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Abstract

The ability to model time-varying natures is essential to many database applications such as data

warehousing and mining. However, the temporal aspects provide many unique characteristics and chal-

lenges for query processing and optimization. Among the challenges is computing temporal aggregates,

which is complicated by having to compute temporal grouping. In this paper, we introduce a variety of

temporal aggregation algorithms that overcome major drawbacks of previous work. First, for small-scale

aggregations, both the worst-case and average-case processing time have been improved signi�cantly.

Second, for large-scale aggregations, the proposed algorithms can deal with a database that is substan-

tially larger than the size of available memory. Third, the parallel algorithm designed on a shared-nothing

architecture achieves scalable performance by delivering nearly linear scale-up and speed-up. The contri-

butions made in this paper are particularly important because the rate of increase in database size and

response time requirements has out-paced advancements in processor and mass storage technology.
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Name Salary Dept Begin End

Richard 46,000 Accounting 18 31
Karen 45,000 Shipping 8 20
Nathan 35,000 Marketing 7 12
Nathan 38,000 Accounting 18 21

Count Max Begin End

1 35,000 7 8
2 45,000 8 12
1 45,000 12 18
3 46,000 18 20
2 46,000 20 21
1 46,000 21 31

(a) Input Database Tuples (b) Temporal Aggregation Results

Figure 1: Sample Database and Its Temporal Aggregation

1 Introduction

Aggregate functions compute a scalar value, such as the maximum salary, when applied to a set of tuples.
These functions are an essential component of database query languages, and are heavily used in many
applications. Several prominent query benchmarks such as TPC-D [18] and AS3AP [20] contain a high
percentage of aggregate operations. Hence, e�cient execution of aggregate functions is an important goal.

Database applications often need to capture the time-varying nature of an enterprise they model. The
importance of such need has been recognized by several database research groups, and temporal database
models and query languages have been developed and reported in the literature [11, 17]. In fact, there are
several temporal query languages supporting temporal aggregation [14, 15]. However, temporal data and
queries provide many unique characteristics and challenges for query processing and optimization. Among the
challenges is computing temporal aggregates, which is complicated by having to compute temporal grouping.

In temporal databases, temporal grouping is a process where the time-line is partitioned over time and
tuples are grouped over these partitions. Then, aggregate values are computed over these groups. In
general, temporal grouping is done by two types of partitioning [14]: span grouping and instant grouping.
Span grouping is based on a de�ned length in time, such as week or month, and is independent of temporal
attribute values of database tuples. On the other hand, instant grouping depends on the data stored. Any
pair of consecutive instants create a time interval, over which the aggregate value remains constant. Such
intervals are called constant intervals. Aggregations based on span and instant groupings are called span

aggregation and instant aggregation, respectively. In this paper, we focus on computing instant aggregates,
which we believe is the most common and challenging temporal aggregation.

Computing instant aggregates is expensive because it is necessary to know which tuples overlap each
instant, and simply considering each tuple in order in a sorted-by-time relation will not be su�cient due to
the varying interval lengths [12]. For example, computing the time-varying maximum salary of employees
involves computing the temporal extent of each maximum value, which requires determining the tuples that
overlap each temporal instant. Figure 1(a) shows a sample Employees table with two temporal attributes,
which represent the beginning and ending of the valid-times of individual tuples. The resulting instant
aggregation of the maximum salary (along with the number of employees) is given in the table in Figure 1(b).
Note that while multiple values are returned, the aggregate results in a single scalar value at each point in
time, with the period over which the aggregate value remains constant collected into a single tuple. One
could also envision an instant aggregate function, which would evaluate a time-varying maximum salary for
each department.

This temporal aggregation can be processed in a sequential or parallel fashion. The parallel processing
technology becomes even more attractive, as the size of data-intensive applications grows as evidenced in
OLAP and data warehousing environments [4, 6]. Although several sequential and parallel algorithms have
been developed for computing temporal aggregates [10, 12, 15, 19, 21], they su�er from serious limitations
such as the size of aggregation restricted by available memory and requirement of a priori knowledge about
the orderedness of an input database.

In this paper, we propose a variety of temporal aggregation algorithms that overcome major drawbacks
of previous work. The proposed solutions provide the following bene�ts over the state of the art:
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� Two new algorithms proposed for small-scale aggregations do not require a priori knowledge about
an input database, and they have improved both the worst-case and average-case processing time
signi�cantly.

� Another new algorithm proposed for large-scale aggregations relies on a novel data partitioning scheme,
so that it can deal with a database substantially larger than the size of available memory.

� Lastly, a parallel algorithm has been developed for shared-nothing architectures for large-scale aggre-
gations. This solution achieves scalable performance by delivering nearly linear scale-up and speed-up.

It should be noted that the problem of computing temporal aggregates is di�erent from the relational
aggregation that can often be seen in the data warehousing environment. While data items in the data ware-
housing environment are envisioned as points in their data domain, we deal with temporal data associated
with time intervals of arbitrary lengths.

The rest of this paper is organized as follows. Section 2 surveys the background and related work on
computing temporal aggregates. Major Limitations of previous work are also discussed in the section. In
Sections 3, 4 and 5, we present the improved algorithms for small-scale aggregations, and scalable solutions
for large-scale aggregations based on data partitioning and parallel processing techniques. Section 6 presents
the results of experimental evaluation of the proposed sequential and parallel solutions. Finally, Section 7
summarizes the contributions of this paper and gives an outlook to future work.

2 Background and Previous Work

There are two types of aggregate computations in conventional relational database systems: scalar aggregates
and aggregate functions. Scalar aggregates are operations such as count, sum, avg, max, and min that
produce a single value over an entire relation, while aggregate functions �rst partition a relation based on
some attribute value and then compute scalar aggregates independently on the individual partitions.

