
A SYSTEM FOR CONSTRUCTING

CONFIGURABLE HIGH-LEVEL

PROTOCOLS

(Ph.D. Dissertation)

Nina Trappe Bhatti

TR 96-22

December 4, 1996

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

This research was supported in part by the O�ce of Naval Research under grants N00014-91-J-1015,

N00014-94-1-0015, N00014-96-0207 and National Science Foundation grant CCR-9003161.

A SYSTEM FOR CONSTRUCTING CONFIGURABLE

HIGH-LEVEL PROTOCOLS

by

Nina Trappe Bhatti

Copyright c Nina Trappe Bhatti 1996

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF COMPUTER SCIENCE

In Partial Ful�llment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

1 9 9 6

A SYSTEM FOR CONSTRUCTING CONFIGURABLE
HIGH-LEVEL PROTOCOLS

Nina Trappe Bhatti, Ph.D.
The University of Arizona, 1996

Director: Richard D. Schlichting

Distributed applications often require sophisticated communication services such as
multicast, membership, group RPC (GRPC), transactions, or support for mobility. These
services form a large portion of the supporting software for distributed applications, yet
the speci�c requirements of the service vary from application to application. Constructing
communication services that are useful for multiple diverse applications while still being
manageable and e�cient is a major challenge.

This dissertation focuses on improving the construction of complex communication
services. The contributions of the dissertation are a new model for the construction of
such services and the design and implementation of a supporting network subsystem. In
this model, a communication service is decomposed into distinct micro-protocols, each
implementing a speci�c semantic property. Micro-protocols have well-de�ned interfaces
that use events to coordinate actions and communicate state changes, which results in a
highly modular and con�gurable implementation.

This model augments, rather than replaces, the conventional hierarchical protocol
model. In this implementation, a conventional x-kernel protocol is replaced with a com-
posite protocol in which micro-protocol objects are linked with a standard runtime system
that externally presents the standard x-kernel interface. Internally, the runtime system
provides common message services, enforces a uniform interface between micro-protocols,
detects and generates events, and synchronously or asynchronously executes event han-
dlers.

The viability of the approach is demonstrated by performance tests for several di�erent
con�gurations of a suite of micro-protocols for a group RPC service. The micro-protocols
in this suite implement multiple semantic properties of procedure call termination, message
ordering, reliability, collation of responses, call semantics, membership, and failure. The
tests were conducted while running within the x-kernel as a user level task on the Mach
operating system.

Additional micro-protocols for mobile computing applications validate the generality
of the model. We designed micro-protocols for quality of service (QoS), transmitting
and renegotiating QoS parameters during hando�s, as well as for mobility management,

covering cell detection, hando�, and disconnection. This suite of micro-protocols can be
con�gured to accommodate a range of di�erent service requirements or even to mimic
existing mobile architectures such as those found in the Crosspoint, PARC TAB, InfoPad,
or DataMan projects.

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial ful�llment of requirements for an ad-
vanced degree at The University of Arizona and is deposited in the University Library to
be made available to borrowers under the rules of the Library.

Brief quotations from this dissertation are allowable without special permission, pro-
vided that accurate acknowledgment of source is made. Requests for permission for ex-
tended quotation from or reproduction of the manuscript in whole or in part may be
granted by the copyright holder.

SIGNED:

4

5

ACKNOWLEDGMENTS

My greatest thanks go to my husband, Scott Trappe, whose endless patience and
encouragement I will always be grateful for. He gave me faith when I had none and
constantly reassured me that one day I would �nish. His unfailing love and support made
all that I have accomplished possible.

The inspiration to pursue doctoral studies came from Gene Lawler, late professor of
computer science at the University of California, Berkeley. I credit him for seeing my
potential and encouraging me to pursue a research career in computer science. I cherished
his love and support, and miss him dearly since his death. His belief that computer
scientists must look beyond their research and understand its e�ect on society have forever
shaped my ideals.

Richard Schlichting, my advisor, exhibited steadfast patience, endlessly reviewed chap-
ters, and provided constant guidance while writing the dissertation. He fostered my pro-
fessional development by encouraging me to attend and present at conferences and work-
shops and to intern at Xerox PARC. I will always appreciate his support for my interests,
especially his defense of my choice to minor in marketing. Larry Peterson introduced
me to networking and continues to provide invaluable technical advice. Greg Andrews
encouraged and supported my e�orts throughout my graduate study.

Chris Puto and Susan Heckler, my minor committee members, taught me how to reason
about end-user's needs and identify opportunities. Chris discovered that this \gear-head"
has other talents and consistently encouraged me to develop them. He is a teacher in the
fullest sense of that word, and a wonderful mentor.

The entire Computer Science Department community made me feel very much at
home. I will always be grateful to those cheerful miracle workers known as the lab sta�,
the o�ce sta�, and especially Wendy Swartz for leading me through the maze of university
paperwork and regulations. I am indebted to the entire faculty, whose excellent instruction
gave me an education I will always cherish and rely upon.

Many, many students | too many for me to name them all | have enriched my life
both professionally and personally by sharing their knowledge, friendship and support. I
thank Matti Hiltunen for many conversations about fault-tolerance and the event-driven
model, and Wanda Chiu for insightful comments and for implementing the GRPC suite.
Two groups deserve special mention: the \473 survivors club": Susie, Nisha, Bill, John,
Jordan and Craig; and the \poker and B5 gang": Robert, Nick, Nevin, Sanford, Rich and
Denise. My heartfelt thanks to all of you.

Finally, my thanks to the National Science Foundation (grant CCR-9003161) and the
o�ce of Naval Research (grants N00014-91-J-1015, N00014-94-1-0015, N00014-96-0207)
for funding my studies.

6

7

TABLE OF CONTENTS

LIST OF FIGURES : 11

ABSTRACT : 13

CHAPTER 1: INTRODUCTION : 15
1.1 Distributed Systems : 16
1.2 Dependability and Fault-Tolerance : 18
1.3 Mobile Computing : 19

1.3.1 Mobility : 20
1.3.2 Quality of Service : 21

1.4 Communication Support : 21
1.5 Composite Protocol Approach : 22
1.6 Dissertation Outline : 23

CHAPTER 2: COMMUNICATION SERVICES AND CONSTRUCTION TECH-
NIQUES : 25
2.1 Multicast and Membership : 25

2.1.1 Overview : 25
2.1.2 Consul : 27
2.1.3 ISIS : 27
2.1.4 Transis : 28
2.1.5 Totem : 28

2.2 Remote Procedure Call : 28
2.2.1 Overview : 28
2.2.2 Sun RPC : 29
2.2.3 Group RPC Systems : 30

2.3 Mobile Computing : 30
2.3.1 Overview : 30
2.3.2 Mobile IP : 33
2.3.3 InfoPad : 34
2.3.4 PARC TAB : 35
2.3.5 Dataman : 36
2.3.6 Crosspoint : 36

2.4 Modular Protocols : 37
2.4.1 Overview : 37
2.4.2 The x-kernel : 37
2.4.3 Horus : 37
2.4.4 ADAPTIVE : 38
2.4.5 Object-Oriented Framework : 38

8

2.4.6 Streams : 39
2.4.7 Parallel Protocol Execution : 39
2.4.8 Parallel versions of the x-kernel : 40
2.4.9 Parallel Protocol Framework : 40

2.5 Con�gurable Operating Systems : 40
2.5.1 Spin : 40
2.5.2 Exokernel : 41
2.5.3 Scout : 41
2.5.4 Application Controlled File Caching : : : : : : : : : : : : : : : : : 42

2.6 Summary : 42

CHAPTER 3: COMPOSITE PROTOCOL MODEL : : : : : : : : : : : : : : : : : : 43
3.1 Motivation and Goals : 43
3.2 A Two-Level Model of Protocol Composition : : : : : : : : : : : : : : : : : 45
3.3 Micro-Protocols : 47
3.4 Events and Handler Execution : 48
3.5 Timer Events : 49
3.6 Framework : 50
3.7 Message Sending and Garbage Collection : : : : : : : : : : : : : : : : : : : 51
3.8 Examples : 52

3.8.1 Membership Micro-Protocol : 52
3.8.2 Acknowledgment Micro-Protocol : : : : : : : : : : : : : : : : : : : 53

3.9 Summary : 55

CHAPTER 4: IMPLEMENTATION : 57
4.1 Framework : 57

4.1.1 Uniform Interfaces. : 57
4.1.2 Thread Management : 57
4.1.3 Messages : 58
4.1.4 Implementation Portability. : 60

4.2 Events : 60
4.2.1 Event Operations : 61
4.2.2 Event Structures : 62
4.2.3 Timer Event Structures : 63
4.2.4 Call Depth : 66

4.3 Measurements of Event Implementation Performance : : : : : : : : : : : : : 67
4.4 Creating a Composite Protocol : 67
4.5 Possible Optimizations : 69
4.6 Summary : 69

CHAPTER 5: GROUP RPC PERFORMANCE : 71
5.1 Group RPC Micro-protocols : 71

5.1.1 Termination Semantics : 71
5.1.2 Ordering semantics : 71
5.1.3 Communication Semantics : 72

9

5.1.4 Collation Semantics : 73
5.1.5 Call Semantics : 73
5.1.6 Membership Semantics : 73
5.1.7 Failure Semantics : 74
5.1.8 Driver Protocol : 74

5.2 Combining Micro-Protocols : 75
5.3 Measurements of Group RPC Con�gurations : : : : : : : : : : : : : : : : : 76
5.4 Detailed Analysis : 77
5.5 Summary : 80

CHAPTER 6: PROTOCOLS FOR MOBILE COMPUTING : : : : : : : : : : : : : 81
6.1 Communication Requirements : 81
6.2 Hando� Related Variations : 82

6.2.1 Hando� Detection : 83
6.2.2 Hando� : 84
6.2.3 Oscillation Prevention : 85
6.2.4 Disconnection : 85

6.3 Example Mobility Micro-Protocols : 86
6.3.1 Detection Micro-Protocols : 87
6.3.2 Hando� Protocols : 93
6.3.3 Disconnection : 101

6.4 Variations of Quality of Service : 102
6.5 Example QoS Micro-Protocols : 104
6.6 Supporting Micro-Protocols : 107
6.7 Example Con�gurations : 108
6.8 Conclusions : 108

CHAPTER 7: EVALUATION : 109
7.1 General Assessment : 109

7.1.1 Overview : 109
7.1.2 E�ciency : 110
7.1.3 Resuability : 110
7.1.4 Ease of Debugging and Maintenance : : : : : : : : : : : : : : : : : 110
7.1.5 Explicit Dependencies : 111

7.2 Programming Issues : 111
7.2.1 Synchronous and Asynchronous Event Execution : : : : : : : : : : 111
7.2.2 Call Depth : 112
7.2.3 Ordering Handler Execution : 113
7.2.4 Event Scheduling : 114
7.2.5 Programming Language Support : : : : : : : : : : : : : : : : : : : 114

