
Alias Analysis of Executable Code �

Saumya Debray Robert Muth Matthew Weippert
Department of Computer Science

University of Arizona
Tucson, AZ 85721, U.S.A.

fdebray, muth, weippertg@cs.arizona.edu

Technical Report 97-13

July 1997

Abstract

Recent years have seen increasing interest in systems that reason about and manipulate executable code. Such
systems can generally benefit from information about aliasing. Unfortunately, most existing alias analyses are formu-
lated in terms of high-level language features, and are unable to cope with features, such as pointer arithmetic, that
pervade executable programs. This paper describes a simple algorithm that can be used to obtain aliasing information
for executable code. In order to be practical, the algorithm is careful to keep its memory requirements low, sacrificing
precision where necessary to achieve this goal. Experimental results indicate that it is nevertheless able to provide a
reasonable amount of information about memory references across a variety of benchmark programs.

�This work was supported in part by the National Science Foundation under grant CCR-9502826

1 Introduction

Recent years have seen increasing interest in reasoning about and manipulating executable files [5, 14, 19, 24, 26, 29,
30, 32]. When working with an executable file, we typically have information about the entire program—including,
potentially, library functions—that is usually not available at compile time. Because of this, code manipulation and
optimization at this level offers benefits that are difficult or impossible to obtain using traditional compilers. As with
the compilation of source-level programs, code transformations on executable code can benefit greatly from pointer
alias information. For example, to obtain the full benefits of a superscalar architecture such as the DEC Alpha, link-
time optimizers such as Spike [5], alto [9], and OM [29] need to carry out instruction scheduling again after link-time
optimizations. Without pointer alias information, however, the scheduler must be conservative in its treatment of all
loads and stores, and this severely limits the amount of code reordering that is possible. As another example, it may be
possible to scavenge registers at link-time, e.g., by examining the register usage of library functions, but the ability to
use such scavenged registers effectively is likely to be limited in the absence of pointer alias information.

There is an extensive body of work on pointer alias analysis of various kinds (see Section 5). In almost all cases,
these are high level analyses, carried out on representations of source programs in terms of source language constructs,
and typically disregarding “nasty” features such as type casts, pointer arithmetic, and out-of-bounds array accesses.
Such analyses turn out, unfortunately, to be of limited utility at the machine code level, because at this level all we
have are the “nasty” features. The contents of registers and memory words are untyped bit-strings, so the issue of type
casts is in some sense moot: everything is potentially an address. Memory accesses typically involve some address
arithmetic to compute a base address into a register, followed by the use of a displacement off the base address to carry
out the actual memory reference. Address arithmetic may also arise due to particular language features, e.g., the use
of “tag bits” in dynamically typed languages to indicate the type of the value pointed at. Dereferencing operations in
the executable code for such programs will involve nontrivial arithmetic involving the tag bits that is invisible—and
irrelevant—at the source level (at the level of executable programs, we can’t tell what source language a particular
piece of code was derived from, and different components of a program might have been written in different source
languages, so we must be able to deal with all such address arithmetic in a reasonable way). If the number of arguments
to a function is large enough, some of the arguments may have to be passed on the stack. In such a case, the arguments
passed on the stack will typically reside at the top of the caller’s stack frame, and the callee will “reach into” the caller’s
frame to access them: this is nothing but an out-of-bounds array reference. Finally, executable programs may include
library functions, in hand-written assembly code, that violate familiar and comfortable source-level assumptions, e.g.,
that execution does not jump out of the middle of one function and into the middle of another (this happens, for example,
in some Fortran library routines). To illustrate some of the problems that arise, consider the fragment of C code shown
in Figure 1, together with the corresponding assembly code.1 The point to note is the extensive use of address arithmetic
to access memory, even in this very simple program fragment. For example, in order to determine whether instructions
(3) and (4) might write to the same memory location, we need to be able to reason about the contents of registers r16
and r17, which are defined primarily through arithmetic operations. As this example illustrates, pointer arithmetic
cannot be ignored during alias analysis at the machine code level.

In this paper, we describe a low-level, flow-sensitive, context-insensitiveinterprocedural pointer alias analysis algo-
rithm, designed and implemented in the context of thealto link time optimizer [9], that can handle significant pointer
arithmetic and features, such as out-of-bound references, that are ignored by most existing alias analysis algorithms.

For simplicity in the discussion that follows, we assume a more or less canonical RISC instruction set. Memory
is accessed only through explicit load and store instructions, which have the form load rega, k(regb) and store
rega, k(regb), where k is a constant, and have the effect of reading from, or writing to, the location whose address
is k+contents of (regb). To model arithmetic we assume the instructionsadd src1, src2, dest and mult src1,

1The assembly code shown corresponds to that obtained using gcc -O on a DEC Alpha workstation, with some edits to enhance readability.
On the Alpha, arguments to functions are typically passed in registers 16 ...21, and register 30 is used as the stack pointer.