A scalar aggregate is composed of an aggregate expression and an optional quali�cation. A simple two-step
algorithm was proposed by Epstein for evaluating scalar aggregates [8]. To handle many scalar aggregates
in a query, the algorithm computes each of them separately and stores each result in a singleton relation,
referring to that singleton relation when evaluating the rest of the query. A di�erent approach employing
program transformation methods was proposed to systematically generate e�cient iterative programs for
aggregate queries [9].

The �rst approach for implementing temporal aggregation was proposed by Tuma [19] and was based on
an extension of Epstein's algorithm. In this approach, the constant intervals are determined �rst, then the
aggregate is evaluated using the Epstein's technique. Since the two steps are separate and the �rst one must
be completed before the second one, a database must be read twice.

More recent algorithms were proposed by Kline and Snodgrass [12] for temporal aggregation based on
instant grouping of tuples. The algorithms are called aggregation tree and its variant k-ordered aggregation

tree, as they build a tree while scanning a database. Both algorithms are fast and require minimal I/O
overhead, as they need to scan the database only once to build a tree in memory. Then, the resulting tree
stores enough information to compute temporal aggregates by traversing it using depth �rst search.

The aggregation tree is a binary tree that tracks tuples whose timestamp periods contain an indicated
time span. Each node of the tree contains a start time, an end time and an aggregate value. When an
aggregation tree is initialized, it begins with a single node containing < 0;1; 0 > (see the initial tree in
Figure 2), assuming that 0 and 1 are used as the earliest and latest timestamps. The sample Employees

table in Figure 1(a) has 4 tuples to be inserted into the empty aggregation tree. Inserting the �rst record
adds four new nodes to the initial tree, resulting in the updated aggregation tree shown in Figure 2(b). A
count of one is assigned to the new leaf < 18; 31; 1 >, since it is the only node in the tree representing a valid
interval for the inserted tuple. The aggregation tree after inserting the rest of the records in Figure 1(a) is
shown in Figure 2(d).

To compute the number of tuples (i.e., count aggregate) for the period [8; 12] in this example, The count
from the leaf node [8; 12] (which is 1) is added to its parents' count values. Starting from the root, the sum
of the parents' counts is 0 + 0+ 1 = 1 and adding the leaf count, gives a total of 2. The temporal aggregate
results are given in Table 1(b).
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(a) Initial tree (c) Tree after adding [8,20]

(d) Final tree after adding [7,12] and [18,21]
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Figure 2: A Sample Aggregation Tree for count Aggregation

2.1 Limitations of Previous Methods

It should be noted that the order of tuples inserted into the aggregation tree a�ects its performance, though
not its result. If the tuples are sorted via the start time and inserted in that order, the aggregation tree
would look more like a linked list, causing insertions to be slower than insertions into a balanced binary
tree. For the reason, the worst case time to create an aggregation tree is O(N2) for N tuples sorted in time.
However, more serious limitation of the aggregation tree approach is that the entire tree must be kept in
memory. Since the size of an aggregation tree is proportional to the number of distinct timestamps (both
start times and end times), the size of the database the aggregation tree algorithm can deal with tends to
be limited by the size of available memory and the number of distinct timestamps of tuples.

To circumvent this problem, a variant of the aggregation tree, called k-ordered aggregation tree, was
proposed by the same authors. The k-ordered aggregation tree takes advantage of the k-orderedness of tuples
to enable garbage collection of tree nodes, so that the memory requirements can be reduced signi�cantly.
However, the k-ordered aggregation tree approach assumes that the tuples in a table be ordered within a
certain degree. Speci�cally, each tuple is at most k positions from its position in a totally ordered version
of the table. This requirement is di�cult to be met in a real database system. Without a priori knowledge
about a given table, the k-orderedness is expensive to measure, as it requires an external sort of the table.
The worst case running time of the k-ordered aggregation tree algorithm is still O(N2).

Apparently the aggregation tree, the most e�cient among the aforementioned algorithms, su�ers from
poor scale-up performance, due to the O(N2) worst-case running time and memory requirement. Recently,
there have been some research e�orts to develop parallel algorithms for computing temporal aggregates for
large-scale databases. Ye and Keane proposed two approaches to parallelize the aggregation tree algorithm on
a shared-memory architecture [21]. Gendrano et al. have also developed several new parallel algorithms [10]
for computing temporal aggregates, speci�cally on a shared-nothing architecture, by parallelizing the ag-
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gregation tree algorithm. Gendrano et al. showed promising scale-up performance of the parallel algorithms
through extensive empirical studies under various conditions. Nonetheless, all the aforementioned paral-
lel algorithms inherit the same limitations from the aggregation tree algorithm, as the parallel algorithms
were developed by parallelizing the aggregation tree. In particular, the size of the database those parallel
algorithms can handle will be limited by the aggregate memory of participating processors.

3 Improved Algorithms for Small-Scale Aggregation

In this section, we present two new algorithms for computing temporal aggregates, as alternatives to the
aggregation tree algorithm [12]. The aggregation tree is a binary tree, which is similar to the segment tree
by Bentley [2]. The segment tree is a static structure, which can be balanced for a given set of abscissae.
However, there is no guarantee that the aggregation tree is always balanced, because the aggregation tree
is dynamically constructed as the tuples in a database are being scanned and inserted into the tree. Thus,
the structure of the resulting aggregation tree depends on the order of tuples inserted. This fact may cause
the worst case running time of O(N2) for a database of N tuples, particularly when the tuples are ordered
by their timestamp values. Such a quadratic complexity may be impractically costly for many database
applications.