7.3 Experimentation Issues : 115
7.3.1 Performance Pro�ling : 115
7.3.2 Testing : 115
7.3.3 Use of the x-kernel : 116

7.4 Mobility and Real-Time : 117

10

7.5 Related Work : 117
7.6 Summary of Contributions : 119

REFERENCES : 121

11

LIST OF FIGURES

2.1 Hardware components of a typical mobile distributed system. : : : : : : : 31

2.2 Software components of a mobile distributed systems. : : : : : : : : : : : : 32

2.3 Agent-based mobile system. : 33

3.1 Composite protocol within an x-kernel protocol graph. : : : : : : : : : : : : 46

3.2 Micro-protocol schema : 47

3.3 Simple membership micro-protocol : 53

3.4 Simple acknowledgment micro-protocol : 54

4.1 Event description structure. : 62

4.2 Event invocation structure with event description structure. : : : : : : : : 64

4.3 Timer event information structure for repeating event with two event han-
dlers. : 65

4.4 Possible event handler executions with and without call depth bounding. : 66

4.5 Experimental con�guration : 68

5.1 Process and message architecture. : 72

5.2 Group RPC con�guration selections. : 75

6.1 Mobile host in range of two base stations. : : : : : : : : : : : : : : : : : : : 86

6.2 Overall micro-protocol structure. : 87

6.3 ICMP based detection for mobile hosts : 88

6.4 ICMP based detection for base stations : 89

6.5 Beacon based detection for mobile hosts : 90

6.6 Beacon based detection for Base stations : 91

6.7 Simple detection micro-protocol for mobile hosts : : : : : : : : : : : : : : : 92

6.8 Simple detection with oscillation prevention for mobile hosts : : : : : : : : 93

6.9 Lazy detection for mobile hosts : 94

6.10 Autonomous mobile host hando� for mobile hosts : : : : : : : : : : : : : : : 96

6.11 Request/reply hando� for base stations : 97

6.12 NACK hando� micro-protocol for base stations : : : : : : : : : : : : : : : : 98

6.13 Agent Coordinated hando� for base stations : : : : : : : : : : : : : : : : : : 99

6.14 Translate messages into events for base stations : : : : : : : : : : : : : : : : 100

6.15 Drop packet disconnection scheme for base stations : : : : : : : : : : : : : : 101

6.16 Drain disconnection scheme for base stations : : : : : : : : : : : : : : : : : 102

6.17 Forward packets disconnection schemes for base stations : : : : : : : : : : : 103

6.18 Quality of service management : 106

6.19 QoS information provided by base stations : : : : : : : : : : : : : : : : : : : 107

6.20 QoS information provided by a mobile host : : : : : : : : : : : : : : : : : : 107

12

7.1 Possible combinations. : 112

13

ABSTRACT

Distributed applications often require sophisticated communication services such as
multicast, membership, group RPC (GRPC), transactions, or support for mobility. These
services form a large portion of the supporting software for distributed applications, yet
the speci�c requirements of the service vary from application to application. Constructing
communication services that are useful for multiple diverse applications while still being
manageable and e�cient is a major challenge.

This dissertation focuses on improving the construction of complex communication
services. The contributions of the dissertation are a new model for the construction of
such services and the design and implementation of a supporting network subsystem. In
this model, a communication service is decomposed into distinct micro-protocols, each
implementing a speci�c semantic property. Micro-protocols have well-de�ned interfaces
that use events to coordinate actions and communicate state changes, which results in a
highly modular and con�gurable implementation.

This model augments, rather than replaces, the conventional hierarchical protocol
model. In this implementation, a conventional x-kernel protocol is replaced with a com-
posite protocol in which micro-protocol objects are linked with a standard runtime system
that externally presents the standard x-kernel interface. Internally, the runtime system
provides common message services, enforces a uniform interface between micro-protocols,
detects and generates events, and synchronously or asynchronously executes event han-
dlers.

The viability of the approach is demonstrated by performance tests for several di�erent
con�gurations of a suite of micro-protocols for a group RPC service. The micro-protocols
in this suite implement multiple semantic properties of procedure call termination, message
ordering, reliability, collation of responses, call semantics, membership, and failure. The
tests were conducted while running within the x-kernel as a user level task on the Mach
operating system.

Additional micro-protocols for mobile computing applications validate the generality
of the model. We designed micro-protocols for quality of service (QoS), transmitting
and renegotiating QoS parameters during hando�s, as well as for mobility management,
covering cell detection, hando�, and disconnection. This suite of micro-protocols can be
con�gured to accommodate a range of di�erent service requirements or even to mimic
existing mobile architectures such as those found in the Crosspoint, PARC TAB, InfoPad,
or DataMan projects.

14

15

CHAPTER 1

INTRODUCTION

Current computing applications often have sophisticated communication requirements.
Users of an automatic teller machine (ATM) withdraw cash without realizing the complex
communication performed to verify the transaction and correctly record it at the appro-
priate bank anywhere in the world. Regardless of location, users trust that the transaction
will be performed correctly, reliably, and quickly. This type of functionality is realized by
an underlying communication service, which governs how messages are exchanged between
hosts and what delivery guarantees are associated with them. For example, in this case,
an appropriate communication service might provide guaranteed delivery of the trans-
action and make permanent changes to an account only if the transaction is completed
successfully. A large portion of the supporting software of distributed applications|that is,
applications constructed on collections of machines connected by a network|is composed
of communication services.

While communication services are universal for distributed applications, the speci�c
requirements vary depending on the type of application. For example, robust, reliable
communication may be required for an ATM application, but less strict requirements
are acceptable for sending mail since maximum delivery delays and ordering of messages
are typically not guaranteed. Another example is video, which requires predictable de-
lays between frames and ordered delivery, but which can accept occasional frame losses.
Hence, video applications can be well supported by a communication service that provides
timely, ordered, but unreliable communication. This large variety of possible semantics
are di�cult to realize in a single service.

A major challenge is constructing communication services that are useful for multi-
ple diverse applications while still being manageable and e�cient. One approach is to
use customization and con�gurability. Currently, communication systems provide only
simple mechanisms, so applications build more complex services from scratch based on
basic guarantees such as best-e�ort delivery. An alternative is to provide more complex
semantics by customizing a general communication service to match the exact needs of
the application. To implement this customization, users con�gure a service from a col-
lection of software modules, each of which implements a speci�c behavior. In addition to
facilitating an exact semantic match, this approach allows many applications with similar
communication needs to use the same basic service instead of requiring the creation of
another similar service.

This dissertation addresses the construction of customized communication services by
proposing a new approach in which �ne-grain software modules called micro-protocols

encapsulating a function or property are combined to form a communication service. The
selection of a micro-protocol enforcing a particular property such as reliability allows the
user to create a service with exactly the desired behavior. In addition, micro-protocols

16

that implement variants of the same behavior can be exchanged; for example, di�erent
types of delivery orderings such as FIFO, unordered, causal, and total ordering can be
selected. Micro-protocols communicate with other micro-protocols using events, which
makes all data sharing and dependencies between micro-protocol explicit. The approach
has been realized in a prototype implementation based on the x-kernel [HP91].

1.1 Distributed Systems

Communication services with powerful semantics are an important building block for dis-
tributed applications. However, as noted above, the speci�c functionality can vary greatly
depending on the type of application. Here, we outline common reasons for writing dis-
tributed applications | improved performance, increased dependability, accommodation
of physical requirements, and convenient resource sharing | and then discuss their com-
munication requirements.

Performance

For many applications, performance can be improved by exploiting parallelism, that is,
by distributing parts of the computation among hosts within a distributed system and
executing them concurrently. In some cases, the parts can be executed to completion, with
the results then being combined to produce the �nal overall result. In other cases, the
process is iterative, with processes periodically exchanging intermediate values. Still other
applications may be be parallelized by assigning computation resources to speci�c stages
of the solution; in this scenario, resources are organized as a pipeline, with each resource
producing results that are passed to the next stage in the pipeline. While not all problems
can be parallelized, parallelism is widely used to obtain performance improvements for
scienti�c computations.

Performance can also be improved using distributed systems by migrating processes
to idle hosts to spread the computation load and to make use of idle processing power
[Dou89, Dou87, OCD+88]. However, since process migration incurs overhead, a perfor-
mance improvement is realized only if the target host is underutilized, and if the remaining
computation time is greater than the time required to do the migration. This makes this
technique useful only in limited circumstances where idle hosts are commonly available,
such as o�ces where large numbers of hosts are unused after business hours.

Dependability

Another reason for building an application using a distributed system is to increase de-
pendability, which is a measure of the reliance that can be placed on the service a system
delivers [Car82]. The service delivered by a system is its behavior as perceived by users,
whether they be humans or other systems [Lap92]. Dependability encompasses a number
of di�erent attributes. A dependable ATM system, for example, services transactions 24
hours a day (availability), functions correctly under heavy loads (reliability), does not dis-
pense money without a valid ATM card (safe), and protects the ATM PIN number during
transmission (secure).

17

A distributed system may incorporate redundant components that can be used to mask
failures. As a result, when a component fails (does not execute according to its speci�ca-
tion) one of the correctly functioning components may be able to take over and provide
the same service. For example, a dependable �le system can be created by maintaining
a mirror image on a second storage device and applying each state-modifying operation
to the mirror image as well. Then, if the original storage device fails (e.g., crashes), the
mirror �le system can be used. In addition to increasing availability, redundancy can be
used to verify correct operation by executing computations on multiple CPUs and then
comparing results.

Physical Requirements

The physical nature of an application may force separation of computational resources,
which naturally then leads to its construction as a distributed system. For example, an au-
tomated manufacturing plant where multiple processors control the manufacturing process
is a distributed system because the processors are physically separated and communicate
using a network. A similar example is a system composed of medical patient monitoring
equipment, in which a specialized computer system is located physically near each patient.
To control patient monitors, consolidate patient information, and prepare patient status
reports requires using a distributed system.

Distributed systems based on physical separation of processors do not require that
those processors remain stationary. In particular, the processors may be embedded in
small devices intended to be carried by the user, such as the Apple Newton or Hewlett-
Packard 95LX. Mobile computing systems have the same basic elements as other dis-
tributed systems, but with the additional requirements of coping with changing location
information and potentially slower and more error-prone communication links based on
radio or infrared technology.

Resource Sharing

Distributed systems can also be used to provide resources to a group of clients. Perhaps
the most ubiquitous example of this type of resource sharing is a printer attached to a
network. In this case, the printer is a server that provides printing services to several hosts
(clients) connected to the network. The same idea can be applied to other peripherals,
such as a network �le system where services are provided to multiple clients by a single
shared server. Programs can also be shared in a similar way. For example, a common
license agreement is to allow the program to run on any of multiple hosts, but with only
a limited number active at a time.

Resource sharing is also an e�cient way to use expensive resources. For example, an
expensive supercomputer can be cost-e�ectively shared by using a network to submit jobs,
potentially over great distances. This strategy avoids the expense of purchasing multiple
specialized machines while still providing access to a large community of users.

