hour 31 (in the second tile) to hour 7 (in
the first tile) can be analyzed by examining each tile
independently. In Dr. Dan’s case, the validation of the c0

chain will report a “failure,” for only the 17–32 tile. This
tells the algorithm that the “what” of the tampering was
data stored between hours 17 and 32, a 16-hour period.
However, we would like to narrow down the tampering to
a much finer granularity: that of a single hour, or at least

PAVLOU AND SNODGRASS: THE TILED BITMAP FORENSIC ANALYSIS ALGORITHM 591

TABLE 1
Summary of Notation Used

Fig. 1. The hash chains of a single (second) tile. tl is the actual time
of authorization, while tb is the backdated authorization time. The
rectangles mark the elements of the candidate set.

down to a few hours. (It turns out that depending on when
the corruption occurred, sometimes we can do very well
and sometimes less well.)

In Fig. 1, Dr. Dan’s backdating of the authorization from
hour 31 to hour 28 is shown at the top, as a left-pointing
arrow. The first hash chain, c0, is also shown at the top.

The algorithm now recomputes the other four partial
hash chains for this tile, c1-c4. Four partial hash chains are
used to get down to an hour granularity, given that each tile
is 16 hours, which is the validation interval IV .

The finest spatial granularity of the corrupted data
would be an explicit attribute of a tuple or a particular time
stamp attribute. However, this proves to be costly and
hence we define Rs, the finest granularity chosen to express
the uncertainty of the spatial bounds of a corruption event.
Rs is called the spatial detection resolution.

The database administrator specifies both IV and Rs, in
this case, 16 hours and 1 hour, respectively. An Rs of 1 hour
implies four other chains, excluding c0, are needed in a tile
(since lgðIV Þ ¼ log2ð16Þ ¼ 4). If we wanted a finer granular-
ity of, say, 15 minutes (1=4 hour), we would need an
additional two chains (i.e., lgð16� 1

4Þ ¼ lgð64Þ ¼ 6).
Hash chain c1 covers the first eight hours of the tile. Hash

chain c2 covers the first four hours, then skips four hours,
then covers hours 8–11. Similarly, c3 covers four two-hour
periods, with embedded skips, and c4 covers every other
hour. (Hash chain linking is discussed in more detail
elsewhere [10].)

Changing the time stamp on an authorization is equivalent
to removing that authorization from all hash chains that
cover the original time and adding that authorization to all
hash chains that cover the inserted time. Examination of Fig. 1
will explain why hour 28, in which the authorization was
added by Dr. Dan, appears in hash chains c0 and c2. Hour 31,
from which the authorization was removed by Dr. Dan,
appears in hash chains c0 and c4. Hence, c1 and c3 report
“success” and c0, c2, and c4 report “fail.”

We can assemble the success and failure results for the
four hash chains c1-c4 into a 4-bit binary number, with
failure denoted with “0” and success with “1.” The number
that results from this particular backdating from hour 31 to
hour 28 is 1010. We term this value the target binary number
or target. The target is the input to the forensic analysis. Our
task is to take this binary number, the target, and figure out
what could have happened.

The truth values shown at the bottom of the figure indicate
the target string that would result had the corruption event
tampered with data stored at the indicated hour. For
example, changing the data of a tuple that were originally
stored in the first hour of this interval would have rendered
all of the chains as failure, resulting in a value of 0000.

Recall that our corruption event occurred at hour 51,
changing a time stamp from 31 to 28, the hash chains
provide a target of 1010. What could such a target indicate?
It could indicate the corruption of data during a single
hour, or any combination of time stamp and/or data during
two or more separate hours such that the resulting target
after validation is equal to 1010. For example, one
possibility is that only the data in hour 27 (r ¼ 10) was
modified. Another is that the time stamp was moved from

31 (r ¼ 14 ¼ 11102) to 28 (r ¼ 11 ¼ 10112), again yielding a
target 1010. This is in fact what happened. A different
possibility is that the data in hours 28 and 31 were
corrupted independently. A fourth possibility is that the
time was moved from 28 to 31. Other possibilities are a
change from hour 27 to hour 31, a change from hour 27 to
hour 32, a change from hour 27 to hour 28, or a change in
the other direction. All these possibilities and many others
result in a target of 1010. Precisely because this list of
possibilities can get quite long, we introduce in the next
section the notion of candidate set which retains compre-
hensiveness but is a lot simpler.

There are two special cases worth discussing separately. If
target bit pattern is 1111 then it is not the case that no
corruption has happened. To begin with, we are certain that
there is corruption in this tile because c0 reported “failure.”
The only thing that pattern 1111 implies is that no corruption
has occurred in the time granules covered by hash chains c1,
c2, c3, and c4. The only granule not covered by these last four
hash chains is the last granule (15) so we can conclude (by
eliminating all other possibilities) that the corruption must
have been located in time granule 15. This is the only case
where we are certain that there are no false positives.

On the other hand, if the target bit pattern is 0000 then a
corruption event can be anywhere in the tile’s 16 time
granules. Even though this does not affect correctness, this
is the worst case scenario where we could potentially have
the maximum number of false positives.

4 THE TILED BITMAP ALGORITHM

We formally define the problem as follows: Problem
Definition: The task is to compute from a single target all the
possible corruption events, which we term the candidate set.

For the example in the previous section, the candidate set
would comprise the hours f27; 28; 31; 32g. We now present
an algorithm to do this.

In the algorithm shown in Fig. 2, IV is the number of
hours between validations (in the example, IV ¼ 16). We
use a helper function called val_check. This function takes a
hash chain as a parameter and returns the boolean result of
the validation of that chain.