As will be seen in this section, we have observed that the �ve most common aggregation operators can
be categorized into two groups, namely, count, sum, avg in one group, and max, min in the other. For the
latter group, there is more demand to keep track of attribute values of tuples. This observation has led us to
develop a di�erent algorithm for each of the two groups of aggregation operators. The solution to the �rst
group of operators, which we call a balanced tree algorithm, will be presented in Section 3.1. The main idea
of this algorithm is that the tree can be balanced dynamically as tuples are being inserted, by giving up the
notion of maintaining intervals in the tree nodes. The solution to the second group is called a merge-sort

aggregation algorithm, which is similar to the classical merge-sort algorithm [13]. This algorithm will be
presented in Section 3.2. In this section, we assume that the memory is large enough to store the entire data
structures required by each aggregation algorithm. In the rest of this paper, we use the count and max as
the representatives of the two groups of operators, respectively.

3.1 Balanced Tree Algorithm for count Aggregation

A relatively simple approach based on timestamp sorting can provide an e�cient solution for the count

aggregation. This approach starts with loading the entire tuples in memory. Then, the timestamp values
are extracted from the tuples, and each timestamp is associated with a tag, which indicates whether the
timestamp is a start time or an end time of a tuple. These timestamps and tags are then sorted in an
increasing order of the timestamp values. See Figure 3 for a sorted list of timestamps and tags for a sample
database given in Figure 1(a).

Finally, the count aggregate is computed by scanning the sorted timestamps and tags in an increasing
order. Getting started with a counter initialized to zero, the counter is incremented by one when a START
tag is encountered, and it is decremented by one when an END tag is encountered. When more than one tags
are associated with a timestamp, the counter is incremented by the number of START tags or decremented
by the number of END tags. For example, in Figure 3, when the timestamp value 18 is encountered, the
counter is incremented by two from 1 to 3 because there are two START tags associated with the timestamp.
Apparently, the worst case processing time of this approach is O(N logN), where N is the number of tuples
in an input database.

In real world temporal databases, it may be the case that many tuples share the same timestamp values
for their start times and end times. Nonetheless, this approach requires the same amount of memory and
processing time regardless of the repeated timestamp values. Thus, we propose a balanced tree algorithm to
further optimize its performance for such databases with repeated timestamp values.

The motivation behind the balanced tree algorithm is that the sorted list of timestamps can be built even
without loading an entire database into memory at once. Instead, the timestamps can be sorted incrementally
by inserting them into a balanced tree, as the tuples of an input database are being scanned. Each node of
a balanced tree stores a timestamp, either a start time or an end time, but need not store a START/END
tag. Instead of the tag, each node stores two counters: one storing the number of tuples starting at the
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Figure 3: Example of count Aggregation by Sorting Timestamps and Tags
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Figure 4: Example of Balanced Tree Construction

timestamp and the other storing the number of tuples ending at the timestamp. 1 Additionally, a color tag
is stored in each node, as we use the red-black insertion algorithm [5] to keep the tree balanced dynamically.

Figure 4 shows the process of building a balanced tree for the sample Employees table in Figure 1(a). In
the �gure, we only show timestamps and counters, which are relevant to temporal aggregate computation.
When the start time 18 of the �rst record is inserted into an empty tree, a new node is created for the
timestamp, and then its start-counter and end-counter are set to one and zero, respectively. The resulting
tree having a single node is shown in Figure 4(a). Figures 4(b) and (c) illustrate snapshots of the tree before
and after the tree is balanced by the red-black insertion algorithm. We do not elaborate on the red-black
insertion because it is not the focus of this paper.

The balanced tree algorithm proceeds in two steps, �rst by creating the tree and then by traversing the
tree. Whenever a tuple is read from an input database, the balanced tree is probed to see whether the start
and end times of the tuple are already in the tree. If the start (or end) timestamp is not found in the tree,
then a new node is created and inserted into the tree. Otherwise, the start time (or end time) counter of a
node that contains the timestamp is incremented by one without inserting a new node. Once the balanced
tree has been built, the algorithm computes aggregate values while performing an in-order traversal of the
tree. Speci�cally, whenever a tree node is visited, the count aggregate value is incremented by the start-
counter value of the node and decremented by the end-counter value of the node. The proposed balanced
tree algorithm is summarized in Figure 5.

By eliminating redundant timestamp values from the tree, the balanced tree algorithm reduces the
memory requirements and tree traversal time substantially especially for a database with a small percentage
of unique timestamps. The balanced tree stores information needed for temporal grouping and aggregation
both in internal nodes and leaf nodes. Thus, the balanced tree algorithm uses only half the nodes required
by the aggregation tree algorithm, which stores constant intervals only in leaf nodes.

1For sum aggregation, each node stores two variables: one storing the attribute value sum of the tuples starting at the

timestamp and the other storing the attribute value sum of the tuples ending at the timestamp.
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Algorithm 1 Balanced Tree

set T  an empty balanced tree;
for each tuple t in a table do begin

if (t:start time = n:ts for any node n in T ) then n.no starts++;
else insert a new node n0 (with n0.ts = t.start time) into T ;
endif

if (t:end time = n:ts for any node n in T ) then n.no ends++;
else insert a new node n0 (with n0.ts = t.end time) into T ;
endif

end

set count  0;
for each node n in T traversed by in-order do begin

count += n.no starts;
output n.ts and count;
count -= n.no ends;

end

end Algorithm

Figure 5: Balanced Tree Algorithm for count Aggregation

3.2 Merge-Sort Algorithm for max Aggregation

While the balanced tree algorithm is simple and e�cient for count aggregations, it cannot be use for max
aggregations. Since a balanced tree stores only unique timestamps and associated counters for count ag-
gregation, it is not possible to keep track of all the tuples that are alive at a given time instant with the
information available in the tree. For example, in Figure 4(c), the root node shows that there exist two
tuples whose start times are 18. However, the tree does not convey any information about the life spans of
the tuples (i.e., the exact end times of the two speci�c tuples). Unlike count aggregations, it is impossible
to compute max aggregations without knowing the exact life spans of tuples in a database.