18

Communication Services

The di�ering characteristics of applications in each of these four categories|performance,
dependability, physical requirements, and resource sharing|has motivated the develop-
ment of a variety of communication services. For example, parallel applications can be
simpli�ed using a multicast primitive to disseminate the results of a subproblem or coordi-
nate execution. Similarly, many dependable applications rely on communication services
that automatically detect failures and maintain consistent views of which machines are
functioning. Communication systems intended for mobile computing applications must
maintain communication between physically separate hosts that change location, so a
connection and delivery mechanism that tolerates mobility is an essential tool. Finally,
resource sharing is facilitated if clients can reliably transmit requests to a group of servers
using a single address; using this, any server can respond.

In this dissertation, we focus on two speci�c types of distributed systems: highly
dependable and mobile computing systems. The next two sections elaborate on these
areas and the types of communication services that are most useful.

1.2 Dependability and Fault-Tolerance

Several paradigms have been developed to reduce the complexity of fault-tolerant software
[MS92]. The paradigms are based on network-oriented abstractions that are often realized
as communication services with a wide range of behaviors. This section describes several
paradigms, their application structure, and their communication services.

The object/action paradigm structures an application as a collection of objects that are
located across multiple machines in a distributed system. Objects are passive entities that
encapsulate state and export operations that modify state; actions invoke these operations
and are serializable, atomic, and permanent. An action is serializable if its concurrent
execution with other actions always has the same e�ect as some serial execution order.
An action is atomic if intermediate states are never visible despite failures; if a failure
occurs, the action is aborted and any state changes are undone. Finally, an action is
permanent if once the action commits, the results of the action cannot be undone by
subsequent failures.

The object/action paradigm is often implemented using processes for objects and
threads for actions. In this scheme, invocation of an operation on a remote object is
realized using Remote Procedure Call (RPC), which is similar to standard procedure calls
except that the procedure is executed by a di�erent process [Nel81, BN84]. The caller is
known as the client and the process executing the procedure is known as the server. Also,
multiple variants of RPC may be needed depending on the speci�cs of the approach. For
example, additional fault tolerance can be provided by replicating server processes. In
this case, group RPC is used by the client to transmit the call to the entire group instead
of just a single process. Some implementations may also need group RPC services that
guarantee that each call is unique or that all servers receive each call. Other abstractions
that are useful for supporting the object/action model include stable storage for perma-
nence of actions, atomic actions for atomicity, and resilient processes for failure recovery
[MS92].

19

The conversation paradigm uses processes and messages as its main components. An
application is structured as a collection of concurrent processes executing on di�erent hosts
and communicating by exchanging messages. Processes periodically save an image of their
process state, called a checkpoint. A programming construct called a conversation is used
to ensure that these checkpoints are consistent, where a consistent set of checkpoints is
one in which every message receive event is matched by a corresponding send event. If a
process fails, a replacement process is created and started from the last checkpoint. The
other non-failing processes also roll back their state to the corresponding checkpoint so
that all processes return to the same point in the computation.

Di�erent variants of RPC are again useful as supporting communication services for the
conversation paradigm. For example, depending on the speci�c semantics, di�erent types
of message ordering may be desirable, such as causal or total ordering [CASD85, Cri89,
BCG91, BSS91a, BSS91b, Coo90, GMS89, GMS91, GMK88, VM90]. Stable storage is
also a useful abstraction for storing checkpoints [Lam81].

The state machine approach structures an application as a collection of interacting
state machines [Sch90]. Commands received as messages from other machines or the
environment change the values of state variables. The execution of each command is
deterministic and atomic with respect to other commands to provide fault tolerance. State
machines can be replicated, in which case each command is received and executed by all
replicas. Assuming that all replicas execute the commands in the same order, the states
of the replicas will remain consistent. As a result, the failure of some number of replicas
can be tolerated without a�ecting operation of the whole group.

A number of communication services are useful building blocks for the state machine
approach. Since all state machines must receive the same commands in the same order,
atomic ordered multicast [CM84]|which guarantees atomicity and consistent ordering of
messages|is a valuable abstraction. Membership is also an important service; it maintains
consistent information about which machines are functioning and which have failed.

The goal of the work presented in this dissertation is to simplify the design and imple-
mentation of communication services such as the ones described above for fault-tolerant
software. We concentrate primarily on group RPC and, to a lesser extent, membership.
Our approach allows these services to be implemented as a con�gurable collection of �ne-
grained modules that can be used to meet a variety of fault-tolerance requirements. The
mechanism for building these services are protocols, which specify the format and mean-
ing of messages that are exchanged by instances of a communication service executing
on di�erent machines. The term is also often used to refer to the actual software that
implements the agreed-upon behavior. Examples of well-known protocols are the Trans-
mission Control Protocol and Internet Protocol (TCP/IP) [Pos81a, Pos81b] and the User
Datagram Protocol (UDP) [Pos80].

1.3 Mobile Computing

Mobile computing systems are composed of mobile and stationary hosts that exchange
messages through wireless and wired communication links. These systems are a direct
consequence of the availability of new devices that are inexpensive and light enough to

20

be truly portable. The two key problems in mobile computing are hiding the details of
mobility and managing quality of service. Ideally, mobile systems would behave exactly
as any other distributed system with respect to addressing and sending messages. How-
ever, while �xed addresses for mobile devices are now the norm, systems vary greatly in
how location information is gathered and propagated. The next two sections elaborate
on mobility and quality of service to illustrate the multitude of possible communication
services.

1.3.1 Mobility

Mobility presents two challenges: routing and disconnected operation. The �rst concerns
how messages can be delivered to hosts that change their location and how host location
information is propagated and cached. Making routing transparent to the application is
valuable because resources can then be accessed without regard to location. For example,
instead of sending a print job to a printer by name, the job can be dispatched to the
nearest printer resource. File system caching can be done similarly, with mobile hosts
caching �les in �le servers that are nearby. Knowledge of host location can also provide
additional capabilities, such as answering certain queries (e.g., nearest restaurant) using
location-speci�c information [AIB].

A number of solutions have been proposed to the mobile routing problem. Some so-
lutions assign mobile hosts Internet addresses and route messages transparently as hosts
roam between di�erent domains in the Internet [IDJ91]. Other solutions deal only with
routing messages to mobile hosts in a local area. For example, in the area of main-
taining location information, some approaches only maintain data on hosts that are ac-
tive [AGSW93], while others require hosts to respond explicitly to identi�cation requests
[CLR95]. Similarly, some routing protocols propagate information about active hosts in
the area to the rest of the system immediately [CLR95], while others send information
only to a central manager [KMS+93]. A single con�gurable system that allows any of
these multiple solutions to be easily constructed would be useful for matching the routing
to the particular application.

The second challenge concerns complications resulting from failures of a mobile host
or disconnection due to failed communication links. Such events occur more frequently
in mobile than stationary systems because of the lossy wireless transmission medium, the
possibility of mobile hosts roaming out of range, or the unavailability of a host due to
battery power loss. Except for the last case, the mobile host may be able to continue
functioning, in which case some type of state synchronization will be required when the
mobile host reconnects to the network. Disconnected operation of this type is only of con-
cern for mobile hosts that have su�cient resources to function standalone; hosts without
such resources simply cease to function if disconnected.

There are a variety of approaches for dealing with disconnection Many ideas can be
borrowed from fault-tolerance, such as replication of the mobile host state and atomic
multicast to ensure that multiple hosts receive messages [VKP93, PKV96]. However, since
failures are more common, any technique must be inexpensive, as well as not interfere with
the rest of the system. Other solutions are speci�c to mobile computing, such as cases
where routing protocols redirect messages destined for a disconnected host to a proxy that

21

can save messages until the mobile host reconnects. Multiple techniques exist to deal with
state synchronization after disconnected operation [Kis90, KS91, HH93, SKM+93, NK93,
MBM95]. Thus, like routing, it would be advantageous if the communication service could
be altered to provide this variety of options without modifying the rest of the system.

1.3.2 Quality of Service

Quality of service refers to the performance guarantees provided to an application by
the underlying system, often after negotiation between the two entities. Determinants of
quality of service are bandwidth, latency, and jitter. In mobile communication, bandwidth
means throughput, latency is the delay before receiving the �rst bit of data from the
sender, and jitter means the variation in delay between messages. An additional criterion is
connectivity latency due to movement between the areas serviced by distinct transmission
devices cells. Moreover, since each cell is a di�erent transmission domain, bandwidth,
latency, and jitter can change after entering a new cell. As a result, the agreed-upon
quality of service characteristics may have to be re-negotiated with the new cell. Hence,
not only must resources be shared as is the case with any system, but frequent host arrivals
and departures must also be accommodated.

Quality of service is, almost by de�nition, associated with di�erent policies, so it is
not surprising that a variety of approaches have been de�ned. For example, bandwidth
and mobility are inherently linked. When an application starts a communication stream
to a mobile host, it negotiates the required resources. If a host moves into an area where
there is already a lot of tra�c, some policies ignore the needs of the new host, while
others modify existing connections or use priorities. It would be advantageous for a single
communication service to support all these variants of system behavior.

1.4 Communication Support

In previous sections we have outlined how di�erent communication services can be used to
simplify distributed applications such as those associated with fault-tolerant systems and
mobile computing. By providing rich functionality and a high degree of abstraction, such
services make it easier to handle the uncertainties inherent in distributed systems, includ-
ing those associated with network communication, distributed synchronization, mobility,
and processor crashes. Often the protocols that implement these services are described
as middleware since they form a software layer between the application and the operating
system. From a networking perspective, they are considered high-level protocols because
they provide enhanced functionality relative to simple message delivery.

Unfortunately, while such high-level protocols are useful, their construction poses a
number of challenges. These protocols are di�cult to design, debug, and modify, largely
due to the same complex functionality that makes them so useful. Another reason is
that they are often built speci�cally for a given application rather than as a separate
layer that can be reused. As a result, the application software is much more complex,
and it becomes di�cult to update should the communication guarantees required by the
application change.

22

To address these and other challenges, an approach for building communication services
would ideally exhibit a number of characteristics. It should facilitate services that are
highly con�gurable to realize multiple semantic variations. It should also aid the protocol
writer in designing and implementing these variations, and be simple for users of the service
to con�gure. Finally, con�gurability should not come at the expense of performance.

An option that approaches this ideal mix is to implement the functionality as a collec-
tion of smaller protocol objects (a protocol suite) and then use a system like ADAPTIVE
[SBS93], Horus [vRHB94], or the x-kernel [HP91] to combine the objects into a network
subsystem. However, despite their advantages over monolithic realizations, these systems
still have a number of de�ciencies when it comes to implementing high-level protocols.
These include inadequate support for �ne-grained modules with complex interaction pat-
terns, limited facilities for data sharing, and an orientation towards hierarchical protocol
composition at the expense of more exible combinations. Experience suggests that these
limitations increase the di�culty of implementing high-level protocols using these sys-
tems. For example, problems of this type have been encountered with the x-kernel, both
in Consul, a protocol suite implementing atomic multicast [MPS93a, PBS89], and xAMP,
a real-time atomic multicast protocol [VRB89].