The partial hash chains within a tile are denoted by
c0ð�Þ; c1ð�Þ; . . . ; clg ðIV Þð�Þ, with cið�Þ denoting the ith hash
chain of the tile which starts at time instant � . On line 4, the
algorithm iterates through the different tiles and checks if
the longest partial chain c0ð�Þ evaluates to FALSE. If not, it
moves on to the next tile. If the chain evaluates to FALSE
(line 5), the algorithm iterates through the rest of the partial
chains in the tile (line 7) and “concatenates” the result of
each validation to form the target number (line 8). Then, the
candidateSet function is called (line 9) to compute all the
candidate set elements from the target number according to
the user-specified parameter k discussed in the next section.
On lines 10–12, the candidate granules are renumbered to
reflect their global position. The function renumber() on
line 11 uses Rs to find the global position of r, computing g
as a single granule, or group of granules if Rs > 1. Once the
Cset is reported, the CSO can exactly pinpoint the corrupted
tuples and can thus weed out the false positives. In order to

592 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 4, APRIL 2010

achieve this, he must compare the data stored in the backup
tapes with the data contained in the granules.

We now state the running time of the Tiled Bitmap
Algorithm. Let D be the number of granules (hours) before
the first validation failure (for the example, D ¼ 64). The
“while” loop on line 4 takes dD=IV e in the worst case. In
reality, because of the “if” statement on line 5 the body of
the loop gets executed only if corruption is initially detected
by using c0ð�Þ. Hence, the actual number of times the loop is
executed is �ðF Þ where F is the number of times the
validation of a c0ð�Þ chain fails. The “for” loop on line 7
takes lgðIV =RsÞ while the candidateSet function takes
�ðlgðIV =RsÞ þ 2zðtÞÞ, where zðtÞ is the number of zeros in
the target binary number t (see Section 5). The loop on line
10 takes �ð2zðtÞÞ. Hence, the runtime of this algorithm is

�
�
F �
�

lgðIV =RsÞ þ
�

lgðIV =RsÞ þ 2zðtÞ
�
þ 2zðtÞ

��

¼ �
�
F �
�

lgðIV =RsÞ þ 2zðtÞ
��

¼ O
�
ðD=IV Þ �

�
lgðIV =RsÞ þ 2zðtÞ

��
¼ OððD � lgðIV =RsÞÞ=IV þDÞ;

given that in the worst case F takes the value ðD=IV Þ, which
is the total number of tiles, and 2zðtÞ takes the value IV ,
which the total number of granules in a tile.

There is one important aspect left unaddressed in the
above algorithm: the candidateSet function. But before we
can present this latter algorithm, we must formally
characterize the candidate set.

5 CHARACTERIZING THE CANDIDATE SET

In the forensic analysis context, the parameter k passed to
the algorithm represents the actual number of granules
corrupted. In the example shown in Fig. 1, k ¼ 2. However,

we usually have no knowledge of the value of k. What we
have is only the target from which we have to find the
possible bit patterns (each generated by the validation of the
chains in the tile assuming that corruption occurred by itself)
that when bitwise ANDed produce the target. The reason for
requiring that the different bit patterns produce the target

when ANDed is because this is effectively what happens
when the corruptions occur simultaneously within a tile. This
arises from the mechanics of forensic analysis. Specifically,
each corruption event renders some of the chains as
“failing.” A chain will succeed in the end only if it succeeds
in every one of the corruption events. So, in the example,
chains c1 and c3 succeed, but chains c2 and c4 fail. The set of
all such bit patterns which could produce the target when
ANDed is termed the candidate set. In order to be more
rigorous in our analysis, we proceed to give a formal
characterization of the candidate set.

We define the length l of a binary number b, denoted by
jbj ¼ l, as the number of its digits. From this point forward
we consider l to be fixed. candidateSet essentially “sums
up” the preimages of all the binary numbers of length l,
IB ¼ fb : jbj ¼ lg, under a family of bitwise AND functions
whose domain is a finite Cartesian product.

ANDk : IBk�! IB

ANDkððb1; b2; . . . ; bkÞÞ ¼ b1 ^ b2 ^ � � � ^ bk

Observe that the maximum number k of sets participating
in the Cartesian product is 2l (i.e., every granule in the tile is
corrupted), since if k is allowed to take a value beyond that,
it will force a repetition of one of the binary numbers. For
forensic analysis purposes this implies that the same
granule has been corrupted more than once. This is not
informative or useful in any way since repeated ANDing
operations with the same binary number leave the result
invariant (the operation is idempotent). This is also compa-
tible with forensic analysis since we only care if a granule is
corrupted or not—if we wanted to know more we would
need to increase the resolution by choosing a smaller
granule size (i.e., smaller Rs). In other words, repetition is
not allowed and hence for a given k-tuple all its components
are distinct. Also note that the value of k uniquely identifies
a specific ANDk function in the above family.

We formally define the set of all binary numbers which
appear as components in at least one of the preimages (i.e.,
k-tuples) of a specific target binary number t the candidate set:

Ct;k ¼ fb 2 IB : 9 b1; b2; . . . ; bk�1 2 IB s:t:

ANDkððb; b1; . . . ; bk�1ÞÞ ¼ tg:

The ^ operation is commutative: the order of the operands
does not matter, and that is why this can be defined more
simply as a set of booleans rather than as a set of k-tuples of
booleans. The word “candidate” was used to name this set
because in forensic analysis, its elements correspond
bijectively to the granules (in the example, the hours
indicated in Fig. 1), which are candidates where corruption
may potentially have occurred. In Dr. Dan’s case, the
candidate set would be the hours 27, 28, 31, and 32 that is,
r ¼ 10, r ¼ 11, r ¼ 14, and r ¼ 15.

PAVLOU AND SNODGRASS: THE TILED BITMAP FORENSIC ANALYSIS ALGORITHM 593

Fig. 2. The tiled bitmap algorithm.

Observe that, it is not the case that jCt;kj ¼ k, i.e., k is not
the cardinality of the candidate set. The cardinality in the
example is 4: in this case, the algorithm can narrow down
the possibilities only to four granules, two actual ones
(k ¼ 2) and two false positives. The candidate set will
comprise all possible binary numbers that could produce the
target bit pattern, and not just the granules corrupted in a
specific case. Hence, the candidate set will always include
the actual k granules that were corrupted together with
other potentially corrupted granules. This ensures correct-
ness but allows for the existence of false positives.