One can modify the balanced tree algorithm to compute max aggregates, by allowing repeated timestamp
values in a tree and using additional data structures such as dual heaps while traversing the tree. The dual
heaps store the attribute values (on which the max aggregation is performed) of live tuples and dead tuples,
separately. While traversing the tree, the max aggregate can be computed by comparing two maximum values
in both the heaps and popping matched maximum values from the heaps. In fact, the dual heaps are used
to keep track of the life spans of tuples that are required to compute the max aggregate. However, with this
modi�cation, we will lose all the bene�ts of using the balanced tree algorithm, because the tree will need
exactly two nodes per each tuple (i.e., no reduction in memory requirements due to repeated timestamps)
and additional overhead for processing the heaps will be non-trivial.

Instead, we propose a bottom-up aggregation approach, which we call a merge-sort aggregation algorithm.
Like the classical merge-sort algorithm based on the divide-and-conquer strategy, the merge-sort aggregation
algorithm computes a larger (intermediate) aggregate result by merging two smaller (intermediate) aggregate
results. The algorithm starts with merging tuples in pairs at the bottom and terminates when a �nal
aggregate result is obtained at the top.

Formally, an intermediate aggregate can be de�ned as (Tk;Mk), where Tk = ft0; t1; : : : ; tkg and Mk =
fm1;m2; : : : ;mkg for an integer k � 1. Tk is a set of k + 1 unique timestamps in an increasing order
(t0 < t1 < : : : < tk). Mk is a set of k attribute values, where mi (1 � i � k) is a maximum attribute value
associated with a time interval [ti�1; ti) if there exist at least one live tuple in [t1�1; ti). Otherwise, mi = nil

for an empty interval. No two consecutive values in Mk are equal (i.e., mi 6= mi+1 for any i (1 � i � k� 1)).
Each tuple t in an input database can be considered as a (T1;M1) with T1 = ft:start time; t:end timeg and
M1 = ft:attribute valueg.

Figure 6 illustrates the process of merging the tuples of the sample Employees table in Figure 1(a). The
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Figure 6: Example of Merging for max Aggregation

sample tuples are described as four line segments in Figure 6(a). In the �rst step, the �rst two tuples in the
Employees table are merged into an intermediate result (f8; 18; 31g; f45000; 46000g); the last two tuples are
merged into an intermediate result (f7; 12; 18; 21g; f35000; nil; 38000g). The result of the �rst step is shown
in Figure 6(b). In the second step, the two intermediate results are merged together into the �nal aggregate
result (f7; 8; 18; 31g; f35000; 45000; 46000g), as shown in Figure 6(c).

As an input database of N tuples is scanned, the merge-sort aggregation algorithm generates dN=2e �rst-
step intermediate aggregates in memory. Then, the algorithm recursively merges the intermediate results
until a �nal aggregate result is obtained. Thus, the worst case processing time of the algorithm is O(N logN).
As is shown in Figure 6, the size of an intermediate result (Tk;Mk) may be smaller than the tuples themselves
covered by (Tk;Mk), because two consecutive intervals can be merged into a single interval if they share the
same aggregate value (i.e., maximum in the example). Thus, the amount of additional memory required
for intermediate results is likely to be smaller than the size of an input database. Nonetheless, for count
aggregations, the balanced tree will remain as the algorithm of choice. This is because the balanced tree
algorithm will keep the memory requirement (i.e., the number of tree nodes) down to the minimum by
building a balanced tree incrementally and by removing repeated timestamps, and thereby minimizing its
processing time.

4 Bucket Algorithm for Large-Scale Aggregation

In addition to the algorithms for small-scale aggregations proposed in the previous section, another major
component of the work proposed in this paper is to develop new techniques for computing temporal aggregates
under the constraint of limited bu�er space. Then, the size of databases we can deal with is not limited by
the size of available memory. Additionally, it is crucial that temporal aggregation require only a constant
number (say, two or three) of database scans, due to potentially huge amount of temporal data. It will be
prohibitively costly for a large-scale database, if the number of required database scans is not limited and
is rather proportional to the size of database. For this reason, we do not consider as an acceptable solution
any method that requires more than a small constant number of database scans.

In this section, we propose a new algorithm based on partitioning database tuples into several buckets,
which has been used for many important database operations such as the relational hash join algorithm. The
idea of the hash join algorithm is to hash two joining relations on the join attribute, using the same hash
function. Then, it is assured that tuples of one relation in a bucket can join only with tuples of the other
relation in the same bucket. Thus once both relations are partitioned, the join operation can be performed
by reading the relations just once, provided that enough memory is available to keep all the tuples of one
relation in a bucket in memory. Assuming uniform distribution of data, it has been shown that the hash
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Figure 7: Time-line partitioning and assignment of tuples into buckets.

join algorithm requires three database scans if the number of bu�er pages is larger than a square root of the
number of disk pages in a smaller relation [7].

Although the idea of data partitioning appears promising for relational hash join operation, it cannot be
applied directly to temporal aggregation. Tuples associated with time intervals are not readily partitioned
into temporally disjoint equivalence classes (e.g., hash buckets), because the time intervals of tuples may be
of any length. Some tuples may overlap with the intervals of more than one buckets, and such tuples must be
checked with tuples in all the overlapping buckets. That is, there is no guarantee that temporal aggregates
can be computed by reading the buckets only a constant number of times.