The ability to build con�gurable communication systems is also consistent with the
general trend of applications requiring more control over their support services. For ex-
ample, operating systems are increasingly being designed to allow customized approaches
to services, such as scheduling, �le systems, and caching [BCE+95, HPM93, MMO+94].
Our research is concerned with providing enhanced control over communication services,
with a focus on supporting modular implementations and �ne-grain semantic-based con-
�guration.

1.5 Composite Protocol Approach

This dissertation describes a new structuring approach that supports highly modular im-
plementations of communication services. With our approach, a high-level protocol is
constructed from a collection of micro-protocol objects (or just micro-protocols) that im-
plement individual semantic properties of the target system. For example, with atomic
multicast, one micro-protocol might implement the consistent ordering requirements, while
another might implement reliable transmission. Micro-protocols can also be used to im-
plement di�erent semantic variants of the same property. For example, with RPC, there
may be several micro-protocols implementing distinct policies for how a request is han-
dled if the server fails, such as exactly once, at least once, or at most once semantics
[PS88]. A system is then con�gured based on the particular properties needed for the
given application.

This micro-protocol approach is realized by augmenting the x-kernel's standard hierar-
chical object composition model with the ability to internally structure protocol objects.
The result is a two-level model in which selected micro-protocols are �rst combined with
a standard runtime system or framework to form a composite protocol. This composite
protocol, whose external interface is indistinguishable from a standard x-kernel protocol,
is then composed with other x-kernel protocols in the normal hierarchical way to realize

23

the overall functionality required of the network subsystem. Internally, the framework
implements an event-driven execution paradigm, in which micro-protocols are executed
whenever events for which they are registered occur |for example, message arrival or a
timeout. Thus, when compared with standard x-kernel protocol objects, micro-protocols
are typically �ner-grain objects that interact more closely and do so using mechanisms
provided by the framework rather than the x-kernel Uniform Protocol Interface (UPI).

Our approach has a number of bene�ts. For example, the exibility of the two-level
model is useful for dealing with dependencies among the properties implemented by com-
plex protocols. It also o�ers the development bene�ts associated with modular implemen-
tations, as well as an enhanced ability to tailor the system to the speci�c characteristics of
a given application or architecture. In contrast with similar systems for constructing con-
�gurable protocols, our approach provides �ner granularity and more exible inter-object
communication, which is especially useful for con�guring closely-related service variants
of the same general type of high-level protocol (e.g., variants of atomic multicast).

The contributions of this dissertation are:

� A new approach to constructing con�gurable high-level protocols with properties
customized to the needs to the application or the speci�cs of the architecture.

� An x-kernel based system for realizing this approach.

� The use of �ne-grain micro-protocols that have limited, well-de�ned interfaces and
are executed according to an event-driven paradigm.

� Examples of designs and implementations based on our approach for two families of
communication services, group RPC and mobile computing, as well as a description
of the resulting lessons substantiating the viability of the approach.

� An assessment of the execution costs involved with the approach and insights into the
incremental execution cost of properties in certain common group communication
paradigms.

1.6 Dissertation Outline

This dissertation is organized as follows. Chapter 2 describes related work in the areas
of communication support for fault tolerance and mobile computing, approaches for con-
structing services using modular protocols, parallel execution of protocols and con�gurable
operating systems. Chapter 3 then describes how our composite protocol approach can
be used to create micro-protocol suites. Implementation details and basic performance
results are given in Chapter 4.

Chapter 5 illustrates the use of the composite protocol approach to build a highly
con�gurable version of group remote procedure call, which is often used in fault-tolerant
applications. We also give performance results from a number of experiments involving
the x-kernel prototype and multiple di�erent con�gurations. Similarly, Chapter 6 provides
an in-depth look at a con�gurable composite protocol for mobile computing.

24

The composite protocol model and the x-kernel implementation are evaluated in Chap-
ter 7. Finally, Chapter 8 makes some concluding remarks and presents future research
ideas.

25

CHAPTER 2

COMMUNICATION SERVICES AND

CONSTRUCTION TECHNIQUES

Software for distributed systems is complex and di�cult to write. To simplify this
task, communication services are used to provide an abstraction that is easier to pro-
gram. In this chapter, we describe communication abstractions and protocols useful for
fault-tolerant systems and mobile computing, including multicast, membership, RPC, and
various systems that support mobility. Then, the current state of technology for develop-
ing these services is described. In particular, several projects are presented that explore
the use of modularization or system customization. Finally, we present recent work on new
generation operating systems that emphasize similar customization goals, but in a more
general context. The con�gurability provided by these systems is typically coarse-grained
and allows freedom only in selected areas.

2.1 Multicast and Membership

2.1.1 Overview

In fault-tolerant systems, providing consistent information to multiple processes is neces-
sary for constructing many types of distributed applications. One way to provide this is
to use multicast, which sends messages to a collection of processes organized as a multi-
cast group. Thus, there is one sender and multiple receivers. Multicast groups typically
have a multicast group address, membership rules, and possible restrictions on addressing
messages to the group.

Multicast sending of messages may or may not be done with hardware support. With-
out hardware support, conventional point-to-point messages are used. With hardware
support in local area networks, messages can be delivered more e�ciently since a single
destination address can be used to refer to all group members.

Multicast services in wide-area networks are concerned with managing group member-
ship and e�cient delivery of messages [DC90, Dee94, DEF+94, Hug88, WPD88, ALB88,
Wal80]. For example, one scheme for multicasting messages in the Internet uses IP routers
to disseminate packets. The routers recognize the destination address as a multicast ad-
dress and forward packets to links if there are group members reachable through the links;
otherwise the message need not be propagated. Several spanning tree algorithms have
been developed to manage routing topologies, and minimize the number of routers and
networks involved in forwarding multicast packets.

While there are many variations of multicast for fault-tolerant systems, reliability
and similar guarantees are often more important than e�cient packet routing. In fact,
multicast services designed for this purpose can be broken into �ve orthogonal properties
[MS92]:

26

Dissemination. The message is disseminated to all processes in a group. As noted, in
local-area networks such as Ethernets or Token rings that provide a multicast primitive,
the dissemination can be done e�ciently with a single lower-level operation.

Atomicity. Messages are delivered to all operational processes in the group or to none.
This property ensures that all processes see the identical set of messages.

Reliability. Message are delivered to every process in the group. If a member of the group
has failed, then the message will be provided to the failed process during its recovery.

Order. Messages are delivered in some consistent order to all group members. Especially
in wide-area networks, multicast messages can potentially arrive in di�erent order at
each of the members, which complicates higher-level software. There are several possible
consistent orderings, including:

� Partial order or causal order: Messages are delivered in an order that preserves the
happened before relationship (causality) [Lam78]. Messages are only delivered after
all the messages that precede it have been delivered. Messages for which no happened
before relationship exists are considered to be concurrent and can be delivered in
any order.

� Semantic dependent order: Messages are delivered in an order that depends on the
semantics of the information in the message. For example, messages that contain
commutative operations can be delivered in di�erent order, while messages with
non-commutative operations must be delivered in the same order to all processes.

� Total order: Messages are delivered in the same order to all processes. There is no
restriction on the ordering, other than it must be exactly the same for each process.

� Total order preserving causality: Messages are delivered in the same order to all pro-
cesses, and the order preserves the happened before relationship between messages.
This is the most expensive ordering property to implement.

Termination. The communication protocol is synchronous if every message is delivered
to all correct processes within a �xed time interval.

A problem that is closely related to multicast is membership, which involves maintain-
ing information about which processes belong to the group. Membership can be completely
static but more interesting groups have dynamic membership. In this case, members are
added when they explicitly request to join and removed when they request it or, in the
case of fault-tolerant systems, when they fail. Membership of the group may be open, al-
lowing any process to join, or closed, in which case admission may or may not be granted
when requested. While only group members can receive messages addressed to the group,
sending may either be restricted to members or unrestricted. Unrestricted sending is im-
portant for a group of processes that o�er a service and advertise the multicast address
for general use.

27

Since membership change information does not instantaneously disseminate across the
network, not all members have the same membership information at the same time. This
can make a common view of the group di�cult to achieve and therefore, make multi-
cast guarantees di�cult to provide if they depend on accurate membership information.
As a result, membership services typically provide guarantees about the consistency of
information at di�erent members and how this relates to message delivery.

Many papers have been written on multicast and membership. Multicast variations
that guarantee atomicity with respect to all functioning group members and ordering are
described in [GL92, Spa91, AGKK91, GMK88, GMS89, GMS91, BM89, BSS91a, CM84,
CASD85, KTHB89, NCN88, PBS89, VRB89, MPS89]. Other multicast research e�orts are
concerned with fast multicasting [RS92], low-cost multicasting [BA89], language support
for group multicast [Coo90], and multicast communication for mobile hosts [AB93]. As
described, membership also has many variations, which are summarized in [HS95b].

2.1.2 Consul

The Consul system provides multicast services for group communication, including causally
ordered atomic message delivery and membership [MPS93a]. Causal message ordering is
managed by a dependency graph called the context graph, which is implemented by the
Psync protocol [MPS92]. Each process in the group builds a context graph and only
messages for which all predecessors have been received are committed to the application.
Messages that have no dependency relationship with respect to each other can be delivered
in any order. Consul also provides totally ordered communication in which messages with
no ordering relationship have an imposed consistent ordering at each process. Consul man-
ages dynamic closed group membership, requiring all processes to execute join and leave
operations. It detects processes that are no longer functioning and removes them from
the group after agreement is reached with the other correctly functioning members. Con-
sul has been successfully implemented as a modular system using the x-kernel [MPS93b,
MPS93c]. However, as mentioned in Chapter 1, this implementation e�ort revealed that
more support for modularity was needed for complex protocols that can be subdivided
into many communicating submodules.

2.1.3 ISIS

The ISIS distributed programming toolkit has been used to develop many commercial
applications and is perhaps the best known reliable multicast service [BSS91b, BC91,
BSS91a, Bir85]. It provides failure atomicity, delivery ordering guarantees, and group ad-
dressing. Delivery ordering guarantees are atomic delivery of messages in either total order
(ABCAST) or causal order (CBCAST). CBCAST is similar to the partial order delivery
of Psync, but extends causality to multiple overlapping groups as well. ABCAST provides
total ordering by layering another protocol on top of the casual ordering protocol, giving
a total ordering that is causality preserving. In addition to message ordering guarantees,
ISIS provides group membership facilities. ISIS has been constructed as a large monolithic
implementation that is available on a number of platforms. The Horus system, described
in Section 2.4.3.below, is a new modular implementation framework where services are

28

created from protocol objects that can be stacked in a variety of ways. The multicast and
membership services of ISIS have also been built using this new modular framework.