For convenience, we can express these sets in decimal,
though our algorithms read and write in binary. For
example: C1010;1 ¼ f1010g ¼ f10g, C1010;2 ¼ f1010; 1011;
1110; 1111g ¼ f10; 11; 14; 15g. 1001 is not in C1010;2 because
1001 cannot be in the preimage of 1010. Note that even
though two binary target strings may have the same
numerical value, if their length is different, then their
candidate sets will be different. For example, the
candidate set C000;2 is different from C0000;2.

Let zðtÞ be the number of zeros in the binary number t,
e.g., zð1010Þ ¼ 2. By definition 1 � k � 2l and 0 � z � l. The
behavior of Ct;k is interesting: as k increases the candidate
set for a fixed t remains invariant and equal to the candidate
set for k ¼ 2, until some threshold value 2zðtÞ after which it
becomes empty. Simply put, Ct;k obeys an all-or-none law.

Lemma 1. Ct;k ¼ Ct;2 if l � zðtÞ > 0 and 2 � k � 2zðtÞ. In other
words, the candidate set remains invariant given that the
stated conditions are met.

Proof. Given in Appendix A, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2009.121. tu

A complete characterization of the candidate sets is
given below.

Theorem 1.

Ct;k ¼

ftg; k ¼ 1; ð1Þ
;; zðtÞ ¼ 0 ^ k > 1; ð2Þ
Ct;2 6¼ ;; l � zðtÞ > 0 ^ 2 � k � 2zðtÞ; ð3Þ
;; l � zðtÞ > 0 ^ k > 2zðtÞ: ð4Þ

8>><
>>:

Proof. Given in Appendix B, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2009.121. tu

Theorem 1 is the reason for which we decided to make k
user-configurable in the Tiled Bitmap pseudocode. If the
CSO by some other means has any indication for the value
of k, i.e., the actual number of corruptions occurred, then he
can pass that information to the algorithm. If the algorithm
returns an empty candidate set then the CSO can deduce
that his initial knowledge/guess for the value of k was
incorrect. If the CSO has no a priori knowledge about the
value of k, as is usually the case, then according to
Theorem 1 the CSO need only give k the default value of
2 and not worry that any other choice for k would
compromise the forensic analysis results.

Corollary 1.

jCt;kj ¼

1; k ¼ 1;
0; zðtÞ ¼ 0 ^ k > 1;
2zðtÞ; l � zðtÞ > 0 ^ 2 � k � 2zðtÞ;
0; l � zðtÞ > 0 ^ k > 2zðtÞ:

8>><
>>:

Proof. This follows directly from Theorem 1. tu

For example, with our target bit pattern of t ¼ 1010, we
have zðtÞ ¼ 2 and the candidate set is C1010;2 ¼ f10; 11; 14; 15g
with jC1010;2j ¼ 22 ¼ 4.

We now turn to ways in which the candidate set may be
computed. We first give an algorithm that is optimal in
time, except for a very few cases. Following some further
observations on candidate sets, we show how, given a
candidate set, one can calculate other candidate sets with a
smaller l in constant time.

6 COMPUTING THE CANDIDATE SET

Figs. 3, 4, 5, and 6 present an optimal algorithm for
computing the candidate set given the target string t and k,
and again assuming a fixed l. Recall that candidateSet is
used in the Tiled Bitmap Algorithm. It generates the
elements (bit patterns) in the candidate set from the target
pattern t preserving bit positions with 1s and creating
combinations of patterns of 1s and 0s using the remaining
positions having 0s. Finally, it sorts the patterns in
ascending order of their numeric values by using an
interesting linear-time sort. (An example of the candidate
set generation for our target of t ¼ 1010 can be found in
Appendix G, which can be found on the Computer Society

594 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 4, APRIL 2010

Fig. 3. The candidateSet function.

Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2009.121.) All arrays and strings use zero-
based indexing. All parameters are passed by value.

Let us now briefly examine this algorithm. We first start
by looking at the candidateSet function (Fig. 3) and discuss
each different function as we encounter it.

The use of the Z array on lines 4 and 7 will be explained
later in the discussion following Theorem 2. Lines 8–12
follow the result of Theorem 1. Then, on line 13 the
createRightmost helper function is called (Fig. 4) to
preprocess the target binary number t and to fill the
rightmost array in order to answer the “rightmost zero”
query in constant time. More specifically, rightmost½p� is the
index (bit position) of the rightmost zero to the left of index
p noninclusive. Within this function i iterates over t from
left to right (high-order to low-order bits). The flag is
required because we must remember what we saw in the
previous iteration: if flag ¼ TRUE we saw a 0, otherwise
we saw a 1. This runs in �ðlÞ.

On line 14 (Fig. 3), the generate function (Fig. 5) is called.
This is a recursive function which creates the candidate set

elements. Given a position p, which is a specific index in the
zero-based enumeration (left to right) of the binary
number t, it finds the index of the rightmost zero to the
left of p using the rightmost array. It first recurses on that
index maintaining the same binary number (line 4) and then
sets the digit at position p to 1 and recurses on the same
index rightmost½p� but with this new number (line 5). We
can consider the input target string t as capturing all the
2zðtÞ numbers that must be generated during the recursion,
so we can consider the input size to be n ¼ 2zðtÞ. Also, at
each recursive call the position of the zero processed is
never revisited so the input size at each call is essentially
halved. Moreover, the amount of work done at each stage of
the recursion is constant hence the formula that captures
this recursion is T ðnÞ ¼ 2T ðn2Þ þ�ð1Þ. The solution of this
formula is �ðnÞ so the running time of the generate function
is �ð2zðtÞÞ. However, a side effect of this recursive creation of
the candidate set elements is that the elements are not
generated in numeric order.