To circumvent this problem, one can allow assignment of a data object into multiple buckets by replicating
it. This approach can be best described by an example given Figure 7. The time-line of a given temporal
database is partitioned into NB disjoint intervals, where NB is the number of buckets. If a tuple's life span
is contained in the interval of a bucket, the tuple is assigned to the bucket. For example, in Figure 7, tuple
t1 will be assigned to bucket B1 as t1's life span is properly contained in that of bucket B1. On the other
hand, if a tuple's life span overlaps two or more intervals (say, k intervals), the tuple's life span is split into
k pieces and these pieces may be assigned to k buckets. (It turns out that splitting a tuple into several does
not impact the result of the aggregation.) In Figure 7, the life spans of tuples t2, t3 and t4 overlap with 2, 3
and 4 buckets, respectively. Thus, tuple t2 will be assigned to buckets B3 and B4, t3 to buckets B2, B3 and
B4, and t4 to buckets B1, B2, B3 and B4.

This process entails replicating tuples and may lead to considerable duplication of data, especially for long-
lived tuples. To minimize duplication of tuples, we propose to assign each tuple solely to the buckets where the
tuple's start and end timestamps lie. Suppose the life span of a tuple t overlaps buckets Bi; Bi+1; : : : ; Bj(0 �
i < j < NB). Then, the tuple t will be replicated only in the buckets Bi and Bj , but the intermediate buckets
will not store the tuple t. Instead, a meta array is used to aggregate the information that the tuple t's life
span overlaps the intermediate buckets Bi+1; : : : ; Bj�1. The size of a meta array is equal to the number of
buckets. The i-th element of a meta array stores an aggregate value (e.g., count) for the i-th bucket.

For example, in Figure 8, the time interval of tuple t3 spans over three buckets B2, B3 and B4. Thus, t3
is split into two segments (i.e., t3 and t03) with adjusted time intervals so that each segment can be properly
contained in the interval of its corresponding bucket. (Solid lines in Figure 8 represent adjusted time intervals
of split tuples.) Then, t3 and t03 are assigned to two buckets B2 and B4, respectively; the third element of
the meta array is incremented by one. In a similar way, t4 and t04 are assigned to two buckets B1 and B4

respectively, and the second and third elements of the meta array are incremented by one. The resulting
data partitioning and meta array are illustrated in Figure 8. Note that neither the �rst nor the last element
of the meta array stores a valid aggregate value, as no tuple can have a life span longer than the time-line
of an entire database.

Once all the tuples are scanned and partitioned into buckets and a meta array is created, the temporal
aggregate operation can be performed on each bucket independently. Figure 9(a) shows the partial results
of the aggregation performed on each bucket. Then, each aggregate value stored in the meta array is com-
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Figure 8: Meta Array and Reduced Data Replication
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Figure 9: Steps of the aggregation based on data partitioning and meta array

bined with the aggregation results from each corresponding bucket (e.g., simply by adding counts for count
aggregation). Lastly, the �nal aggregation results can be obtained by merging each pair of adjacent buckets
at their boundaries if the two adjacent aggregate values are equal. Figure 9(b) shows the �nal aggregation
results. The dotted vertical bars in the �gure represent the merged bucket boundaries. Figure 10 outlines
the proposed temporal aggregation algorithm based on data partitioning.. In the algorithm description, it
is assumed that the entire time-line of a table is partitioned into NB disjoint intervals of an equal length,
each of which is associated with a bucket. Note that any small-scale aggregation algorithm proposed in the
previous section can be used to aggregate each individual bucket.

Provided that the meta array is small enough to �t in memory and su�cient memory is available to
hold all the tuples in a bucket, the temporal aggregate operation can be performed by reading each bucket
just once. Thus, in total, this approach requires three database accesses (i.e., two reads and one write)
to compute temporal aggregates. Considering the data replication for the tuples overlapped with multiple
buckets, the database access requirement of this approach is likely to increase to some extent depending on
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Algorithm 2 Temporal Bucketization

set IB  time interval for each bucket ((Tmax � Tmin)=NB);
for each tuple t in a table do begin

set start bucket  (t:start time� Tmin)=IB ;
set end bucket  (t:end time� Tmin)=IB ;
insert t into a bucket Bstart bucket;
if (start bucket 6= end bucket) insert t0 into a bucket Bend bucket;
for (i=start bucket+1 to end bucket-1) do update meta array[i];

end

for (i=0 to NB � 1) do begin
perform temporal aggregation on the bucket Bi;
combine the scalar value of meta array[i] to the bucket Bi;
merge the bucket boundary with Bi�1 as needed;

end

end Algorithm

Figure 10: Bucket Algorithm based on Temporal Data Partitioning

various factors such as the life spans of tuples and the number of buckets used. Even in the worst case,
however, the size of a given table can increase only up to twice its original size by replicating each tuple
in the table into two buckets. Thus, the database access requirement of this approach is still bounded to a
small constant number of scans. We will show the performance impact of data replication in Section 6.

5 Parallel Bucket Algorithm

Parallel processing for database applications typically involves partitioning of data, followed by allocation
of the partitions to a set of processors. Then, the processors perform operations on the partitioned data
in parallel, achieving speed-up in query processing times. Among the various architectures that have been
proposed for parallel database systems, a shared-nothing architecture [16] has made it an attractive choice
for large-scale database applications due to its high potential for scalability. By scalability we mean the
capability of delivering an increase in performance proportional to an increase in the number of participating
processors.

In a shared-nothing architecture, each processor owns local memory and secondary storage units, and
communicates each other by message passing. Initial data placement can be either centralized or distributed
across multiple processors. For most of the parallel database operations, however, some of the data may have
to be redistributed amongst processors that actually participate in the operations. We assume that resulting
aggregates remain in local storage units of the participating processors without collecting the results on a
special coordinator processor. Then, the resulting aggregates can be used as intermediate data for the next
phase of parallel query processing.