2.1.4 Transis

The Transis communication sub-system is a transport layer that supports multicast and
automatic maintenance of dynamic membership over arbitrary network topologies [ADKM92].
The network is divided into broadcast domains that disseminate messages using hardware-
supported broadcast, with point-to-point messages being used between domains. Transis
provides immediate reliable delivery of messages to all active sites, as well as causal, totally
ordered, and safe multicast. In the last, messages are only delivered after being acknowl-
edged by all active sites. The membership service supports detection of failed hosts, group
partitions, and joins. Partitions can be uni�ed through join operations that add multiple
hosts to the group.

2.1.5 Totem

The Totem system provides totally ordered delivery of messages for single local-area net-
works or multiple local-area networks connected by gateways [MMSA+95]. Totem aims
to achieve good performance by using hardware broadcast in local-area networks and a
scheme based on a logical circulating token. The token is also used as the basis for reliable
delivery of messages, total ordering, and failure detection. Local area ordering is provided
using sequence numbers associated with the token, with global ordering across multiple
networks being handled by timestamps. In particular, gateways that connect two local-
area networks receive messages from neighboring rings and order the messages with new
sequence numbers based on the timestamp value in the message. Totem also provides a
membership service that handles processor failure and recovery, and network partitions.

2.2 Remote Procedure Call

2.2.1 Overview

A well known and commonly used IPC mechanism is Remote Procedure Call (RPC). To
the caller, RPC appears to be an ordinary procedure call except that the procedure is
executed by a separate process that may be executing on a separate host. RPC is con-
venient for programming distributed applications, because it provides a well-understood
procedural interface and automatic marshaling of arguments for network transmission.
The calling process is referred to as the client, and the callee process is the server.

When all processes are functioning correctly, RPC gives results indistinguishable from
a local procedure call except for timing. However, failure is an inherent problem given the
uncertainties associated with a distributed system; a host can be unresponsive because it
has crashed, messages were lost, or the network has become partitioned. Therefore, RPC
semantics also describe what can be inferred after a failure of this type. In addition to
failures, RPC request messages may arrive out of order, or be lost or duplicated. If RPC
is to provide a good abstraction for building distributed applications with fault-tolerant

29

requirements, there must be clear semantics de�ned for the case when processes are not
behaving correctly.

Non-group RPC services can be di�erentiated based on what can be inferred by the
client process about the number of times a remote procedure has been executed when
a server is unresponsive and the call terminates abnormally. Below are listed common
execution semantics, from the weakest to the strongest guarantees:

� At Least Once. If the invocation terminates normally the remote procedure has been
executed one or more times. If abnormal termination occurs, then no conclusion can
be drawn; it may have executed one or more times, not at all, or partially.

� Exactly Once. If the invocation terminates normally the remote procedure has been
executed exactly one time. If abnormal termination occurs, then it has been executed
only once, not at all, or partially.

� At Most Once. If the invocation terminates normally then the procedure has been
executed exactly once. Otherwise, if the termination was abnormal, then the proce-
dure was executed once or not all; execution is atomic even if a failure occurs.

Group RPC (GRPC) is similar to conventional point-to-point RPC, but instead of
sending a request to a server, the request is sent to a server group [Che86, Coo90, CGR88,
SS90]. This is especially useful for constructing fault-tolerant services using replicated
servers. It is also possible to have a group of clients interacting with a group of servers.
GRPC has several semantic aspects in addition to those found in point-to-point RPC
[HS95a]. These include:

� Ordering. FIFO order guarantees that all calls issued by a single client are executed
by each server in the same order. Total order guarantees that all calls by all clients
are executed in the same order by each server. Causal ordering of client requests
preserves the causal relationship of client requests.

� Collation. Collation semantics governs how responses from a server group are com-
bined and returned to the client. Speci�cally, it governs how many responses are
needed to complete the call and if these responses need to be the same.

� Failure. Failure semantics characterize what can be said about execution of a client
request during a failure of the server, speci�cally unique execution and atomic ex-
ecution [LG85]. Unique execution of requests guarantees that the request will be
executed no more than once. Atomic execution guarantees that the request will
either have been completely executed or not at all; there is no visible intermediate
state.

2.2.2 Sun RPC

Sun RPC is perhaps the most common RPC protocol and can be con�gured with two
di�erent transport protocols, UDP and TCP. When using TCP, requests are received at
most once and in order; if the server crashes then the client is guaranteed exactly once

30

semantics. When using UDP, only at least once semantics are guaranteed. Sun RPC has
broadcast capability to send a client request to a group of servers, but no server responses
are allowed and there are no ordering guarantees. If responses are required, the servers
use separate RPC calls that are manually collated by the client. Other RPC services are
provided by [SB90, BALL90, Cou81, BN84, ATK91, PS88].

2.2.3 Group RPC Systems

Sun RPC has been used as a basis for a fault-tolerant group RPC service in [YJT88]. In
this system, the servers are organized as a linearly ordered group, with the �rst process in
the group |the primary| receiving all RPC calls and sending all replies. The primary
forwards calls to the next server, which is one of the secondary processes, and each forwards
the request to its successor. Each server is deterministic and calculates a reply and sends it
to its predecessor; thus all servers will calculate a response before the client's RPC request
returns. Failures are detected by the server group and, if the primary is unresponsive, by
the client. When a failure is detected, the successor of the primary becomes the new
primary. Note that no state recovery is necessary since all secondary servers execute all
calls. At most once execution is provided, as well as FIFO ordering. All servers responses
are identical, but only one response is returned to the client process.

Another Sun RPC-based group service o�ers three variations of semantics to support
common classes of applications [WZZ93]. A lookup style of GRPC dispatches an RPC
call to a group of servers and if any of them respond, the call completes. No ordering or
execution guarantees are provided, so this is ideal for servers that are stateless and just
respond to lookup requests from clients. The functional-convergence GRPC style provides
no ordering, but all server responses are collected before the call returns. The strongest
guarantees are provided by the update GRPC style, which guarantees total ordering of
requests. In this case, all servers must successfully respond before a call can be completed.
As a result, if any server declares a failure, the call will return abnormally.

Circus is a group RPC service that is distinguished by the fact that the troupe of servers
do not communicate with one another [Coo85]. This simpli�es the system since the lack of
interaction means that servers do not have to manage membership. Instead, clients detect
server crashes and remove the failed server from the server troupe. Circus supports exactly
once execution and FIFO ordering. Collation of results can be unanimous, majority, or
�rst result.

Fault-Tolerant Concurrent C is a parallel programming extension of the C language
that provides group RPC to support active replication of deterministic identical server
processes [CGR88]. The collation semantics is �rst result; all other replies are discarded.
All calls are executed in FIFO order by all servers.

2.3 Mobile Computing

2.3.1 Overview

Mobile computing is an emerging area of distributed systems, so unifying concepts and
themes have yet to be de�ned. The current state of research is a multitude of systems
with di�erent hardware con�gurations and di�erent wireless communication technologies,

31

Mobile host

Wired Network

Wireless Link

Base Station

Cell

Figure 2.1: Hardware components of a typical mobile distributed system.

all attempting to provide connectivity for roaming users. The mobile devices can roam
small o�ce-size areas, campus-wide areas, or even across the country.

Despite this variety, all systems have a number of common core elements, as shown in
Figure 2.1. These include:

Mobile Hosts. A roaming device equipped with a wireless communication link. May
range in power from a dumb terminal to a powerful stand-alone machine.

Base Station. A stationary computer with a wireless communication link and a connec-
tion to a conventional wired network. Base stations can receive and transmit wireless
signals within a small local area called a cell. Coverage for large areas are provided by
distributing base stations so signals can be received from any location a host may occupy
in the region. In general, complete coverage creates overlapping cells.

Wireless Link. Communication to the mobile host from a given base station is provided
through wireless transmissions, using either radio or infrared technology. These links can
be very lossy and range from 9600 kbps to 1-2 Mbps.

Wired Network. The conventional network that connects wireless hosts to greater re-
sources provided by stationary hosts and peripherals. Wired links are much faster and
more reliable than wireless links.

The software components of a mobile system execute on the mobile hosts, stationary
hosts, and base stations. The most common components are:

32

Application

Mobile Host

Wired transmission

Cell
Manager 3

Cell

Cell
Manager 1

Manager 2

Wireless Transmission

Figure 2.2: Software components of a mobile distributed systems.

Cell Manager. Executes on the base station or on a stationary host controlling the base
station. Manages the wireless communication within the cell, forwards routing information
to other cell managers, and controls tra�c between wired and wireless networks (Figure
2.2).

Application. Executes on stationary hosts and communicates with mobile hosts through
cell managers and perhaps agents.

Agent. Some architectures maintain an agent process that controls application connec-
tions to a mobile host and provides an indirect address for mobile hosts (Figure 2.3).
The proxy or agent for a given mobile host is a stationery process that is responsible
for delivering messages to mobile hosts and caching information about the mobile host's
movements received from base stations.

What follows are examples of representative systems and how they solve routing and
cell hando�, that is, switching a mobile host between two base stations. These systems
were custom built and designed for their speci�c hardware infrastructure. The variety of
systems is due to architectural accommodation and semantics. Architectural accommo-
dation is necessary because mobile hosts have di�erent capabilities, so di�erent systems
have emerged for hosts that are dumb terminals versus hosts that can function as au-
tonomous entities. Protocol requirements such as TCP or IP, and �xed infrastructure
such as wireless communication protocols or base station requirements also necessitate
accommodation. Semantic variations exist to provide support for di�erent mobile host
applications, such as Web browsers, multimedia viewers, or portable patient monitor. The
systems presented here are intended to illustrate the many directions of mobile computing

33

Application

Mobile Host

Mobile Host Agent

Wireless Transmssion

Manager 3
Cell

Cell

Cell
Manager 2

Manager 1

Wired Transmissions

Figure 2.3: Agent-based mobile system.

research, with a special focus on cell hando� and quality of service.

2.3.2 Mobile IP

Several mobile computing protocols focus on routing messages to a mobile host anywhere
in the Internet. Mobile IP is one such set of IP based protocols [IDJ91, Per96, IJ93] that
handles routing and addressing of packets at the network layer. The architecture covers
Intranet as well as Internet routing and delivery, and has the bene�t of not a�ecting
routers that do not wish to participate.

Mobile IP works by modifying the way IP addresses are assigned and implemented.
Usually an address describes the network and subnet of the host, which is related to its
physical network connection. In this approach, each mobile host is given an IP address
that is in the mobile name space of a virtual network, which is made up of cells that are
administered by Mobile Support Routers (MSRs). An MSR is a gateway to the rest of the
wired network and a cell manager for one or more cells in the local area. Each cell has the
same subnet number resulting in a mobile subnet that is comprised of many unconnected
cells. Each MSR caches the current mobile hosts in the cell and MSRs for other hosts.
Thus, when a stationary host wishes to send to a mobile host, it simply forwards the
packet to the nearest MSR and the MSRs handle the delivery from there. Speci�cally, the
following is done when an MSR receives a packet for delivery:

1. If the MH is present in the area managed by the MSR, forward the message to the
appropriate base station.

2. If there is a forward pointer for the mobile host, forward the message to the other
referenced MSR since the host has migrated.