1

Source Code Executable Code
int g(int *x, int *y) # arg1 in r16, arg2 in r17
f add r30, -32, r30 # allocate stack frame (1)

store r26, 0(r30) # save return address (2)
*x = 1; store 1, 0(r16) (3)
*y = 0; store 0, 0(r17) (4)
...

g

int f(int x, int y) # arg1 in r16, arg2 in r17

f add r30, -48, r30 # allocate stack frame (6)
store r26, 0(r30) # save return address (7)
store r16, 20(r30) # save r16 in x’s stack slot (8)
store r17, 16(r30) # save r17 in y’s stack slot (9)

... ...

g(&y, &x); add r30, 16, r16 # r16 := &y (10)
add r30, 20, r17 # r17 := &x (11)
bsr r26, g # r26 := return addr; goto g (12)

... ...

g

Figure 1: A fragment of a C program and the corresponding assembly code

src2, dest , where dest is a destination register and src1 and src2 are source registers; to simplify the discussion we
abuse notation and allow either src1 or src2 to be an integer constant, denoting an immediate operand. These instruc-
tions compute, respectively, the sum and product of src1 and src2 into dest (many other operations can be expressed in
terms of these, e.g., subtraction and register-to-register moves can be modelled in terms of addition: we do not consider
these separately). In addition to these we assume the usual complement of tests, conditional jumps, and direct and indi-
rect unconditional jumps: the only effect of these instructions is to determine the control flow graph of the program, so
we do not consider them explicitly in the context of alias analysis. We also ignore operations on floating point registers,
since it seems unlikely that such operations would be used for address computations.

2 Local Alias Analysis

For reasoning about memory references within a basic block, we can use a technique called instruction inspection,
commonly used in compile-time instruction schedulers, where two memory references are taken to be non-conflicting
if either (i) they use distinct offsets from the same base register; or (ii) one uses a register known to point to the stack
and the other uses a register known to point to the global data area. This can be generalized to determine whether two
address expressions e1 and e2 within the same block might refer to the same location, based on the following simple
observation:

Proposition 2.1 Suppose that a basic block B contains sequences of operations (equivalent to): ,,

I1 : add r1, c1, r2; I2 : add r2, c2, r3; ..., Ik : add rk, ck, r and

I01 : add r01, c01, r02; I 02 : add r2, c02, r03; ..., I 0m : add r0m, c0m, r0

where k;m � 0, such that (i) Ij uses the definition of rj in Ij�1, and I 0j uses the definition of r0j in I 0j�1; (ii) either

both I0 and I 00 use the same definition of r0 in the blockB, or neither use any definition of r0 inB; and (iii)
Pk

i=0 ci 6=Pk

i=0 c
0

i. Then, the value of register r immediately after instruction Ik is different from that of register r0 immediately

2

after instruction I 0k.

Unfortunately, this simple approach does not work if information about address arithmetic needs to be propagated
across basic block boundaries. In the next section we describe a global analysis that can be used to handle this.

3 Global Alias Analysis: Mod-k Residues

3.1 The Basic Idea

An alias analysis will in general associate each register with a set of possible addresses at each program point, so we
need to abstract sets of addresses to descriptions, or “abstract address sets.” These need to be easy to compute and
compactly representable, with operations such as union, intersection, checking containment, etc., that are cheap enough
to be practical for the analysis of large programs. A simple way to satisfy these criteria is to consider only some fixed
number—say,m—of the low order bits of an address. That is, addresses are represented by their mod-k residues, where
k = 2m. The set of all mod-k residues is Zk = f0; : : : ; k � 1g. An abstract address set can then be represented
as a bit vector of length k; since m—and, therefore, k = 2m—is fixed, set operations such as union, intersection,
checking containment, etc., can be carried out inO(1) bit-vector operations. This representation can cope with address
arithmetic, e.g., as illustrated in Figure 1, since such arithmetic translates in a straightforward way to mod-k arithmetic
(see, for example, [16]). Finally, since x mod k 6= (x� �) mod k for 0 < � < 2m, the representation can distinguish
between addresses involving distinct “small” displacements (i.e., less than 2m) from a base register.

It turns out that mod-k residues are not, by themselves, adequate for our purposes. The problem is that in many cases
we won’t be able to predict the actual value of a register r (e.g., the stack pointer) at a program point, which means
we won’t be able to say anything about a displacement k from r, i.e., the address corresponding to k(r), either. To
deal with this problem we extend abstract address sets to address descriptors, which take an additional component that
refers to an instruction:

Definition 3.1 An address descriptor is a pair hI;M i, where I is either an instructionor one of the distinguishedvalues
fNONE, ANYg, and M is a set of mod-k residues. Given an address descriptor A � hI;M i, the instruction I is said to
be the defining instruction of A, while M is called the residue set of A.

The intuition is that given an address descriptor hI;M i, M denotes a set of mod-k residues relative to whatever value
is computed by instruction I. A value of NONE indicates that the corresponding residue set represents mod-k residues
of absolute addresses, while a value of ANY indicates that the address descriptor denotes all possible addresses. More
formally, suppose that we are given an operational semantics for the instruction set under consideration (such a seman-
tics is conceptually simple, if somewhat tedious, to specify for the simple instruction set considered here: we omit a
formal specification due to space constraints, and rely instead on the informal description of the instructions given at
the end of Section 1). Given a program P and an instruction I in P , let valP (I) denote the set of values w such that,
for some input to P , there is an execution path from the entry point of P to the instruction I that causes I to compute
w into its destination register (valP (I) = ; if I does not compute a value into a register, or if control never reaches I).
Extend this to the special values NONE and ANY as follows: for any program P , valP (NONE) = f0g, and valP (ANY)

is the set of all values. Then, for an analysis using mod-k residues, the set of addresses denoted by an address descriptor
A � hI;Xi in P—that is, the “concretization” of A in the context of P—is:

concP (hI;Xi) = fw + ik + x j w 2 valP (I); x 2 X; i 2 Z+g.