As was pointed out in Section 2, most of the previous attempts to develop scalable methods for computing
large-scale temporal aggregates were based on parallelizing the aggregation tree algorithm. For the reason,
those approaches inherit all the limitations the aggregation tree algorithm has. Speci�cally, these approaches
will su�er from O(N2) worst-case running time and tight limitations on a database size they can deal with.

In this section, we propose a new parallel temporal aggregation algorithm based on the bucket algorithm
(Algorithm 2) presented in the previous section. It is relatively straightforward to parallelize the bucket
algorithm by distributing buckets across participating processors. The time-line of a given temporal database
is partitioned into P disjoint intervals, where P is the number of processors. Then, on each processor, the
time-line of the processor is again partitioned into NB disjoint intervals. However, distributing the buckets
is not enough to compute correct aggregate results, because the construction of meta arrays must also be
processed in parallel in an e�cient way.

10
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Figure 11: Data distribution and meta arrays for P0's local data

We propose to use a local meta array and a global meta array on each processor for tuples whose life spans
overlap time-lines of multiple local buckets and multiple processors, respectively. Speci�cally, if the life span
of a tuple t overlaps the k-th bucket (BPik) of processor Pi through the l-th bucket (BPj l) of processor Pj ,
the tuple t will be replicated only in BPik and BPj l. Then, a local meta array of Pi is used to aggregate the
information that the tuple t's life span overlaps the intermediate buckets BPik+1; : : : ; BPiNB

, and so is a
local meta array of Pj for BPi1; : : : ; BPil�1. Finally, a global meta array is updated on a processor that owns
the tuple t to inform the intermediate processors Pi+1; : : : ; Pj�1 of the existence of the tuple t overlapped
with their time-lines. The size of a global meta array is equal to the number of processors. The i-th element
of a global meta array stores an aggregate value (e.g., count) for the i-th processor. Local meta arrays are
identical with the ones used for the sequential bucket algorithm. Each processor computes its own global
and local meta arrays independently.

In Figure 11, for example, suppose that tuples t1; : : : ; t4 are initially stored on a processor P0, and four
processors P0; : : : ; P3 participate in a count aggregation. Since the time interval of t3 spans over three remote
processors P1, P2 and P3, t3 is split into two segments t3 and t

0

3, which are then sent to the processors P1 and
P3, respectively. Then, the third element of the global meta array of P0 is incremented by one. In a similar
way, t4 is assigned to P0's local bucket B03 and t04 is sent to processor P3; the second and third elements of
P0's global meta array are incremented by one. Figure 11 shows the resulting data distribution across P0's
local buckets, data shipping to other processors, and P0's local and global meta arrays. Note that there may
be some tuples sent from other processors to P0, but they are not shown in Figure 11.

The proposed parallel aggregation algorithm is summarized in Figure 12. In the algorithm description,
it is assumed that the entire time-line of a table is partitioned into NB � P disjoint intervals of an equal
length, each of which is associated with a bucket, and the buckets are distributed across P processors by
range partitioning so that each processor is assignedNB consecutive buckets. This range partitioning scheme
obviously minimizes the size of a global meta array in a way that only one array element is required per each
processor. Since each processor computes a global meta array independently only for its local data, all the P
processors need to communicate each other to compute a �nal global meta array for an entire database with
respect to a given operator op. The operator op is determined by a kind of aggregate operation. For example,
op will be an addition operator for a count aggregation and a maximum operator for a max aggregation.
Such collective communication for computing a �nal global meta array can be implemented e�ciently on
most parallel computers and networks of workstations [1]. Thus the overhead for combining global meta
arrays is expected to be negligible because the volume of communication is only P words per processor.
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Algorithm 3 Parallel Temporal Bucketization

set P  number of participating processors;
set IB  time interval for each bucket ((Tmax � Tmin)=(NB �P));
set this proc  a local processor id (0 � this proc < P);
for each tuple t in a local partition or from a remote processor do begin

set start proc  (t:start time� Tmin)=(IB �P);
set end proc  (t:end time� Tmin)=(IB �P);
if (start proc 6= this proc) then send t to a processor Pstart proc;
if (end proc 6= this proc) then send t0 to a processor Pend proc;
for (i=start proc+1 to end proc-1) do update global meta array[i];
insert t into one or two local buckets as in Algorithm 2;
update local meta array as in Algorithm 2;

end

Globally combine the global meta array wrt. an aggregate operator op;
for (i=0 to NB � 1) do begin

local meta array[i] op(local meta array[i]; global meta array[this proc]);
perform temporal aggregation on the bucket Bi with local meta array[i] as in Algorithm 2;

end

end Algorithm

Figure 12: Parallel Bucket Algorithm based on Temporal Data Partitioning

6 Empirical Evaluation

In this section, we evaluate the proposed algorithms empirically and compare with the previous work. We
chose a count temporal aggregation and carried out experiments under various operational conditions that
may a�ect the performance of the algorithms. In particular, we focus on the performance gain by the
proposed algorithms for small-scale aggregations, and the scalability of the sequential and parallel bucket
algorithms.