34

3. If there is no MSR to which to forward the message, broadcast a request to all other
MSRs asking that they attempt to locate the mobile host in their areas.

For this scheme to work, each mobile host must execute a handshake protocol with
the MSR of any new cell it enters. To facilitate this, each MSR periodically transmits
a beacon in its cell and every new mobile host responds with a greeting message that
indicates its last MSR. The new MSR sends a forward pointer to the previous MSR so
packets can be forwarded. Each MSR expires its entry for a mobile host if the host does
not communicate again within a speci�ed time interval, which is communicated to the
mobile host as part of the handshake process. Forwarding the packet to the nearest MSR
is handled by the normal Internet addresses advertised in the ordinary way with RIP,
Hello, or IGRI [Hed88, Mil83].

Mobile IP also supports routing to mobile hosts that temporarily relocate to another
part of the Internet that has Mobile IP support. When the host arrives at a network in a
di�erent mobile domain | i.e., a di�erent subnet | it is referred to as a pop-up and it is
assigned a temporary address known as a Nonce. The mobile host, with assistance from
local MSRs, informs an MSR in its old domain of its new location and Nonce address.
The old MSRs now forward packets for the mobile host through the Internet to the Nonce
address to be delivered by local MSRs. Routing proceeds the same as before, except that
MSRs in the mobile host's permanent subnet forward messages with the Nonce destination
address.

Other IP protocols have been developed that provide similar functionality [Car92,
CPR92, IDJ91, PB94, Rek93, TYT91, WYOT93].

2.3.3 InfoPad

The InfoPad is a mobile computing system speci�cally designed to support multimedia
applications, including video, audio, pen, text and graphics [KMS+93, MSK+93, LSBR94,
LBSR95, ABSK95]. The collection of mobile devices, called InfoPads, along with an
indoor radio cellular network and wired backbone network form the InfoNet. The InfoPad
has no general purpose computation resources so it serves only as a multimedia display
and I/O device, with actual computation being performed by machines on the backbone.
Communication to InfoPads is over a dedicated contention-free radio channel running at a
data rate of 700 kbps. Communication originating from an InfoPad uses a contention-based
control channel running at 244 kbps. It is typical to use the InfoPad as a multimedia data
sink, therefore the asymmetry of the design supports large data streams to the InfoPad
and not from the InfoPad to the backbone. Because of the multimedia requirements,
quality of service is a primary consideration of this design. The InfoPad must control
jitter for sound data and provide good throughput for video.

The software components that comprise the InfoNet can execute on many workstations
and are similar to the generic system outlined above:

PadServer. For each InfoPad, a PadServer acts as the agent and runs on a workstation
attached to the backbone. It is responsible for managing applications connected to the

35

InfoPad, controlling access to the InfoPad, and allocating InfoPad resources such as mi-
crophone, display, and speaker. It also negotiates quality of services requests on behalf of
applications. This negotiation may occur several times as the pad moves from location to
location crossing cell control boundaries. The InfoPad is unaware of location changes and
does not participate in mobility and connection maintenance.

CellServer. The CellServer is the cell manager and controls the allocation of resources
among the InfoPads in the cell. When a new InfoPad comes into the cell, the CellServer
negotiates its quality of service parameters. CellServers can also negotiate with geograph-
ically neighboring cells to hand o� InfoPads whose transmission quality has degraded and
can be improved with a di�erent cell connection.

Gateway. The Gateway is responsible for converting messages between the wired and
wireless networks. It receives wireless messages and routes them to the stationery des-
tination; it also receives messages from the wired network and transmits them through
wireless transmissions to the InfoPad.

Network Controller. The Network Controller is a generalized name service that provides
all parties in the InfoNet with name and address mapping information for InfoPads, Pad-
Servers, CellServers and Gateways. There is one Network Controller for the entire InfoNet.

Applications. Applications run on stationary workstations and are created with knowl-
edge about their quality of service requirements, which can be characterized by the latency,
jitter, and bandwidth characteristics of the data streams. The application must be able
to adapt when all of the quality of service requirements cannot be met, e.g., by sending
fewer video frames. The application communicates with PadServers and in some cases
directly with the Gateway.

2.3.4 PARC TAB

The PARC TAB is an infrared-based communications network designed to operate in
o�ce building sized areas [STW93, AGSW93]. Named for the palm sized mobile host,
the system is constructed as a collection of Unix processes providing reliable connections
from applications to mobile hosts. The PARC TAB has very limited storage and compute
power, and therefore is treated as a mobile terminal rather than a standalone machine. As
a result, most of the actual computation is done by application processes that execute on
stationary resource-rich Unix workstations. Routing is agent-based, so applications send
messages to agents of mobile hosts and the agent routes the message to the current base
station in contact with the mobile host. Each base station is controlled by a Unix process
and forwards detection of a mobile host to the host's agent. Agents use this information
to forward messages destined for the mobile host. Tra�c originating at the mobile host
is easier to route since it is all directed to the stationary agent. The agent then forwards
the message to the appropriate application process. In general, the agent sends PARC
TAB responses to the application, while the application sends screen updates and receives
touch pad and button press events from the PARC TAB. Thus, the user perceives the

36

PARC TAB as running applications when in fact the application is really executing on a
workstation somewhere in the building.

2.3.5 Dataman

Dataman is a mobile Web browser designed to be used while roaming a campus [BB95,
IBar, IB93, AB93, ABI93, BAI93a, BAI93b, BBIM93]. Although the Web is its targeted
application, the architecture is general and supports a range of applications. The main goal
of the Dataman architecture is to allow applications that are TCP/IP based to function
with mobile hosts; the application cannot detect whether the TCP/IP connection is with a
stationary or mobile host. The Dataman architecture also supports location independence
so the host can move and transparently access resources from the local area. For example,
a Web browser can get the next page (hyper-link) from the nearest server.

The architecture uses Mobile IP for addressing mobile hosts and modi�es TCP/IP so
the mobile side of the connection appears stationery by using a stationary intermediate
host. The modi�ed version of TCP/IP is Indirect-TCP/IP (I-TCP/IP). Mobile IP is used
to make connections from the stationary machine to the stationary MSR (Mobile Support
Router), which administers a cell with a base station (Section 2.3.2). The MSR then
runs an I-TCP connection to the mobile host. The MSR \fakes" the mobile host side
of the TCP/IP connection so that it appears stable and non-mobile. I-TCP/IP requires
applications to check that all packets are delivered, unlike TCP/IP; hence, it depends on
end-to-end application layer reliability guarantees. Other changes to TCP/IP are that,
when a connection migrates during cell hando�s, the slow start timer is reset so that the
new MSR has time to establish a connection before other packets are sent. Other versions
of modi�ed TCP for mobile computing are described in [BSAK95, ABSK95, BKPV95].

When the mobile hosts moves in Dataman, the mobile host requests that the new
MSR ask the previous MSR to migrate its I-TCP connection. The migration includes the
TCP/IP connection, sockets, protocol numbers, and any bu�ers to be received or sent.

2.3.6 Crosspoint

Crosspoint is a campus-wide wireless mobile network designed to enable students to main-
tain connectivity while roaming freely within a campus [CR94, CLR95]. The system's
primary goal is to have enough aggregate bandwidth to handle massive synchronized
movements of hosts as students change classes. In addition to handling huge volumes of
mobility information, a secondary goal is that the architecture not require any modi�-
cation to network software within routers. The Crosspoint architecture has a fast ATM
switching fabric for fast interconnect between base stations and routers connected to the
regular campus internet. The ATM switching network provides two virtual circuits be-
tween each base station: a high priority control channel and a lower priority data channel.
The communication between routers and base stations is unique but the rest of the archi-
tecture is typical; base stations transmit and receive packets transmitted over the wireless
medium and then route those packets by an ATM switching network to their destination.
Each base station informs all others about what hosts are in its area. Mobile hosts com-
municate with each other by the base station picking up the wireless signals and routing

37

to another base station that transmits to the other mobile hosts. A packet headed for
the wired network is routed through the ATM switching fabric to the routers controlling
access to the campus internet.

2.4 Modular Protocols

2.4.1 Overview

Most networking protocols have traditionally been large complex software systems, which
has made them di�cult to debug, extend, and modify. Originally, these systems were
monolithic implementations for performance reasons, but now there is increasing recog-
nition that modular implementations can be competitive in this area. One way to create
a modular implementation with good performance is to implement services as software
modules, which are then optimized into a monolithic executable using compiler technol-
ogy [AP93]. This section presents systems for constructing protocols that are implemented
and executed as modular code structures. We also discuss modular systems that regard
modularity as an opportunity to improve runtime performance. In particular, such sys-
tems execute protocol modules in parallel using the modular structure as a framework for
parallelization.

2.4.2 The x-kernel

The x-kernel is a system for composing protocol modules that facilitates experimentation
with communications systems. It provides a \protocol backplane" for protocol compati-
bility and interoperability. Each protocol supports a common set of operations that form
a uniform protocol interface (UPI): push, pop, and demux of messages between protocols.
The UPI supports the construction of protocols that can be hierarchically composed in a
protocol graph. The x-kernel has a thread per message architecture. That is, a thread is
created for each message to shepherd the message through the protocol graph, executing
the code at each layer. Most common protocols are available from an extensive library of
implemented protocols.

Messages are the main mechanism for communication and information sharing between
protocols. There are also limited control operations that allow execution of an arbitrary
operation by another protocol. The x-kernel provides e�cient services for typical network-
ing protocol operations, such as message assembly, fragmentation, and header additions
and deletions. Mapping utilities are also provided for associating keys with data and
looking them up.

2.4.3 Horus

Horus provides applications with con�gurable communication support by allowing users
to combine individual layers in a protocol stack to achieve some desired overall function-
ality [vRBF+95, vRBG+95, vRHB94, RBM96]. Horus is designed primarily for building
communication services for fault-tolerant systems. For example, a con�gurable implemen-
tation of the ISIS system described in Section 2.1.3 has been built using Horus. Protocol

38

objects in Horus are assembled into a stack at runtime. First, complex services are de-
composed into simple protocols, where each is written using a common set of upcalls and
downcalls termed the Horus Common Protocol Interface (HCPI). This interface supports
the same operations as the x-kernel UPI plus additional calls, for example, to join a group,
merge views, and send a message to a subset of members. Each layer is normally written
in ML, but can also be written in C to improve performance. There is a library of 20
common protocols, each one providing a particular communication feature.