The relative precision of different address descriptors can be characterized via the binary relation�:

3

Definition 3.2 An address descriptor hI2; X2i is more precise than a descriptor hI1; X1i, written hI1; X1i � hI2; X2i,
if and only if (i) I1 = ANY or X1 = Zk; or (ii) X2 = ;; or (iii) I1 = I2 and X2 � X1.

It is straightforward to show that � is reflexive and transitive, i.e., a preorder. It can be extended to a partial order in
the usual way: define the relation ' as A1 ' A2 if and only if A1 � A2 and A2 � A1—it is easy to show that this
is an equivalence relation—and consider the quotient of � with respect to '. The set of address descriptors forms a
lattice with respect to this partial order. In the remainder of this discussion, we abuse notation and write� to refer to
the resulting partial order. In particular, the equivalence class containing hI;Zki for all I, as well as hANY;M i for all
M , denotes a total lack of information, and is written as ?; the equivalence class containing hI; ;i for all I, denotes
the empty set of addresses and is written as >. Our analysis associates an address descriptor with each register at each
program point of interest.2 If a register r has an associated address descriptor hI;M i at a program point, we will
sometimes abuse terminology and refer to instruction I as the defining instruction for r at that point.

Example 3.1 Suppose that we use mod-32 residues, and consider the following pair of instructions from Figure 1:

store 1, 0(r16) (3)
store 0, 0(r17) (4)

Assuming that the only call site for g() is that in f(), we can use instruction (6) as a defining instruction for r30,
and thence for r16 and r17—how this is done follows from the way individual instructions are handled, as discussed
in Section 3.2.1—the address descriptors corresponding to the address expressions occurring in instructions (3) and (4)
are as follows:

Instruction Address Expression Address Descriptor
(3) 0(r16) h(6); f16gi (from instruction (10))
(4) 0(r17) h(6); f20gi (from instruction (11))

Using these address descriptors, we can reason as discussed in Section 3.3 and conclude that instructions (3) and (4)
write to distinct memory locations. 2

3.2 The Analysis Algorithm

3.2.1 Effects of Individual Instructions

As mentioned earlier, the defining instruction component of an address descriptor allows us to refer to mod-k residues
relative to “whatever value is computed by the defining instruction.” When examining an instruction I with destination
register r, if we can’t say anything about the value of r after instruction I, then instead of setting the address descriptor
for r to ?, we use I as the defining instruction for r and associate the address descriptor hI; f0gi with r at the point
immediately after I. To simplify the discussion, we assume that an immediate operand c yields an address descriptor
hNONE; fcmod kgi in an analysis based on mod-k residues. Individual instructions are analyzed as follows:

load r, addr : Our analysis currently doesn’t keep track of the contents of memory locations, except for read-
only sections of the text and data segments.3 Thus, if addr corresponds to a read-only memory location with

2Strictly speaking, the analysis should map each register at each program point to a set of address descriptors. For pragmatic reasons—see Sec-
tion 3.2.2 for details—we use a widening operation [7] to ensure that at each program point, each register is mapped to a singleton set of address
descriptors. For simplicity, we do not distinguish between such a set and the single address descriptor it contains.

3Our implementation uses the contents of these read-only sections to obtain global addresses: these include global variables as well as addresses
of jump tables and functions called indirectly through function pointers.

4

contents val, then the address descriptor for r is hNONE; fval mod kgi. Otherwise, we can say nothing about the
contents of r after the load instruction, so the resulting address descriptor is hI; f0gi.

store r, addr : Since a store operation does not affect the contents of any register, this instruction does not have
any effect on any address descriptors.

add srca, srcb, dest : Let the address descriptors for srca and srcb immediately before instruction I be Aa =

hIa; Xai and Ab = hIb; Xbi respectively. There are two possibilities:

– If Aa 6' ?, Ab 6' ?, and Ia = NONE (the situation where Ib = NONE is symmetric), let A0 = hIb; X
0

i,
whereX 0 = f(xa+xb) mod k j xa 2 Xa; xb 2 Xbg. The address descriptor for dest is hI; f0gi ifA0

' ?,
and is A0 otherwise.

– Otherwise, we can’t say anything about the result of this operation, so the address descriptor for dest after
I is taken to be hI; f0gi.

The correctness of the first case follows straightforwardly from the rules for mod-k arithmetic [16]; the second
case is obviously safe, but merits some discussion: if Aa ' ?, Ab ' ?, or Ia 6= Ib, it’s easy to see that we
can’t say anything about the result of the operation; if Ia = Ib = I0 for some I0, it’s tempting to think that the
resulting address descriptor could be given as hI0; X0

i, where X 0 = f(xa + xb) mod k j xa 2 Xa; xb 2 Xbg,
but this is not the case. The reason is that in this case, the sets of values denoted by Aa and Ab are:

concP (hI0; Xai) = fwa + ik + xa j wa 2 valP (I0); xa 2 Xa; i 2 Z
+
g; and

concP (hI0; Xbi) = fwb + ik + xb j wb 2 valP (I0); xb 2 Xb; i 2 Z
+
g

so the address descriptor A0 for dest after this instruction should be such that

concP (A
0) = fwa +wb + i1k + xa + i2k + xb j wa; wb 2 valP (I0); xa 2 Xa; xb 2 Xb; i1; i2 2 Z

+
g

= fwa +wb + ik + xa + xb j wa; wb 2 valP (I0); xa 2 Xa; xb 2 Xb; i 2 Z
+
g.