6.1 Experimental Settings

Testing and benchmarks were performed on a cluster of 64 Intel Pentium workstations with 200 MHz clock
rate. 2 Each workstation has 128 MBytes of memory and 2 or 4 GBytes of disk storage with Ultra-wide
SCSI interface, and runs on Linux kernel version 2.0.30. The workstations are connected by a 100 Mbps
switched Ethernet network. The switch can handle an aggregate bandwidth of 2.4 Gbps in an all-to-all type
communication. For message passing between the Pentium workstations, we used the LAM implementation
of the MPI communication standard [3]. With the LAM message passing package on the Pentium cluster,
we observed an average communication latency of 790 microseconds and an average transfer rate of about
5 Mbytes/second. Note that this is relatively high latency and low transfer rate compared with parallel
computers equipped with high performance switches such as IBM SP-2 parallel systems. 3

For both sequential and parallel implementations, the same bu�er size of 4 Kbytes was used for disk
IO and message passing. Non-blocking message passing primitives were used in an attempt to minimize
communication overhead by allowing inter-processor communication to be overlapped with local computa-
tion and disk IO. Throughout the experiments, we measured elapsed times including disk access time and
communication overhead. For accurate measurement, we averaged elapsed times from multiple runs after
eliminating extreme cases. Additionally, we avoided the system cache e�ects for disk accesses by loading

2For scalable performance evaluation, we were able to carry out experiments on only up to 32 workstations because several

of them were under repair at the time of our experimental study.
3On a SP-2 system with a proprietary MPI implementation mpif, we observed an average communication latency of 55

microseconds and an average transfer rate of about 35 Mbytes/second.
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irrelevant data into the entire memory between consecutive runs of our experiments.
We generated synthetic data in the same way as in [12]. Each database has a time-line of one million

temporal instants. We considered two basic life spans for tuples: short-lived and long-lived. The life span
of a short-lived tuple was determined randomly between one and 1,000 instants; the life span of a long-lived
tuple was determined randomly between 200,000 and 800,000 instants, namely, between 20 and 80 percent
of the time-line of a database. In most of our experiments, the population of long-lived tuples was �xed
at 10 percent or 30 percent. The start times of tuples were uniformly distributed over the time-line of a
database. Each tuple was 20 bytes including two temporal attributes (start time and end time) and other
non-temporal attributes as well. Synthetically generated databases used in our experiments were not sorted
by any temporal attribute unless stated otherwise.

6.2 Small-Scale Aggregation

The �rst set of experiments were carried out on relatively small databases between 1 MBytes and 20 MBytes
so that all the required data structures can �t in available memory. Recall that the algorithms proposed in
Section 3 as well as the aggregation tree algorithm and its variation require that the entire data structures
be kept in memory. In this section, we used the balanced tree algorithm for count aggregations, and the
merge-sort aggregation algorithm for max aggregations.

Figure 13(a) compares the balanced tree and aggregation tree algorithms for count aggregations; Fig-
ure 13(b) compares the merge-sort and aggregation tree algorithms for max aggregations. The proposed
balanced tree and merge-sort aggregation algorithms consistently performed about twice faster than the
aggregation tree algorithm for count and max aggregations, respectively. While the aggregation tree took
more time to aggregate a database with higher percentage of long-lived tuples, the processing times of the
two proposed algorithms remained constant for di�erent percentage of long-lived tuples. Note that the per-
formance of the aggregation tree algorithm remains unchanged for count and max aggregations, since the
algorithm works essentially in the same way for both the aggregations.

In Figure 13(c) and (d), the tuples in input databases were sorted by their start time, where we expected
the worst-case performance from the aggregation tree algorithm. The processing times of the aggregation
tree were several orders of magnitude slower than the two proposed algorithms, and were plotted as almost
vertical lines in the �gures. Thus, we compared with the k-ordered aggregation tree algorithm (with k = 1)
instead. The proposed algorithm still performed two to three times faster than the k-ordered aggregation
tree algorithm.

In summary, the proposed algorithms outperformed the aggregation tree and k-ordered aggregation tree
consistently by a signi�cant margin. The k-ordered aggregation tree requires a priori knowledge about
the orderedness of databases, whereas the proposed algorithms do not. (Such knowledge will help reduce
the processing time of the merge-sort algorithm, but it is not required.) The performance of the proposed
algorithms was not a�ected by the percentage of long-lived tuples, as Figure 13(e) and (f) show the processing
times measured on databases (20 MB) with a varying percentage of long-lived tuples.

6.3 Bucket Algorithm for Large-Scale Aggregation

Despite the fact that the balanced tree and merge-sort aggregation algorithms were designed for two dif-
ferent groups of aggregate operations, both algorithms showed almost identical performance behaviors in
the previous experiments. Thus, for the rest of this section, we present experimental results only for count
aggregations.

The second set of experiments were carried out to evaluate the bucket algorithm proposed in Section 4.
First, we performed aggregations with and without data partitioning for small databases, so that we could
measure the overhead of data partitioning. The balanced tree algorithm was used to compute count ag-
gregates. In Figure 14(a), we used 64 buckets irrespective of database sizes, which was large enough to
demonstrate the overhead of data partitioning. Compared with the balanced tree algorithm without data
partitioning, we observed about 10 to 30 percent increase in processing time of the bucket algorithm. Despite
the additional overhead, however, the bucket algorithm still outperformed the aggregation tree algorithm
signi�cantly. (Compare Figure 13(a) and Figure 14(a).)
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Figure 13: Aggregation time for small-scale databases

For small databases, the amount of overhead of data partitioning was expected to be smaller than what it
should be for large databases, because all the buckets might remain in memory even after they were written
to disk. So, for the next step of aggregating individual buckets, the cached buckets would be used instead of
the disk copies. Also note that performance of the bucket algorithm is a�ected by the percentage of long-lived
tuples. The reason appears quite obvious because long-lived tuples are more likely to be replicated than
short-lived tuples, leading to increased computation time and disk access time.

From the experiments, we have noticed that performance of the bucket algorithm is a�ected by the
number of buckets used for data partitioning. More interestingly, there seemed to exist local optimum
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Figure 14: Aggregation time for large-scale databases

values, which were determined by database sizes. For example, in Figure 14(b), three, eight and �fteen were
the optimal bucket numbers for a database of 100 MBytes, 200 MBytes and 400 MBytes with 10 percent of
long-lived tuples, respectively. Our conjecture is that this is caused by two opposite performance e�ects from
data partitioning. First, since the computational complexity of the balanced tree algorithm is higher than
linear (O(N logN)), the overall computational complexity will be reduced by data partitioning. Speci�cally,
the cost of a balanced tree construction is reduced from O(N logN) down to O(N logN �N logNB), where
N is the number of tuples and NB is the number of buckets. Second, the more buckets are used for data
partitioning, the more tuples are likely to be replicated, which will in turn increase the cost of disk accesses.
We acknowledge that this issue should be addressed more carefully.