To facilitate implementation, Horus provides a standard set of objects for protocol
writers, including endpoints, groups, messages and threads. An endpoint represents a
communicating entity and has an address used for membership. Endpoints can send
and receive messages, although messages are not addressed to endpoints but rather to
group objects. A process can have multiple endpoints and each stack of protocols has
an endpoint. Group objects maintain the local protocol state of an endpoint and a view
of the group membership. The Horus message tool supports pushing and popping of
headers, similar to the x-kernel. Threads perform computation and are not bound to any
particular endpoint, group, or message. A process can contain multiple threads, which are
created when a message arrives by another thread or by a timer. Threads are executed
concurrently and run preemptively. Protocols are designed for multiprocessing so they are
asynchronous and re-entrant.

2.4.4 ADAPTIVE

ADAPTIVE (A Dynamically Assembled Protocol Transformation, Integration, and eValu-
ation Environment) is a exible transport environment for developing protocols of diverse
quality of service requirements running on high-performance networks [SBS93, SS94]. The
main bene�ts of ADAPTIVE are customized lightweight sessions and alternative process
architectures for parallel processing. Sessions are the state of a connection and contain
roundtrip timers, local and remote addresses, sequence numbers, and ow control window
advertisements. Instead of incorporating complete functionality in a single protocol, the
transport layer is created from several smaller protocols that are customized for the ap-
plication's needs. To facilitate this process ADAPTIVE provides lightweight sessions that
can automatically be con�gured to create a system on shared-memory or message passing
multiprocessors. Con�guration can be done either at compile time or at runtime; in the
latter case intermediate switching nodes are used to determine if the application's quality
of service requirements can be met [SS94]. The system also has performance monitoring
and data collection to analyze the performance of di�erent con�gurations. The data col-
lection can also be used to adjust the system behavior dynamically, which makes it ideal
as a platform for adaptive systems.

2.4.5 Object-Oriented Framework

An approach to creating middleware protocols to support application-speci�c con�gu-
rations has been described in [Gol92, GL93]. This approach is based on a framework,
which is an object-oriented description of the components of a system. The framework
is speci�cally built as an environment for group communication such as would be needed

39

for coordination of replicated objects in a distributed system. The system has compo-
nent objects that can be included or left out depending on the guarantees required. The
various components can also have di�erent implementations for similar services, such as
di�erent ordering implementations or di�erent membership support. The framework in-
cludes a number of prede�ned data structures, including a message log, message summary
information, and a group view.

2.4.6 Streams

System V Streams supports modularization of protocols using a hierarchical composition
model [Rit84]. In this system, an I/O stream consists of several modules linearly linked
together, where each module has an identical read/write interface to facilitate interchange-
ability. A module includes queues of incoming and outgoing message blocks, a put routine
for queuing, and a service routine to perform the module's operation. The runtime sys-
tem manages queue ow control by managing the scheduling of the service routine. The
modules only communicate by sending message blocks, either data or control.

The pipeline of modules can be extended by pushing a module on or popping a module
o�. This facility was originally envisioned for terminal I/O, where a module can be pushed
on for one type of terminal driver or network device. System V Streams has also been used
to provide interprocess communication by using PT (Pseudo Terminals) to link Streams
on two hosts.

2.4.7 Parallel Protocol Execution

The emphasis of this project is on developing modular implementations of protocols to
improve performance and con�gurability of communication support for gigabit/second
networks [MS93, LAKS93]. Faster performance is achieved by executing the individual
modules on the individual processing units of a parallel machine. In addition to speed
requirements, these protocols send voice and video transmissions with image and data en-
cryption, which presents even further protocol processing requirements. The �ne-grained
modularity of these protocols allows communication services to be con�gured to match
the transmission, encryption, and compression requirements of the application.

A protocol is created from a collection of �ne-grained protocol objects that perform
isolated processing tasks. By dividing the tasks to be performed, a processor can be
assigned to each task to gain the advantages of parallel execution; protocols can process
incoming and outgoing packets concurrently. Protocol objects communicate by sending
messages and can coordinate their actions in a more exible manner than traditional
protocol architectures. In addition to protocols sharing information using asynchronous
messages, synchronous communication is also possible by executing a method in another
protocol object.

The contributions of this project are parallelism applied to protocols and the ability
to con�gure the protocol objects to match application requirements. To achieve this
performance, the layered protocol model of communication services is violated to increase
parallelism by adopting a more free-form layered model.

40

2.4.8 Parallel versions of the x-kernel

A parallel implementation of the x-kernel that runs on Silicon Graphics shared memory
multiprocessors is described in [NYKT94]. In this system, packet-level parallelism is used
in which packets can be processed on any processor. To make the x-kernel multiprocessor
safe, locks were added to routines that access x-kernel data structures. The basic x-
kernel structuring of protocols objects remains the same, but each object now needs to
be concerned about protecting its data structures from concurrently executing threads.
The system was built and measured using a TCP/IP stack, which shows performance
improvements and good scalability A separate and similar parallel implementation of the
x-kernel is described in [Bjo93].

2.4.9 Parallel Protocol Framework

The Parallel Protocol Framework (PPF) de�nes a hierarchical implementation and parallel
execution environment for protocols [GNI92]. The PPF provides many e�cient primitives
so the protocols can be written more consistently and easily. Events are used for com-
munication between layers; in particular, protocols communicate by posting events to
another protocol. The receiving protocol is explicitly identi�ed when the event is gen-
erated and only one receiver is permitted. Protocols may also communicate with other
protocols in the same layer using events. The events can be ordered by sequence numbers
to prevent messages from being delivered out of order in a particular connection due to
parallel execution. For non-connection oriented protocols, events can be executed with no
ordering restrictions. This event interface between protocols supports some interchange
of protocols, although protocols must have the same interface and expect identical argu-
ments. Like the x-kernel, the PPF supports a hierarchical graph of protocols. Also like the
x-kernel, each message is shepherded through the protocol graph, executing each protocol.

2.5 Con�gurable Operating Systems

A recent trend in operating systems (OS) is towards con�gurable systems that place
traditional OS functionality under application control to improve performance. Many
studies have shown that when OS policies are not well matched to the application, poor
performance can result. For example, the �le system requirements of Web applications,
compilers, and scienti�c computations are very di�erent so it is unlikely that one �le
caching policy will give peak performance for all three. This section describes several
operating systems that give control over many policies of this type to applications.

2.5.1 Spin

The Spin operating system allows OS services to be tailored to speci�c applications. The
focus of Spin is on extensibility, safety, and e�ciency [BCE+95]:

� Extensibility. The system provides �ne-grained access to system resources and func-
tions. Extensions are dynamically linked into the kernel virtual address space and

41

protection domain. Using this mechanism, users can augment the memory man-
agement system, scheduling, and network subsystems. For example, the system
can be con�gured with a di�erent page replacement algorithm specially tuned for a
particular database application.

� Safety. Applications can install new policies, but these should not a�ect other
applications. The extension mechanism contains the e�ects of di�erent extensions
by using language features to enforce type safety and logical protection domains to
manage processes' control over resources. These protection domains can be disjoint
or overlapping to provide sharing between processes.

� E�ciency. The system is extensible, but not at the cost of performance. To provide
an e�cient system, events are used for structuring. In particular, applications pro-
vide handlers for events triggered by the system, which allows user code to extend
OS behavior. To reduce event overhead, handlers are invoked using procedure calls;
since handler code is executed in the kernel address space and protection domain,
no user/kernel boundary crossings are needed.

2.5.2 Exokernel

The Exokernel is a customizable operating system that provides opportunities for domain-
speci�c optimization through extending, specializing, or even replacing object-oriented
libraries [EKO95]. The Exokernel is a micro-kernel that allows untrusted software running
in user space to implement normal OS functions, such as virtual memory and interprocess
communication. Most applications use one of a handful of available library OS with
popular interfaces, e.g. POSIX, but they can also create their own customized versions.
Like Spin, the Exokernel is concerned with performance, so it allows the OS libraries
to access the hardware directly. User processes can directly access hardware in secure
ways through capabilities granted by the kernel, with access being revoked if a process
misbehaves. The system implements secure bindings for capabilities that cannot be forged
by another process so the kernel does not have to check every access. The OS library code
is downloaded into the kernel for execution to avoid the cost of crossing the user/kernel
boundary.

2.5.3 Scout

Scout is a con�gurable communications-oriented operating system targeted to supporting
\information appliances" rather than just computation [MMO+94, MP96]. The specialized
tasks performed by such systems are implemented as customized software, which allows
the use of inexpensive commodity components. To facilitate development, Scout provides
a toolkit for con�guring modules required by the application. Scout employs specialized
compiler techniques to optimize predictable execution of OS code to increase instruction
cache hits.

Quality of service is also a concern in this type of OS, so Scout is organized around
the idea of a path. A path is an extension of a network connection into the host operating
system from data source to data sink. Resources (CPU, memory bu�ers, I/O Bus, cache,

42

TLB) are allocated based on the quality of service requirements of a particular path.
Scheduling in the OS is based on the path and not on threads. Scout does not enforce
a particular quality of service model but rather provides the mechanisms to support a
variety of policies.

2.5.4 Application Controlled File Caching

Application controlled �le caching is designed to improve performance through customized
caching policies [CFL94b, CFL94a]. The goals of the approach are never to perform
worse than LRU and to prevent misbehaving processes from negatively impacting the
performance of other processes sharing the �le cache. The approach is as follows. First,
when a cache miss occurs, the OS selects a process to give up a block. The process
can select any block but if its decisions result in increased cache misses relative to what
the kernel would have provided, the kernel re-assumes control. An application can also
rely on any one of several replacement policies already implemented by the system (e.g.,
MRT, LRU) based on the usage pattern of �les. Even with the extra overhead of extra
crossings of the user/kernel boundary to consult the user process for block replacement,
the improvements to �le caching result in a reduction of block I/Os by as much as 80%.
For applications that select a replacement policy already implemented by the kernel, no
extra user/kernel boundary crossing are incurred.

2.6 Summary

Software for distributed systems can be simpli�ed using communication services and ab-
stractions such as multicast, membership, RPC, and various systems that support mobility.
While all services of a particular type have the same basic functionality and structure,
a variety of speci�c systems have been de�ned that specialize the semantics to match
the needs of particular applications. A number of projects have developed modular ap-
proaches that allow a degree of customization, but the modules are relatively coarse grain
and composition is constrained to be hierarchical.

43

CHAPTER 3

COMPOSITE PROTOCOL MODEL

3.1 Motivation and Goals

Early protocol systems were designed as monolithic entities, and their implementations
reected this. Even as the layered model gained acceptance as a conceptual tool to view
protocol composition, implementations still tended to be ad hoc, reecting a concern that
implementing each protocol as a distinct entity would result in signi�cant performance
penalties. It is only recently, in fact, that software support for protocol composition has
reached a level where hierarchical collections of protocol objects can be combined into a
system whose performance is competitive with monolithic implementations.