On line 15 of candidateSet (Fig. 3), we call the sorting
function. Even though the elements are not sorted there
does exist a pattern in the order in which they are created.
This funkySort function (Fig. 6) creates the sequence of
indices which when used to index into the Ct;k array will
result in the ordering of the candidate set elements. This is
achieved by performing a single pass over the indices array
and creating each new index by manipulating appropriately
previous ones (lines 8-13) within the funkySort function.

For example, with a binary target of t ¼ 10000, i.e., 16 in
decimal, after the generate function finishes the candidate
set will be Ct;k ¼ f16; 24; 20; 28; 18; 26; 22; 30; 17; 25; 21; 29;
19; 27; 23; 31g in this order. Examining closely the set we
see that in order to create the sorted array we must
recursively visit the first element of each subsequent half

PAVLOU AND SNODGRASS: THE TILED BITMAP FORENSIC ANALYSIS ALGORITHM 595

Fig. 4. The createRightmost function.

Fig. 5. The generate function.

Fig. 6. The funkySort function.

of Ct;k. Line 12 creates this sequence of indices: 0, 8, 4, 12, 2,
10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15. More specifically, by starting
from 0 the 8 can be created by 0þ 2zðtÞ�1 where zðtÞ ¼ 4.
Then, 4 and 12 can be obtained by adding 22 to each of 0 and
8. Then 2, 10, 6, and 14 are obtained by adding 21 to 0, 8, 4,
and 12, respectively. Finally, the last eight numbers are
obtained by adding 20 to the first eight numbers. This
explains why at elements appearing at indices which are
powers of 2 in the indices array, the offset is reset to zero and
the power is halved. On lines 14-15 (Fig. 6), we use the
sequence of indices we created and the actual sorting
happens. This pass over the indices array runs in �ð2zðtÞÞ.

The running time of candidateSet is �ðlþ 2zðtÞÞ. Thus, the
algorithm is optimal most of the time, using the lower
bound given in Section 5, except for the very few cases
when l > 2zðtÞ. In terms of space complexity, the algorithm
given here requires Oðlþ 2zðtÞÞ space.

7 AN OPTIMAL CANDIDATE SET ALGORITHM,
GIVEN A SUMMARY SET

We define the summary set as the set of all candidate sets of
all binary numbers of length l.

Sl;k ¼ fCt;k : 8t 2 IB s:t: jtj ¼ lg

For l ¼ 4 and k ¼ 2, the last column in Table 2 provides the
elements of S4;2.

We now show that for fixed k and given Sl;k one can
calculate all Sl0;k s.t. l0 < l without resorting to the algorithm
given previously. This allows us to find the candidate set
for a suffix of y whenever we already have the candidate set
for y. The technique shown below can potentially be faster.
We define the candidate array, denoted At;k, to be an array
which contains the elements of Ct;k sorted in ascending
numerical value. Then, At;k½x : y� selects all elements in the
candidate array from index x to y. (NB: At;k½i� ¼ At;k½i : i�.)

Also, for reasons of ease and precision, we annotate A with
the length of the binary number whose value was
previously implicit, as a leading subscript.

Given a candidate array lAy;k for a specific target string y,
we wish to compute the candidate array l�xAt;k where t is a
suffix (l ¼ jyj > l� x ¼ jtj � 1) of y. Each Sl;k captures all
the candidate sets for all l0 < l. This method creates each
element of Sl0;k by exploiting the fact that each of the binary
numbers of length l0 is a suffix of more than one
corresponding binary number of length l. For example,
the candidate set C1010;2 can be computed from the
candidate sets of 01010, 001010, 101010, and so on. Let y ¼
p � t ¼ f0; 1gxt for some prefix p of length x. Let SuffixiðsÞ
denote the suffix of string s starting at position i.

Let us look at some examples to develop some intuition.
Given 4A0010;2 ¼ ½0010; 0011; 0110; 0111; 1010; 1011; 1110;
1111�, we wish to compute 3A010;2. Observe that t ¼ 010 is
y ¼ 0010 with the leftmost “0” removed. Removing the
leading “0” from y results in a string t which cannot
encode any numbers in the range 23 to 24 � 1. Thus the
candidate array of 3A010;2 will have the same elements as
the candidate array of 4A0110;2 except for the numbers
encoded by the extra leading digit. We know that each
additional “0” present in the target string doubles the
cardinality of the candidate set, thus a removal of the zero
will halve the number of candidate set elements. Observe
also that the elements in the second half of 4A0010;2 have
essentially the same bit pattern as the elements in the first
half but with a “1” at the leftmost position instead of a “0,”
e.g., 1110 has the same bit pattern as 0110 apart from the
bit in the leftmost position.

Thus, in order to compute 3A010;2 we can truncate the
leftmost digit from all the elements in the original candidate
set. By removing the leftmost digit from each of the
elements in 4A0010;2, we get 010, 011, 110, 111, 010, 011,
110, 111. The first half of the elements will have a leading
“0” removed, something which will not change their
numerical value, while the second half which will have a
leading “1” removed will produce identical numbers of
length 3 to the truncated numbers in the first half. Since the
cardinality of 3A010;2 is half that of 4A0010;2, and since the two
halves of 4A0010;2 have the same elements after the
truncation and by knowing that 3A010;2 ¼ ½010; 011; 110;
111� we can verify that:

3A010;2 ¼ ½Suffix1ð4A0010;2½0�Þ; Suffix1ð4A0010;2½1�Þ;
Suffix1ð4A0010;2½2�Þ; Suffix1ð4A0010;2½3�Þ�

¼ ½010; 011; 110; 111� ¼ ½2; 3; 6; 7�:

Let us consider a different example with the original target
string being y ¼ 1010 and the same suffix t ¼ 010 as before. In
this case 4A1010;2 ¼ ½1010; 1011; 1110; 1111� all elements ne-
cessarily start with a “1.” Since removing the leading “1” from
y to get tdoes not affect the number of zeros in the strings, the
cardinalities of the two candidate sets is the same. Removing
the leftmost “1” from all the elements of 4A1010;2 will yield
directly the desired elements of the new candidate set:

3A010;2 ¼ ½Suffix1ð4A1010;2½0�Þ; Suffix1ð4A1010;2½1�Þ;
Suffix1ð4A1010;2½2�Þ; Suffix1ð4A1010;2½3�Þ�

¼ ½010; 011; 110; 111� ¼ ½2; 3; 6; 7�:

596 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 4, APRIL 2010

TABLE 2
Candidate Sets for Targets jtj ¼ 4 with k ¼ 2

With these valuable observations, we can now state the
theorem.