However, hI0; X0

i clearly does not give this, because it does not account for the fact that the w 2 valP (I0)

component is also added into the result of the add instruction:

concP (hI0; X
0

i) = fw + ik + xa + xb j w 2 valP (I0); xa 2 Xa; xb 2 Xb; i 2 Z
+
g.

mult srca, srcb, dest : Let the address descriptors for srca and srcb immediately before instruction I be Aa =

hIa; Xai and Ab = hIb; Xbi respectively. There are three possibilities:

– If Aa 6' ?, Ab 6' ?, and both Ia and Ib are NONE, let Xc = f(xa � xb) mod k j xa 2 Xa; xb 2 Xbg, and
A0 = hNONE; Xci. The address descriptor for dest is hI; f0gi if A0

' ?, and is A0 otherwise.

– Otherwise, if Aa 6' ?, Ab 6' ?, and Ia = NONE (the case where Ib = NONE is symmetric), let Xc =

f(xa�xb) mod k j xa 2 Xa; xb 2 Zkg, andA0 = hNONE; Xci. The address descriptor for dest is hI; f0gi
if A0

' ?, and is A0 otherwise.

– Otherwise, we can’t say much about the result of the multiplication, so the address descriptor for dest after
instruction I is hI; f0gi.

Again, the correctness of the first case follows easily from the rules for mod-k arithmetic; the second case can
be thought of as “widening” Ab to hNONE;Zki, which is obviously safe, and then applying the first case; the
reasoning for the third case is analogous to that for the add instruction above.

In typical RISC code, the most commonly encountered address expression by far involves a fixed displacement off a
base register, which corresponds to the add instruction discussed above. As such it is especially important that this
case be handled efficiently. It turns out that given an address descriptor hI;Xi for rega, with X represented as a bit

5

vector, the bit vector X 0 in the descriptor hI;X 0

i for regc can be obtained simply by “rotating up” the bit-vector for
X by c bits, and this is easy to implement efficiently. As an example, suppose that X = f1; 5; 6g in a mod-8 residue
analysis, and c = 3, then X 0 = f4; 8; 9gmod 8 = f4; 0; 1g. If we represent these sets as bit vectors with the smallest
element on the right, then X = 0110 0010; rotating up (i.e., to the left) by 3 bits gives us the vector 0001 0011,
which is precisely the bit vector for X 0.

3.2.2 Propagating Address Descriptors

Conceptually, if we consider all possible execution paths through a program, each register at each program point will
correspond to a set of values; abstracting from this, one would expect an analysis to map each register to a set of address
descriptors at each program point. Given the handling of individual instructionsas described in the previous section, the
analysis is now a conceptually straightforward forward dataflow analysis where we compute the meet-over-all-paths
solution,4 with union as the meet operator [1].

It turns out that if each register, at each program point, is mapped to a set of address descriptors, the memory require-
ments for the analysis can become excessive for large programs. This is due partly because fully linked executables
tend to be considerably larger than source language modules, and partly because reasoning about address arithmetic is
usually less precise than, say, reasoning about aliasing at the source level. As a pragmatic measure, therefore, a widen-
ing operation [7] is used to ensure that at each program point, each register is mapped to a singleton set of address
descriptors—or, equivalently, a single address descriptor. As mentioned in Section 3.1, the set of address descriptors
forms a lattice with respect to the precision ordering �. The widening operation 5 is defined to be simply the meet
operation with respect to�. In effect, what this does is that if a program pointB has two predecessorsB0 and B1, such
that the address descriptors for a register r at B0 and B1 are A0 = hI0; X0i and A1 = hI1; X1i respectively, where
neither A0 nor A1 are >, and I0 6= I1, then the address descriptor for r at B is A05 A1 = ?.

This results in a reasonably memory-efficient analysis: for each basic block we need two address descriptors per
register, one for the IN set, at the entry to the block, and one for the OUT set, at the exit. Thus, for a given choice of k,
the analysis requires 2RN (k + w) bits of memory for a program with N basic blocks on a machine with R registers,
where w is the number of bits per machine word.5

3.3 Reasoning about Alias Relationships

Given two address descriptorsA1 � hI1;M1i andA2 � hI2;M2i at two points in a program, under what conditionscan
we conclude that they definitely do not refer to the same address? If I1 6= I2 we cannot say much about any relationship
that may hold between A1 and A2, and so have to assume that they may refer to the same location. However, it is not
sufficient to require that I1 = I2 andM1\M2 = ;, since the value computed by a particular instructionmay be different
when that instruction is executed at different times. The following proposition gives a simple sufficient condition for
determining that two address expressions denote disjoint sets of addresses:

Proposition 3.1 Address descriptorsA1 � hI;M1i at program point p1 andA2 � hI;M2i at program pointp2 denote
disjoint sets of addresses if (i) I dominates both p1 and p2; (ii) either p1 dominates p2, or p2 dominates p1; and (iii)

M1 \M2 = ;.

Proof Conditions (i) and (ii) ensure that both the program pointsp1 and p2 see the same value computed by instruction
I. Condition (iii) then ensures that relative to this value, the set of addresses referred to at p1 is disjoint from that
referred to at p2. 2

4Since our current implementation is not context-sensitive in its treatment of inter-procedural information flow, a meet-over-all-paths solution
suffices; a context-sensitive treatment would have required a meet-over-all-valid-paths solution.