Figure 14(c) shows processing times of the bucket algorithm for databases of size from 20 MBytes up to
1 GBytes. The number of buckets used for data partitioning was 2, 8, 16, 24, 32 and 40 for 20 MBytes, 200
MBytes, 400 MBytes, 600 MBytes, 800 MBytes and 1 GBytes databases, respectively. Since each of these
databases is too large to �t in memory (with an exception of a 20 MByte database), none of the small-scale
aggregation algorithms could be used for this experiment. The results shown in Figure 14(c) demonstrate
that the proposed bucket algorithm can compute temporal aggregates for databases substantially larger than
the size of available memory. However, it should be noted that the processing time of the algorithm grows
faster than linearly as the size of a database increases. This clearly motivates the need of scalable solutions
such as the parallel bucket algorithm we proposed in Section 5.
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Figure 15: Scale-up performance of parallel aggregation
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Figure 16: Speed-up performance of parallel aggregation

6.4 Parallel Algorithm for Large-Scale Aggregation

The third set of experiments were designed to evaluate the scalability of the parallel bucket algorithm
proposed in Section 5. For all the experiments presented in this section, input databases were distributed
across participating processors by round-robin partitioning on a non-temporal attribute. By choosing such
a non-temporal partitioning scheme for initial data placement, we can e�ectively eliminate any potential
advantage that the parallel bucket algorithm can exploit for better performance. On the other hand, range
partitioning on a temporal attribute would be the most favorable data placement for the parallel bucket
algorithm, because the number of tuples to be shipped to remote processors could be minimized and thereby
reducing communication overhead.

For the scale-up performance measurements, we �xed the size of a database partition on each processor
to 10 million tuples (i.e., 200 MBytes), in a way that the entire database would grow proportionally as the
number of processors increased. While the number of processors was varied from 1 to 32, the number of local
buckets was �xed at 8. Thus, the total number of buckets used for data redistribution was 8� P , where P
was the number of participating processors. The number of local buckets was determined from the previous
experiments (see Figure 14(b)) based on the local partition size. Note that we used the sequential bucket
algorithm for the case P = 1.
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In Figure 15(a), the scale-up plots were fairly close to a horizontal line, which indicated a nearly linear
scale-up performance with respect to the increasing number of processors. This was corroborated by fact
that the time spent on data partitioning remained quite static when the number of processors was no less
than eight. See Figure 15(b) for measurements (from the case of 10% long-lived tuples) separated into two
processing stages. As the number of processors was increased from one to two, data partitioning time was
increased by about 80 percent, due mainly to additional cost for message passing between processors. In
contrast, the time spent on aggregation was increased only by 12 percent due to increased data replication.
As the number of processors increased, however, the increase of overhead leveled o� and became essentially
at above the four processor case, and thereby allowing nearly linear scale-up performance.

For the speed-up performance measurements, we �xed the size of an entire database to 320 million tuples
(i.e., 6.4 GBytes), and determined the size of a database partition based on the number of participating
processors. That is, the size of a local partition on a single processor was 6.4 GBytes=P. Due to a limited disk
space on each processor, we started experiments from 8 processors and increased the number of processors
up to 32, changing the size of local database partitions accordingly from 800 MBytes to 200 MBytes. The
resulting speed-up performance of the parallel bucket algorithm was shown in Figure 16(a).

As a matter of fact, it was surprising that a super-linear speed-up was observed whenever the number
of processors increased. From the separate measurements in Figure 16(b) (from the case of 10% long-lived
tuples), such a super-linear speed-up was largely attributed to the performance gain from local aggregation,
which grew much faster than linearly as the number of processors increased Note that the number of buckets
used for data redistribution increases proportionally to the number of processors. Thus, we conjecture that
the overall aggregation cost is reduced by computing many smaller aggregations rather than computing a
few larger aggregations.

7 Conclusions and Future Work

We have developed new algorithms for computing temporal aggregates. The proposed algorithms provide
signi�cant bene�ts over the current state of the art in di�erent ways. The balanced tree and merge-sort
aggregation algorithms have improved the worst-case and average-case processing time signi�cantly for small
databases that �t in memory. We have also developed new sequential and parallel bucket algorithms based
on novel data partitioning schemes. These algorithms can be used to compute temporal aggregates for
databases that are substantially larger than the size of available memory, by processing data partitions in a
sequential or parallel fashion. In particular, with the local and global meta arrays for partitioned data, we
have demonstrated that the parallel bucket algorithm achieves scalable performance for large-scale databases
by delivering nearly linear scale-up and speed-up.

From our experiments, we have observed that there are a few factors that a�ect the performance. They
include the percentage of long-lived tuples and the number of buckets used for data partitioning. Although
the proposed algorithms outperformed previous approaches consistently irrespective of such conditions, we
believe it is worth elaborating further on the issues. In this paper, we assumed that tuples were uniformly
distributed within a time-line of a database. The performance of the proposed solutions may degenerate
if there exist skews in data distribution. We will investigate the use of adaptive data partitioning or data
sampling techniques to handle such data skews. Additionally, we plan to study performance impacts of
such factors as initial data placement (e.g., temporal partitioning vs. non-temporal partitioning) and data
reduction by aggregation.

We also plan to extend the data partitioning approach to spatio-temporal databases, which requires com-
puting aggregates for data objects with two or more dimensional extents. Unlike the temporal aggregation,
we expect that the process of data partitioning and generating meta arrays will be more sophisticated.
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