Theorem 2. Assume y ¼ p � t ¼ f0; 1gxt, 0 < x < l, 0 � zðtÞ �
l� x and q ¼ 2zðtÞ. Then:

l�xAt;k ¼

N=A; k > 2l�x; ð1Þ
½t�; k ¼ 1; ð2Þ
;; zðtÞ ¼ 0 ^ 1 < k � 2l�x; ð3ÞS

0�i<q½SuffixxðlAy;2½i�Þ�;
l� x � zðtÞ > 0 ^ 2 � k � q; ð4Þ

;; l� x � zðtÞ > 0 ^ k > q: ð5Þ

8>>>>>><
>>>>>>:

Proof. Given in Appendix D, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2009.121. tu

The strategy for computing the candidate sets using this
new method is given below. First, we change line 9 of the
original Tiled_Bitmap function in Fig. 2

9: Ctemp candidateSetðtarget; n; kÞ
to

9: Ctemp candidateSetCachedðtarget; n; kÞ
We introduce a list, cache[] of records ðy; ly; k; Cy;k; ZÞ

which is updated with every call to the function candi-
dateSet. Each such record stores the candidate set Cy;k
computed by the function, the target number y, the length ly
of y, the parameter k, and the corresponding Z array for y.
In order to achieve this, we change the candidateSet
function in Fig. 3 to store the candidate set in the cache,
before returning it.

15: Ct;k funkySort(z, Ct;k)

16: append(cache, ðt; lt; k; Ct;k ; ZÞÞ
17: return Ct;k

A new function candidateSetCached (Fig. 7) checks to see if
a precomputed candidate set which can be used by this new
algorithm, already exists.

Note that tstart is the index in the original string y
where the suffix t starts. The running time of the
candidateSetCached function is Oðl � cache:lengthÞ, which

is the worst-case running time for executing lines 3 and 4.
The candidateSetSuffix function given in Fig. 8 provides
the algorithm for creating the new candidate set Ct;k from
a cached candidate set Cy;k.

Since creating the candidate set for y involves scanning
all of y to find the zeros, we can at the same time maintain
an array which accumulates the number of zeros encoun-
tered so far during the scan. This array is the Z array which
was created in the function candidateSet (lines 4 and 7). We
can index into this array using the position which suffix t
starts in y and thus get the number of zeros in constant time.
For example, for y ¼ 01101010 and t ¼ 1010 given in terms
of tstart which is the start position of t in y, we can scan y
from left to right and create the array Z ¼ ½1; 1; 1; 2; 2; 3; 3; 4�.
This arrays gives the number zeros in every suffix of y.
Thus, zðtÞ ¼ zðyÞ � Z½tstart � 1�. In this case tstart ¼ 4, and so
zð1010Þ ¼ zð01101010Þ � Z½4� 1� ¼ 4� 2 ¼ 2.

In addition, the mask (Fig. 8, lines 7 and 13) is used as a
means of setting the first x bits of each original candidate set
element to zero, which is the equivalent in a sense of taking
the suffix of the corresponding binary string. For example, if
the candidate set element is 18, with binary representation
10010, and we want to take the suffix starting at index 2, then
themask ¼ 7 (00111 in binary). Thus, by bitwise ANDing the
mask and the element, we get 010 ¼ 2. Note that the masking
does not simply set the higher order bits to zero but it
truncates the number, i.e., the length actually decreases. This
is important because we seek to derive from the candidate
set of 10010 the candidate set of 010 and not the set for 00010.
The latter is impossible to derive in the way described in this
section since C00010;2 is a superset of C10010;2.

PAVLOU AND SNODGRASS: THE TILED BITMAP FORENSIC ANALYSIS ALGORITHM 597

Fig. 7. The candidateSetCached function.

Fig. 8. The candidateSetSuffix function.

The “for” loop on line 12 dominates the running time of
the above algorithm. Hence, the algorithm, in the worst
case, runs in �ð2zðtÞÞ, which is optimal.

However, we can do better by using a different repre-
sentation for the candidate set of the suffix t. Since the
elements of Ct;k are contiguous elements of Cy;k starting at
position 0, then the candidate set of t can be given as a range
of values. This is achieved just by maintaining a pointer to the
position q � 1 in the candidate array of y marking the last
element of Ct;k. Thus, only two numbers mask, and q ¼ 2zðtÞ,
both of which can be computed in constant time, are needed
to capture the candidate set of any suffix of target y. To create
the mask, we use lt (as seen on line 5) which was computed
from the input integer tstart on line 3. Obtaining q is easy since
we have already computed zðtÞ on line 4. Thus, the first and
last elements of the candidate set for the suffix can be given as
Cy;k½0� & mask and Cy;k½q � 1� & mask, respectively. This
approach avoids the expensive “for” loop on line 12 and
makes the algorithm run in �ð1Þ.