5This can be reduced toRN(k+w) bits, as in our implementation, by storing only OUT sets, since the IN set of a block can be computed fairly
easily from the OUT sets of its predecessors.

6

(6)

B1

B2

B3 B4

add r21,32,r21
B5

B6

B7

B8

B9

B10

B11

[18 instrs] [104 instrs]

[2 instrs]

[18 instrs]

[42 instrs]

[8 instrs]

[23 instrs]

[56 instrs]

[157 instrs]

[6 instrs]

[10 instrs]

(3)

(2)

(1)

(4)
(5)

add r30,-272,r30

add r30,136,r21

add r21,32,r21
store ..., 80(r30)
load ..., 0(r21)

Figure 2: Flowgraph for Example 3.2 [Program: ijpeg; function: jpeg idct ifast()]

Example 3.2 As an example of the application of this analysis to a real program, Figure 2 shows the flow graph of
the function jpeg idct ifast(), from the SPEC benchmark program ijpeg, which implements a fast integer
inverse discrete cosine transform. To reduce clutter, only a few relevant instructions are shown explicitly: the number
in brackets at the lower left hand corner of each basic block indicates the total number of instructions in that basic block.
Register r30 is the stack pointer, whiler21 is used to walk through a local array of structures with a stride of 32 bytes.

Using the current implementation of our analysis, which uses mod-64 residues, the address descriptor for register
r21 immediately after instruction (2) in block B6 is computed as h(1); f8gi, where (1) is the instruction in block B1 that
defines the value of r30. Each iteration of the loop B7-B8-B9-B10 increments r21 by 32, so the address descriptor for
r21 on entry to block B9 is h(1); f8; 40gi; however, register r30 is not changed in the loop, so its address descriptor
in B9 is h(1); f0gi. Since the requirements of Proposition 3.1 are trivially satisfied within block B9, we can conclude
from this that the store instruction (4), namely, store ..., 80(r30), refers to a different location than instruction
(5), namely, load ..., 0(r21). 2

4 Experimental Results

We evaluated our analysis on the SPEC-95 benchmarks as well as some non-SPEC applications: agrep, a pattern
matching utility; appbt and appsp, computational fluid dynamics codes originally from NASA; latex, a popular
document formatting tool; and nucleic2, a numerical benchmark that finds the 3-dimensional structure of a nucleic
acid molecule. The input programs were compiled with the DEC C compiler V5.2-023 invoked as cc -O4 -Wl,-r

-Wl,-d -Wl,-z -non shared (for the C programs), and the DEC Fortran compiler version 3.8 invoked as f77
-O4 -Wl,-r -Wl,-d -Wl,-z -non shared (for the Fortran programs), resulting in statically linked executa-
bles. The timings were obtained on a DEC Alpha workstation, with a 300 MHz Alpha 21164 processor with 512 Mbytes
of main memory, running Digital Unix 4.0. Table 1 shows the precision of the analysis, while Table 2 shows its the
time and space requirements. The numbers presented correspond to mod-k residues with k = 64 (this choice was de-

7

PROGRAM TOTAL ONE FEW TOTAL KNOWN UNKNOWN

applu 38973 11083 [28.44%] 5075 [13.02%] 16158 [41.46%] 22814 [58.54%]
apsi 46641 12344 [26.47%] 4930 [10.57%] 17274 [37.04%] 29366 [62.96%]
compress 6375 2070 [32.47%] 235 [3.69%] 2305 [36.16%] 4070 [63.84%]
fpppp 39777 12431 [31.25%] 3726 [9.37%] 16157 [40.62%] 23619 [59.38%]
gcc 137389 44021 [32.04%] 6698 [4.88%] 50719 [36.92%] 86669 [63.08%]
go 31596 7472 [23.65%] 5310 [16.81%] 12782 [40.45%] 18814 [59.55%]
hydro2d 37855 9668 [25.54%] 4711 [12.45%] 14379 [37.98%] 23475 [62.01%]
ijpeg 22179 8473 [38.20%] 1685 [7.60%] 10158 [45.80%] 12021 [54.20%]
li 12466 3919 [31.44%] 307 [2.46%] 4226 [33.90%] 8240 [66.10%]
m88ksim 17516 5271 [30.09%] 651 [3.72%] 5922 [33.81%] 11594 [66.19%]
mgrid 35696 9150 [25.63%] 3840 [10.76%] 12990 [36.39%] 22705 [63.61%]
perl 41039 14777 [36.01%] 1054 [2.57%] 15831 [38.57%] 25208 [61.42%]
su2cor 38052 10434 [27.42%] 4515 [11.87%] 14949 [39.29%] 23103 [60.71%]
swim 34187 9454 [27.65%] 4035 [11.80%] 13489 [39.46%] 20698 [60.54%]
tomcatv 33829 9356 [27.66%] 3905 [11.54%] 13261 [39.20%] 20568 [60.80%]
turb3d 37930 9857 [25.99%] 4187 [11.04%] 14044 [37.03%] 23885 [62.97%]
vortex 59021 19310 [32.72%] 1295 [2.19%] 20605 [34.91%] 38413 [65.08%]
wave5 44047 12113 [27.50%] 7553 [17.15%] 19666 [44.65%] 24381 [55.35%]

(a) SPEC-95 benchmarks

PROGRAM TOTAL ONE FEW TOTAL KNOWN UNKNOWN

agrep 11104 3581 [32.25%] 865 [7.79%] 4446 [40.04%] 6652 [59.91%]
appbt 14582 5353 [36.71%] 3280 [22.49%] 8633 [59.20%] 5948 [40.79%]
appsp 10575 3520 [33.29%] 1886 [17.84%] 5406 [51.12%] 5169 [48.88%]
latex 28765 8673 [30.15%] 2008 [6.98%] 10681 [37.13%] 18083 [62.87%]
nucleic2 25196 14738 [58.49%] 307 [1.22%] 15045 [59.71%] 10151 [40.29%]

(b) Non-SPEC applications

Key: TOTAL : Total no. of load/store instructions [static counts]

ONE : No. of load/store instructions whose mod-k residue set has cardinality 1.