It is preferable to use the candidateSetSuffix Algorithm
in one particular situation: to find the candidate set for
the suffix of y whenever we already have the candidate
set for y. Consider the following examples: For l ¼ 4, we
want to calculate C1010;7 and C010;3. C1010;7 ¼ ; since
jC1010;7j ¼ 22 ¼ 4 < k ¼ 7. In the case of C010;3, we have 3 �
zðtÞ ¼ 2 > 0 and 2zðtÞ ¼ 4 > k ¼ 3 so

3A010;3 ¼
[

1�i�4

½Suffix1ð4A1010;2½i�Þ�

¼
[

1�i�4

½Suffix1½1010; 1011; 1110; 1111��

¼ ½010; 011; 110; 111�;

and thus C010;3 ¼ f2; 3; 6; 7g. If we decide to use the faster
constant running time approach, the result will be given
as mask ¼ 0111 and q ¼ 22 ¼ 4 and hence the first
element in C010;3 is 4A1010;2½0� & 0111 ¼ 1010 & 0111 ¼
010 ¼ 2 while the last element is 4A1010;2½4� 1� & 0111 ¼
1111 & 0111 ¼ 111 ¼ 7.

Assume that we are auditing a variety of databases, each
with a particular l value (for the example in this paper,
l ¼ 4). Within the forensic analyzer, we could precompute a
summary set for lmax, which is the maximum of the l values
that were specified for the databases that were being
audited. During forensic analysis of a specific database
corruption, given the resulting target string and the l value
for this particular database (with l � lmax), this algorithm
could calculate in constant time the candidate set, which
consists of all the possible corrupted granules that could
have yielded that target number for that value of l.

8 IMPLEMENTATION AND EVALUATION

Elsewhere, we have introduced the Monochromatic, the
RGB, and Polychromatic Algorithms [7]. All algorithms
employ the same approach of tamper detection and forensic
analysis by hashing transaction data and periodically
validating the resulting hash chains. The main differences
between the algorithms lie in the number of hash chains used
and their structure. The simplest is the Monochromatic
Algorithm, which sequentially hashes all data to create a

hash chain that incrementally grows over the data of the
entire database. The cumulative nature of this chain has two
consequences. First, it limits the detection of corruption to a
single event since periodic validations will yield a sequence
of “success” results followed by a sequence of “failure”
results. The interface in the transition between these two
sequences marks the site of the first (oldest) corruption.
Second, the cumulative nature of the chain enables a binary
search on the sequence of “successes” and “failures” to
locate the transition very quickly.

The RGB Algorithm augments the Monochromatic
Algorithm by periodically superimposing (noncumulative)
partial hash chains over the entire database. The name of the
algorithm is derived from the color coding of the different
partial hash chains. In this case, the cumulative chain can be
used to perform binary search to quickly locate the oldest
corruption and then switch to using the “colored” partial
chains to explore the rest (more recent part) of the database.
This algorithm can detect up to two corruption events.

The Polychromatic Algorithm retains the main Red,
Green, and Blue partial chains of RGB and introduces more
Red and Blue chains to create groups of chains similar to a tile.
This has the advantage that it can arbitrarily shrink the spatial
detection resolution by introducing a logarithmic number of
hash chains as opposed to a linear number needed in RGB.
The Polychromatic Algorithm, as with the RGB Algorithm,
can only detect only up to two corruption events but could
potentially be modified to handle multiple corruptions.

The Tiled Bitmap Algorithm introduced here can be
thought of as a refinement/replacement of the Polychro-
matic Algorithm. The new algorithm can use the cumula-
tive chain of the Monochromatic Algorithm (not elaborated
on here). It extends the idea of the RGB Algorithm of using
partial chains, and it refines the groups of hash chains of the
Polychromatic Algorithm.

The advantage of the Tiled Bitmap Algorithm is that it
lays down a regular pattern (a “tile”) of such chains over
contiguous segments of the database. What is more, it
inherits all the advantages of the Polychromatic Algorithm:
the chains in the tile form a bitmap which can be used for
easy identification of the corruption region, and a logarith-
mic number of chains can be used to reduce Rs.

The other advantage of the Tiled Bitmap Algorithm is
that it can detect multiple corruption events (up to D of
them, i.e., all granules were corrupted) something that the
Monochromatic, RGB, and Polychromatic Algorithms can-
not. On the other hand it suffers from false positives while
the previous three algorithms do not. (More information on
the rate of false positives of the Tiled Bitmap Algorithm can
be found elsewhere [8].) Table 3 shows the running time for
three of the forensic analysis algorithms (the Polychromatic
Algorithm is omitted because it is replaced by the Tiled
Bitmap Algorithm). We assume that the spatial detection
resolution Rs is equal to 1 for simplicity. Observe that the
algorithms become progressively slower because of the
increased number of chains maintained and used during
forensic analysis. The Monochromatic Algorithm, while
being the fastest algorithm, suffers from the fact that only
the first corruption event can be detected. As noted, the
Tiled Bitmap Algorithm can be slightly optimized by

598 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 4, APRIL 2010

retaining the cumulative chain of the Monochromatic in
order to locate the first corrupted tile by performing binary
search, although this refinement does not affect its
asymptotic running time.

Recall that all algorithms rely on an external notarization
service in order to validate the audit log. However, each
such contact costs real money. Hence, we quantify the cost
of the algorithms as the number of contacts with the
notarization service during a specific duration of the normal
operation of the system, i.e., whenever a part of the
database is notarized or validated. The units of the cost
are, therefore, number of notarizations plus number of
validations. We chose to deal with only notarizations and
validations occurring before corruption or forensic analysis,
because otherwise the cost would be dependent on the
number of corruptions. This would render the comparison
unfair since the Monochromatic and RGB Algorithms can
only detect a limited number of corruptions. More informa-
tion on the mathematical formulation of the cost can be
found elsewhere [8]. It is desirable to minimize this cost for
each algorithm while trying to extract as much information
as possible. Table 4 shows the cost for each of the forensic
algorithms assuming a spatial detection resolution of one
hour (Rs ¼ 1) and a single corruption event. In this case, we
observe the opposite trend compared to the one observed
for the running times of the algorithms. For a sufficiently
large validation interval IV , the Tiled Bitmap Algorithm has
the smallest cost. This is because the ratio ð1þ lg IV Þ=IV
becomes less than one.

This quantification of cost also reflects the space complex-
ity of the forensic algorithms since each of the contacts with
the external notarization service corresponds to a hash value
(of chains) which must be initially computed (and recom-
puted for comparison during validation) and maintained
within the system. None of algorithms in Table 4 require
extra space over the collection of hash values themselves.

A 1250-line C code implementation is available at http://
www.cs.arizona.edu/projects/tau/tbdb/. The code imple-
ments several forensic analysis algorithms, including the
candidateSet and candidateSetSuffix construction algo-
rithms, the Tiled Bitmap Algorithm, and the Monochromatic

Algorithm. This C code implementation uses the more

efficient pass-by-reference for arrays and strings compared

to the pseudocode given in Section 6. All algorithms were

tested extensively and their theoretical costs were experi-

mentally validated. Appendix F, which can be found on the

Computer Society Digital Library at http://doi.ieeecom

putersociety.org/10.1109/TKDE.2009.121, provides proofs

of correctness for all functions introduced in this paper. We

also have developed several graphical user interfaces which

include a convenient visual representation of the spatial and

temporal extent(s) of detected corruption(s).
Fig. 9 shows the results of the experimental cost validation

for the Monochromatic and Tiled Bitmap Algorithms (the

RGB Algorithm has not been implemented). The experiments

used the following setup: D ¼ 1 to 256, Rs ¼ 1, and IV ¼ 8.

Rather than using the cost formulas in order notation (as

given in Table 4) to create the graphs, we used more involved

(and more accurate) cost functions derived for each algo-

rithm. Note that the cost plot shows both the predicted

forensic cost (denoted by “(P)” in the plot legend) and actual

cost values (denoted by “(A)” in the plot legend). The actual

cost values were computed by inserting appropriate counters

in the C code implementation for the Monochromatic and

Tiled Bitmap algorithms. The different types of symbols on

the curves were added for clarity and correspond to a subset

of the actual data points. As can be seen in Fig. 9, the

predicted and actual cost for the two algorithms are

essentially identical. A more detail explanation of the derived

costs, and experimental comparisons between algorithms

can be found elsewhere [8].

9 PREVIOUS WORK

There has been a great deal of work on records manage-

ment, and indeed, an entire industry has arisen to provide

solutions for these needs, motivated recently by Sarbanes-

Oxley [13] and other laws requiring compliant record

storage. In this context, a “record” is a version of a

document. These systems utilize magnetic disks (as well

as tape and optical drives) to provide WORM storage of

compliant records. We wish to extend the concept of

PAVLOU AND SNODGRASS: THE TILED BITMAP FORENSIC ANALYSIS ALGORITHM 599

TABLE 4
Worst-Case Cost/Space Complexity of

Forensic Analysis Algorithms

Fig. 9. The cost of the Monochromatic and Tiled Bitmap Algorithms.

TABLE 3
Running Time Complexity of Forensic Analysis Algorithms

compliant records to tuples of a table stored in a database
management system.

Computer forensics is now an active field, with more
than 50 books published in the last 10 years. However, these
books are generally about preparing admissible evidence
for a court case, through discovery, duplication, and
preservation of digital evidence. There are few computer
tools for these tasks, in part due to the heterogeneity of the
data. One substantive example of how computer tools can
be used for forensic analysis is Mena’s book [6].

Goodrich et al. introduce new techniques for using main-
memory indexing structures for data forensics [3]. They
encode authentication information in the way a data
structure is organized (not in the stored values) so that
alterations can be detected. Their techniques are based on a
new reduced-randomness construction for nonadaptive
combinatorial group testing, using message authentication
codes (MAC) built using cryptographically strong, one-way
hash functions. In the database context, we have introduced
in previous papers the approach of using cryptographic
hash functions to detect database tampering [10] and of
introducing additional hash chains to improve forensic
analysis [7]. To the best of our knowledge, there are no
other competing forensic analysis algorithms for high-
performance databases.

Strachey has considered table lookup to increase the
efficiency of bitwise operations [11]. He provides a
logarithmic time/logarithmic space algorithm for reversing
the bits in a word. Our second algorithm requires only
constant time, but the table must be of exponential space.

Enumerating all solutions (preimages) is a key step in
formal verification. Sheng and coworkers have developed
efficient preimage computation algorithms [4], [9]. These
algorithms are similar to the ones introduced in this paper
in that they all enumerate all possible solutions. The formal
verification algorithms differ in that they are computing
preimages of a state transition network, rather than of
bitwise AND functions, as in our paper.

10 SUMMARY

Forensic analysis commences when a crime has been
detected, in this case the tampering of a database. Such
analysis endeavors to ascertain when the tampering
occurred, and what data were altered.

Elsewhere, we proposed several forensic analysis algo-
rithms [7]. The present paper expands upon that work by
presenting the Tiled Bitmap Algorithm, which is cheaper and
more powerful than prior algorithms. This algorithm
employs a logarithmic number of hash chains within each
tile to narrow down the when and what.

Checking the hash chain values produces a binary
number; it is the task of the algorithm to compute the
preimage of bitwise AND functions of that number. This
produces a candidate set which identifies all the potentially
corrupted granules. We showed that the running time of the
algorithm is linear in the length of time the database has
been in existence and linear in the size of the computed
candidate set. We also note that previous algorithms do not
handle multiple corruption events well, whereas the Tiled
Bitmap Algorithm can independently analyze corruption

events occurring both in different tiles and multiple

corruption events occurring within a single tile. However,

the Tiled Bitmap Algorithm suffers from false positive

results while prior algorithms (Monochromatic, RGB, and

Polychromatic) do not.
In the later parts of the paper, we analyzed completely

the behavior of the candidate sets and developed an

optimal algorithm to produce these candidate sets. We

then introduced a constant-time algorithm which is prefer-

able in the case when the target binary number is a suffix of

another binary number for which a candidate set already

exists. Finally, we compared prior forensic algorithms with

the Tiled Bitmap Algorithm, providing a thorough space

and time complexity analysis. We discussed the implemen-

tation of the algorithms and experimentally validated their

cost. The Tiled Bitmap Algorithm uses additional chains

(which incur a logarithmic runtime factor) to detect multi-

ple corruption events, while requiring fewer requests of an

external notarization server.
The ultimate goal is an algorithm that retains the

logarithmic performance (of the additional chains) of the

Tiled Bitmap Algorithm while further simplifying the

analysis within a tile, furthering narrowing the bounds on

when the tampering occurred, and providing additional

forensic information, such as the direction of the tampering,

i.e., whether the information was backdated or postdated.