FEW : No. of load/store instructions whose mod-k residue set has cardinality n, 1 < n < k.

TOTAL KNOWN : ONE+FEW.

UNKNOWN : TOTAL � TOTAL KNOWN.

Table 1: Precision of Analysis (load/store instructions)

8

PROGRAM BASIC BLOCKS INSTRUCTIONS ANALYSIS TIME (sec) MEMORY USED (Mbytes)

applu 24939 117247 20.28 9.13
apsi 27334 135270 21.55 10.01
compress 4425 18489 2.93 1.62
fpppp 24778 118183 18.68 9.07
gcc 79037 321986 64.65 28.94
go 15734 74361 12.48 5.76
hydro2d 26048 115957 20.24 9.54
ijpeg 10928 57447 8.96 4.00
li 7856 31572 4.51 2.88
m88ksim 10012 44489 5.48 3.67
mgrid 25025 109260 18.98 9.16
perl 22270 99789 13.86 8.16
su2cor 24827 115547 19.21 9.09
swim 23491 104674 17.66 8.60
tomcatv 23264 103406 17.73 8.52
turb3d 25687 114888 20.51 9.41
vortex 28240 129092 11.26 10.34
wave5 26309 132299 21.50 9.63

(a) SPEC-95 benchmarks

PROGRAM BASIC BLOCKS INSTRUCTIONS ANALYSIS TIME (sec) MEMORY USED (Mbytes)

agrep 6744 32450 5.65 2.47
appbt 5935 39981 4.96 2.17
appsp 4427 27289 3.48 1.62
latex 14350 66011 8.56 5.26
nucleic2 4090 37078 2.38 1.50

(b) Non-SPEC applications

Table 2: Cost of Analysis

termined in part by the fact that the set of mod-k residues for this choice of k corresponds to a bit vector that fits exactly
in one 64-bit machine word), combined with the local analysis described in Section 2.

Precision: Traditionally, the precision of alias analysis algorithms is often presented in terms of the average size of
points-to sets or alias sets. In our context, however, there are no points-to or alias sets: a more meaningful measure,
perhaps, is the (relative) number of memory references—i.e., load and store instructions—forwhich the analysis is able
to provide information that would not have been available otherwise. This information is presented in Table 1. It can
be seen that in the programs tested, the analysis is able to provide information for roughly 35%–60% of the memory
reference instructions. Preliminary investigations indicate that much of the loss in precision occurs due to two reasons:
first, because we don’t keep track of the contents of memory, information about a register will be lost if it is saved to
memory and subsequently restored; and second, the widening operation described in Section 3.2.2 causes information
to be lost if a register can have different defining instructions at different predecessors of a join point in the control flow
graph.

Cost: Table 2 gives the time and space costs of our analysis. Columns 2 and 3 give the size of each benchmark, mea-
sured, respectively, in the total number of basic blocks and instructions in the program, measured after the elimination

9

PROGRAM TOTAL LOADS (�106) (TOT) DELETABLE (�106) (DEL) DEL/TOT (%)

appbt 210.75 11.41 5.4
appsp 108.32 2.29 2.1
fpppp 41828.25 17111.94 40.9
m88ksim 15209.48 197.12 1.3
nucleic2 94.63 4.74 5.0
su2cor 7405.70 212.51 2.9
vortex 22989.38 531.60 2.3
wave5 7728.41 446.05 5.8

Table 3: Utility of Analysis: Deletion of unnecessary load instructions

of dead and unreachable code. Column 4 then gives the total analysis time in seconds, while column 5 gives the total
memory requirements of the analysis in Mbytes. The analysis times range from about 2 seconds to 20 seconds, with the
gcc program an outlier with a total analysis time of a little over a minute. These numbers are somewhat higher than
we would like, but the reason for this is that every instruction within a basic block is examined whenever that basic
block is processed. As Figure 3 indicates, the time taken to analyze a program in practice varies essentially linearly
as the number of instructions in the program. The memory requirement of the analysis typically varies from about 1.5
Mbytes to 10 Mbytes, with gcc having a high requirement of about 29 Mbytes. Because of the widening operation
described in Section 3.2.2, the memory requirements of the analysis are linear in the number of basic blocks in the input
program: we feel that this is essential if the analysis is to be usable for large programs.

Utility: The only optimization for which we have had the time to evaluate the utility of our alias analysis at this
time involves the elimination of unnecessary load instructions. Preliminary results are shown in Table 3, which gives
dynamic counts of the number of load instructionsthat can be removed. Since, at optimization level-O4, global register
allocation had already been carried out by the compiler, we were pleasantly surprised that our analysis could still detect
a significant number of load instructions that could potentially be eliminated. Our system currently removes many of
these loads, and we are working on other optimizations that will free up additional registers that can then be used for
this purpose. We also plan to incorporate the results of alias analysis into our instruction scheduler as well as a number
other optimizations, and expect to have more extensive experimental results for the utility of this information shortly.