ACKNOWLEDGMENTS

This research was supported in part by US National

Science Foundation (NSF) grants IIS-0415101, IIS-0639106,

IIS-0803229, and EIA-0080123 and with partial support

from a grant from Microsoft Corporation. The reviewers

were very helpful in improving the presentation.

REFERENCES

[1] CSI/FBI, “Tenth Annual Computer Crime and Security
Survey,” http://www.cpppe.umd.edu/Bookstore/Documents/
2005CSISurvey.pdf, 2009.

[2] P.A. Gerr, B. Babineau, and P.C. Gordon, “Compliance: The Effect
on Information Management and the Storage Industry,” technical
report, Enterprise Storage Group, http://www.enterprisestrategy
group.com/ESGPublications/ReportDetail.asp?ReportID=201,
2009.

[3] M.T. Goodrich, M.J. Atallahand, and R. Tamassia, “Indexing
Information for Data Forensics,” Proc. Conf. Applied Cryptography
and Network Security, pp. 206-221, 2005.

[4] B. Li, M.S. Hsiao, and S. Sheng, “A Novel SAT All-Solutions
Solver for Efficient Preimage Computation,” Proc. IEEE Int’l Conf.
Design, Automation and Test in Europe, vol. 1, Feb. 2004.

[5] M. Malmgren, “An Infrastructure for Database Tamper Detection
and Forensic Analysis,” honors thesis, Univ. of Arizona, http://
www.cs.arizona.edu/projects/tau/tbdb/MelindaMalmgrenThe
sis.pdf, 2009.

[6] J. Mena, Investigative Data Mining for Security and Criminal
Detection. Butterworth Heinemann, 2003.

[7] K.E. Pavlou and R.T. Snodgrass, “Forensic Analysis of Database
Tampering,” Proc. ACM SIGMOD Int’l Conf. Management of Data,
pp. 109-120, June 2006.

[8] K.E. Pavlou and R.T. Snodgrass, “Forensic Analysis of Database
Tampering,” ACM Trans. Database Systems, vol. 33, no. 4, pp. 1-47,
Nov. 2008.

[9] S. Sheng and M.S. Hsiao, “Efficient Preimage Computation Using
a Novel Success-Driven ATPG,” Proc. IEEE Int’l Conf. Design,
Automation and Test in Europe, vol. 1, Mar. 2003.

600 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 22, NO. 4, APRIL 2010

[10] R.T. Snodgrass, S.S. Yao, and C. Collberg, “Tamper Detection in
Audit Logs,” Proc. Int’l Conf. Very Large Databases, pp. 504-515,
Sept. 2004.

[11] C. Strachey, “Bitwise Operations,” Comm. ACM, vol. 4, no. 3,
p. 146, Mar. 1961.

[12] U.S. Dept. of Health & Human Services, The Health Insurance
Portability and Accountability Act (HIPAA), http://www.cms.hhs.
gov/HIPAAGenInfo/, 2009.

[13] The Public Company Accounting Reform and Investor Protection Act,
U.S. Public Law No. 107-204, 116 Stat. 745, 2002.

Kyriacos E. Pavlou received the BA (Hons)
degree in genetics from Cambridge University in
1999, the BS degree in computer science and
mathematics from the University of Arizona in
2005, and the MS degree in computer science
from the University of Arizona in 2007. His
research interests include temporal databases,
record compliance, database forensics, compu-
tational biology, and graph theory. He is cur-
rently pursuing the PhD degree under the

guidance of Dr. Richard Snodgrass.

Richard T. Snodgrass received the BA degree
in physics from Carleton College, and the MS
and PhD degrees in computer science from
Carnegie Mellon University. He joined the
University of Arizona in 1989, where he is a
professor of computer science. He is a fellow of
the ACM. He was an editor-in-chief of the ACM
Transactions on Database Systems, was an
ACM SIGMOD chair from 1997 to 2001, and has
chaired the ACM Publications Board, the ACM

History Committee, and the ACM SIG Governing Board Portal
Committee. He served on the editorial boards of the International
Journal on Very Large Databases and the IEEE Transactions on
Knowledge and Data Engineering. He chaired the Americas program
committee for the 2001 International Conference on Very Large
Databases and the program committee for the 1994 ACM SIGMOD
Conference. He received the 2004 Outstanding Contribution to ACM
Award and the 2002 ACM SIGMOD Contributions Award. He currently is
a member of the ACM History Committee, the Advisory Board of ACM
SIGMOD, and the Outstanding Contribution to ACM Award Committee.
He chaired the TSQL2 Language Design Committee, edited the book,
The TSQL2 Temporal Query Language (Kluwer Academic Press), and
has worked with the ISO SQL3 committee to add temporal support to
that language. He authored Developing Time-Oriented Database
Applications in SQL (Morgan Kaufmann), was a coauthor of Advanced
Database Systems (Morgan Kaufmann), and was a coeditor of
Temporal Databases: Theory, Design, and Implementation (Benjamin/
Cummings). He codirects TimeCenter, an international center for the
support of temporal database applications on traditional and emerging
DBMS technologies. His research interests include the science of
computing, temporal databases, query language design, query optimi-
zation and evaluation, storage structures, and database design. He is a
senior member of the IEEE and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

PAVLOU AND SNODGRASS: THE TILED BITMAP FORENSIC ANALYSIS ALGORITHM 601