5 Related Work

While a number of systems have been described for link-time code optimization [5, 14, 15, 26, 29, 30, 32], to the best
of our knowledge none of these carry out any alias analysis on the executable files they process.

There is an extensive body of work on pointer alias analysis of various kinds (see, for example, [2, 3, 4, 6, 8, 10, 11,
12, 13, 17, 18, 20, 21, 22, 23, 25, 27, 28, 31, 33, 34]). The work most closely related to ours is that of Wilson and Lam
[34], who describe a low-level pointer alias analysis for C programs. Their work attempts to deal with “nasty” features
of real programs and can handle simple pointer increments and decrements, but is unable to cope with the more complex
address arithmetic common in executable code (see Example 3.2). Also, it restricts itself to C language features, and
so cannot handle arithmetic arising from idiosyncracies of other languages, e.g., manipulation of pointers with “tag
bits,” that may be encountered in executable code. Their algorithm is context-sensitive at the inter-procedural level,
however, while our current implementation is context-insensitive (conceptually, it would not be too difficult to obtain
a context-sensitive version of our algorithm, but we have not had time to implement this yet). The remaining analyses
cited are all high level analyses that typically disregard type casts, pointer arithmetic, out-of-bounds array accesses,
etc. As argued earlier, such analyses are of limited utility at the machine code level.

Also related is the work on dependence analysis in the scientific computing literature (see, for example, [35, 36]).

10

0

10

20

30

40

50

60

70

50 100 150 200 250 300

A
na

ly
si

s
T

im
e

(s
ec

s)

Program Size (no. of instructions x 1000)

Figure 3: Variation of analysis time with input size

While the goals of this work are conceptually similar to ours—namely, disambiguating array references whose indices
can involve arithmetic expressions—the algorithms used for dependence analysis are very different from that described
here. Since dependence analysis is typically formulated as a source level intra-procedural analysis, the analysis prob-
lems tend to be relatively small in size. Because of this, dependence analyses are able to use relatively more sophis-
ticated, but also more expensive, algorithms than ours. We do not know of any attempts to apply such algorithms for
whole-program analysis, and it is not obvious to us that the algorithms involved would scale up to problems of this size.

6 Conclusions

Recent years have seen increasing interest in reasoning about and manipulating executable files. Such manipulations
can benefit greatly from information about aliasing. Unfortunately, there is a fundamental mismatch between the fea-
tures present in executable programs and the features handled by existing pointer alias analyses: such analyses are
typically formulated in terms of source-level constructs, and do not handle features such as pointer arithmetic and out-
of-bound array references, whereas these are precisely the features encountered in executable programs. This paper
describes a simple algorithm that can handle these features, and which can be used for alias analysis of executable
programs. In order to be practical, the algorithm is careful to keep its memory requirements low, sacrificing precision
where necessary to achieve this goal. Experimental results indicate that it is nevertheless able to provide nontrivial
information about roughly 35%–60% of the memory references across a variety of benchmark programs.

References

[1] A. V. Aho, R. Sethi and J. D. Ullman, Compilers – Principles, Techniques and Tools, Addison-Wesley, 1986.

[2] M. Burke, P. Carini, J. D. Choi, and M. Hind, “Flow-insensitive interprocedural alias analysis in the presence of
pointers”, in Languages and Compilers for Parallel Computing: Proceedings of the 7th International Workshop,
eds. K. Pingali, U. Bannerjee, D. Gelernter, A. Nicolau and D. Padua, Aug. 1994. Springer-Verlag LNCS vol. 892,
pp. 234–250.

[3] D. R. Chase, M. Wegman, and F. K. Zadeck, “Analysis of Pointers and Structures”, Proc. SIGPLAN ’90 Confer-
ence on Programming Language Design and Implementation, June 1990, pp. 296–310.

[4] J.-D. Choi, M. Burke, and P. Carini, “Efficient Flow-Sensitive Interprocedural Computation of Pointer-Induced
Aliases and Side Effects”, Proc. 20th ACM Symposium on Principles of Programming Languages, Jan. 1993,
pp. 232–245.

[5] R. Cohn, D. Goodwin, P. G. Lowney, and N. Rubin, “Spike: An Optimizer for Alpha/NT Executables”, Proc.
USENIX Windows NT Workshop, Aug. 1997.

11

[6] K. D. Cooper and K. Kennedy, “Fast Interprocedural Alias Analysis”, Proc. 16th ACM Symposium on Principles
of Programming Languages, Jan. 1989, pp. 49–59.

[7] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by
Construction or Apporoximation of Fixpoints”, Proc. Fourth ACM Symposium on Principles of Programming
Languages, 1977, pp. 238-252.

[8] D. Coutant, “Retargetable High-Level Alias Analysis”, Proc. 13th ACM Symposium on Principles of Program-
ming Languages, Jan. 1986, pp. 110–118.

[9] K. De Bosschere and S. K. Debray, “alto : A Link-Time Optimizer for the DEC Alpha”, Technical Report 96-15,
Dept. of Computer Science, The University of Arizona, June 1996.

[10] A. Deutsch, “On determining lifetime and aliasing of dynamically allocated data in higher-order functional spec-
ifications”, Proc. 17th ACm Symposium on Principles of Programming Languages, Jan. 1990, pp. 157–168.

[11] A. Deutsch, “Interprocedural May-Alias Analysis for Pointers: Beyond k-limiting”, Proc. SIGPLAN ’94 Confer-
ence on Programming Language Design and Implementation, June 1994, pp. 230–241.

[12] A. Diwan, K. S. McKinley and J. E. B. Moss, “Type-Based Alias Analysis”, Manuscript, Dept. of Computer Sci-
ence, University of Massachusetts, Amherst, 1996.

[13] M. Emami, R. Ghiya and L. J. Hendren, “Context-Sensitive Interprocedural Points-to Analysis in the Presence
of Function Pointers”, Proc. SIGPLAN ’94 Conference on Programming Language Design and Implementation,
June 1994, pp. 242–256.

[14] M. F. Fernández, “Simple and Effective Link-Time Optimization of Module-3 Programs”, Proc. SIGPLAN ’95
Conference on Programming Language Design and Implementation, June 1995, pp. 103–115.

[15] D. W. Goodwin, “Interprocedural Dataflow Analysis in an Executable Optimizer”, Proc. SIGPLAN ’97 Confer-
ence on Programming Language Design and Implementation, June 1997, pp. 122–133.

[16] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1989.

[17] S. Horwitz, P. Pfeiffer, and T. Reps, “Dependence Analysis for Pointer Variables”, Proc. SIGPLAN ’89 Conference
on Programming Language Design and Implementation, June 1989, pp. 28–40.

[18] J. Hummel, L. J. Hendren, and A. Nicolau, “A General Data Dependence Test for Dynamic, Pointer-Based Data
Structures”, Proc. SIGPLAN ’94 Conference on Programming Language Design and Implementation, June 1994,
pp. 218–229.

[19] M. S. Johnson and T. C. Miller, “Effectiveness of a Machine-Level Global Optimizer”, Proc. SIGPLAN ’86 Sym-
posium on Compiler Construction, June 1986, pp. 99–108.

[20] N. D. Jones and S. S. Muchnick, “Flow analysis and optimization of LISP-like structures”, in Program Flow
Analysis, eds. S. S. Muchnick and N. D. Jones, Prentice Hall, 1981, pp. 102–131.

[21] N. D. Jones and S. S. Muchnick, “A flexible approach to interprocedural data flow analysis and programs with re-
cursive data structures”, Proc. 9th ACM Symposium on Principles of Programming Languages, Jan. 1982, pp. 66–
74

[22] W. Landi and B. G. Ryder, “Pointer-induced Aliasing: A Problem Classification”, Proc. 18th ACM Symposium
on Principles of Programming Languages, Jan. 1991, pp. 93–103.

12

[23] W. Landi and B. G. Ryder, “A Safe Approximate Algorithmfor Interprocedural Pointer Aliasing”, Proc. SIGPLAN
’92 Conference on Programming Language Design and Implementation, June 1992, pp. 235–248.

[24] J. R. Larus and E. Schnarr, “EEL: Machine-independent Executable Editing”, Proc. SIGPLAN ’95 Conference on
Programming Language Design and Implementation, June 1995, pp. 291–300.

[25] J. R. Larus and P. N. Hilfinger, “Detecting Conflicts Between Structure Accesses”, Proc. SIGPLAN ’88 Confer-
ence on Programming Language Design and Implementation, June 1988, pp. 21–34.

[26] T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B. N. Bershad, and J. B. Chen, “Instrumentation
and Optimization of Win32/Intel Executables”, 1997 USENIX Windows NT Workshop (to appear).

[27] E. Ruf, “Context-Insensitive Alias Analysis Reconsidered”, Proc. SIGPLAN ’95 Conference on Programming
Language Design and Implementation, June 1995, pp. 13–22.

[28] M. Shapiro and S. Horwitz, “Fast and Accurate Flow-Insensitive Points-To Analysis”, Proc. 24th. ACM Sympo-
sium on Principles of Programming Languages, Jan. 1997, pp. 1–14.

[29] A. Srivastava and D. W. Wall, “A Practical System for Intermodule Code Optimization at Link-Time”, Journal
of Programming Languages, pp. 1–18, March 1993.

[30] A. Srivastava and D. W. Wall, “Link-time Optimization of Address Calculation on a 64-bit Architecture”, Proc.
SIGPLAN ’94 Conference Programming Language Design and Implementation, June 1994, pp. 49–60.

[31] B. Steensgaard, “Points-to Analysis in Almost Linear Time”, Proc. 23th. ACM Symposium on Principles of Pro-
gramming Languages, Jan. 1996, pp. 32–41

[32] D. W. Wall, “Global Register Allocation at Link Time”, Proc. SIGPLAN ’86 Symposium on Compiler Construc-
tion, July 1986, pp. 264–275.

[33] W. E. Weihl, “Interprocedural data flow analysis in the presence of pointers, procedure variables, and label vari-
ables”, Proc. ACM Symposium on Principles of Programming Languages, Jan. 1980, pp. 83–94.

[34] R. P. Wilson and M. S. Lam, “Efficient Context-Sensitive Pointer Analysis for C Programs”, Proc. SIGPLAN ’95
Conference on Programming Language Design and Implementation, June 1995, pp. 1–12.

[35] M. Wolfe, Optimizing Supercompilers for Supercomputers, MIT Press, Cambridge, Mass., 1989.

[36] H. Zima and B. Chapman, Supercompilers for Parallel and Vector Computers, ACM Press, New York, 1991.

13