Constructing a communication service from collections of protocol objects has a num-
ber of advantages. Perhaps the most important is that it allows, at least in theory, reuse
to construct new services. In other words, a new service can be constructed by writing
a new object that implements just the new aspect of the service, and then combining
it with existing, well-tested objects that provide the other necessary functionality. Over
time, a comprehensive library of objects can be developed, thereby simplifying the devel-
opment e�ort, facilitating performance comparisons between protocol implementations,
and allowing experimentation with new protocol concepts.

While hierarchical composition has worked well for a large class of protocols, a per-
suasive case can be made that it lacks the exibility needed to implement certain types
of protocols. For example, in designing and implementing Consul using the x-kernel, a
number of inherent problems with the model were discovered [MPS93b]. These problems
can be summarized briey as follows:

� Provisions for communicating between protocol objects on the same machine are
insu�cient to implement the necessary complex interactions. In the x-kernel, the
speci�c problem is that the Uniform Protocol Interface (UPI) lacks su�cient exi-
bility, thus requiring the programmer to use control operations as a workaround.

� Lack of communication support leads to implicit dependencies between objects,
where one object \expects" another to realize some functionality. When compared
to an explicit dependency caused by an invocation, implicit dependencies make the
software di�cult to debug and modify.

� A protocol object may need to store and examine multiple messages at a time to
implement, for example, message ordering properties. Such a processing paradigm
di�ers from traditional protocol objects, which typically deal with a single message
at a time.

� Multiple protocol objects may need to coordinate their actions or synchronize relative

44

to a given message or set of messages. Such coordination is di�cult in the current
model.

A remarkably similar experience has been reported independently by the developers of
xAMP [Fon94].

While these limitations are directly relevant only to atomic multicast protocols like
Consul and xAMP, there are several reasons to believe the lessons are applicable to other
types of protocols as well. First, increasingly sophisticated services are being implemented
as network protocols, in part because of the advent of protocol-oriented kernels such as
the x-kernel. These services, like atomic multicast, are the type most likely to stretch or
break the hierarchical model. Second, as distributed applications become more common,
the demand for new types of specialized protocols very di�erent from current protocols
will increase. Doing such specialization in a hierarchical model|especially �ne-grained
specialization|is likely to be di�cult. Finally, applications are demanding more con-
trol over their execution environment, including the communication substrate, in order
to achieve the best possible performance. Such con�gurability will further increase the
complexity and variety of protocols that must be supported.

This research is based on the premise that the construction of network services through
the composition of protocol objects is the appropriate paradigm. Our objective, however,
is to relax the restrictions on intra-machine inter-object communication imposed by the
hierarchical approach. In our approach, protocol objects performing unrelated tasks are
located in di�erent layers and communicate normally using the standard UPI of the x-
kernel. However, protocol objects that need to communicate more often or cooperate
more fully|our micro-protocols|are co-located within a structure that provides richer
facilities for this type of interaction. Micro-protocols have no direct knowledge of each
other; communication is achieved indirectly through an event mechanism. This structure,
described in detail in the next section, has a number of bene�ts, including:

� Expressibility. The micro-protocol execution environment provides a new, more
general model for structuring protocol objects. Micro-protocols can communicate
with an arbitrary number of other micro-protocols, can synchronize when necessary,
and can operate on collections of messages. The environment also supports multiple
threads of execution.

� Con�gurability. A network service is constructed out of modular micro-protocols,
each of which implements a speci�c semantic property. The result is an approach
that supports a high degree of con�gurability and the construction of services that
are customized to the needs of the application.

� E�ciency. Since a network service can be customized, the application avoids exe-
cution overhead that can result from the inclusion of unnecessary properties. For
example, it is easy to build an atomic multicast that includes no consistent ordering
of messages, thereby avoiding the delay inherent in doing such ordering.

� Resuability. Micro-protocols implementing various semantics can be used in multiple
services. For example, a liveness micro-protocol that checks that all processes have

45

sent a message within some given time interval can be used in a variety of protocol
suites.

� Ease of debugging and maintenance. Since a service is constructed from small micro-
protocols, each can be debugged and maintained independently. This process is also
simpli�ed since interactions between micro-protocols are largely explicit.

� Explicit dependencies. Dependencies between micro-protocols are explicit
since \back door" communication channels are unnecessary. This makes understand-
ing the micro-protocols easier and the interactions obvious.

� Future opportunities for optimization. Explicit dependencies create the potential
for code optimization. For example, it may be possible to in-line code using tech-
niques similar to [AP93] to yield a system with e�ciency competitive to monolithic
implementations.

� Availability of x-kernel protocols. Since our system is incorporated in the x-kernel,
all existing and future x-kernel protocols can be used without modi�cation.

In summary, then, our goal is to extend current technology to encompass more �ne-
grained composition of protocol objects, both to simplify development and to increase the
con�gurability of the network subsystem. Note that a second prototype implementation
of the model has been constructed in C++ [Hil96].

3.2 A Two-Level Model of Protocol Composition

In the standard x-kernel model, a hierarchical graph of protocol objects is used to realize a
communication service. A thread shepherds each message along a path through the graph
executing the x-kernel operations call, push, pop, and demux to route the message on the
correct path from the application to the network or vice versa. Messages can be modi�ed,
destroyed or created as they traverse the graph.

In addition to processing application messages, a protocol object uses messages to
communicate with other protocol objects to which it is connected in the graph. Since this
graph is hierarchical, however, communication exibility is limited, especially with regard
to allowing communication among protocol objects at the same level of the graph. Thus,
our scheme augments this model by adding composite protocols, which essentially create
new ways for protocol objects at the same level to communicate. In addition, we have
extended the one-thread-per-message model to multiple-threads-per-message model and
provided an event-driven mechanism for protocol communication.

In our model, the standard x-kernel hierarchical model is augmented with the ability
to include composite protocols in the protocol graph in conjunction with simple x-kernel
protocols. Unlike simple protocols, each composite protocol has an internal structure
formed of a collection of micro-protocols executed in an event-driven manner. The major
components of a composite protocol are:

� Micro-protocols: A section of code that implements a single well-de�ned property or
provides some speci�c functionality. Consists of header information, private data,

46

UDP

IP

Ethernet

Arp

Appl

CP

Event Handlers

C

C

R F

CR F

Composite Protocol (CP)

Micro Protocols

Membership [M]

Failure Detection [F]

Causal Order [C]

Reliability [R]

Messages

Event Manager

Msg popped to CP

Msg popped from CP

Membership change

Msg pushed to CP

Figure 3.1: Composite protocol within an x-kernel protocol graph.

initialization code, and a collection of event handlers. May export data for use by
other micro-protocols.

� Events: An occurrence that causes one or more micro-protocols to be invoked. Event
handlers are invoked (logically) in parallel. Event types specify whether the trig-
gering micro-protocol is blocked until completion or not. Some events of interest
are prede�ned and generated by the framework (e.g., message arrival); others are
de�ned by micro-protocols (e.g., change in group membership).

� Framework: A runtime system that implements the event registration and triggering
mechanism, and contains shared data (e.g., messages) that can be accessed by more
than one micro-protocol.

An example of this model is shown in Figure 3.1. To the left is an x-kernel protocol graph
that contains a composite protocol CP implementing atomic multicast. To the right is
an expanded view of CP illustrating the components of the model. In the middle of CP
is the runtime framework, which contains a shared data structure|in this case a bag of
messages|and some event de�nitions. The boxes to the left represent micro-protocols,
while to the right are some common events with the list of micro-protocols that are to be
invoked when the event occurs.

47

micro-protocol name f

... Decl of exported events, message attributes,
data inspection, modi�cation routines ...

... Decl of imported events, global variables ...

... Decl of private events, message attributes, variables ...

... Initialization code ...

... Event handlers ...

... Local procedures ...
g end micro-protocol name

Figure 3.2: Micro-protocol schema

3.3 Micro-Protocols

A micro-protocol is structured as a collection of export, import, and private declarations,
and code for event handlers and local procedures, as shown in Figure 3.2. The export
section lists procedures and events implemented and declared in this micro-protocol, but
available for use elsewhere. The import section lists procedures and events that are pro-
vided by other micro-protocols. For brevity, events that are provided by the framework
are not included in the import list since as they can be freely imported by any micro-
protocol. Events and data that should not be accessed by another micro-protocol are
listed in the private section. Micro-protocols use private events for internal communi-
cation. The initialization section contains statements that are executed at system start
time to, for example, initialize private micro-protocol data. The next section contains the
event handlers that make up the majority of micro-protocol code. Finally, the last section
contains local procedures.

The general form of an event handler is:

event name [&& boolean-expr]* ! handler

Each handler is preceded by an event name and an optional boolean expression to make
the handler execution conditional. This boolean expression or guard may reference event
parameters, message attributes, and micro-protocol variables. When the event is raised,
the guard is evaluated and the handler code executed if the result is true. 1 For example,
a micro-protocol that resets timeout timers when an acknowledgment messages arrives
might have a guard that checks that the message type is \acknowledgment".

Micro-protocols often manage data that can be exported by public data inspection
routines. For example, a membership micro-protocol might export a routine that returns
the current membership list. In these situations, only the micro-protocol declaring the
data can alter it, so that changes by other micro-protocols must be requested by raising
an event or calling an exported routine that modi�es the data. When a micro-protocol
modi�es its data, it will often raise an event to notify other micro-protocols about the state
change. For example, the membership micro-protocol might react to a \timeout" event

1Guarded events are not implemented in the prototype. Each event guard is translated by the protocol

writer to an if statement at the beginning of the event handler.

48

by suspecting that a process has failed. If after further checking|for example, by running
an agreement protocol with the other processes|it determines that a failure has indeed
occurred, it would update the membership list and raise an event declaring a change to
that list.

We express micro-protocols in an informal Protocol Description Language (PDL) that
supports the structure of micro-protocol programming described above, and enforces vis-
ibility and modularity rules. Micro-protocols written in PDL are currently translated by
hand into C �les that are compiled using the standard C compiler. The intent of the
language is to provide a common syntax for expressing micro-protocols that can then be
translated into source code that is linked with the framework code to create composite
protocols.

Other aspects of micro-protocols shown in Figure 3.2 (e.g., message attributes) are
described below.

3.4 Events and Handler Execution

Events are a general communication mechanism used to inform micro-protocols that some-
thing of interest has happened. A micro-protocol requests noti�cation from the runtime
system for a given event by declaring a handler as shown above. Each event may have mul-
tiple handlers, and the handlers are not necessarily known to the micro-protocol raising
the event. The latter property helps decouple micro-protocols from one another, thereby
simplifying the task of writing micro-protocols that can be combined in a exible fashion
with other micro-protocols. For example, one micro-protocol can be responsible for de-
tecting a situation, with another implementing the policy for resolving it. This type of
structure allows the policies for each to be realized orthogonally based on the needs of the
application and the speci�c collection of micro-protocols con�gured into the framework.

Events can also have parameters. For example, when an event corresponding to the
expiration of an acknowledgment timer occurs, we might also want to communicate which
message is lacking the acknowledgment. Such functionality can be realized by passing that
information as an argument to the registered event handlers. All parameters are passed
by value.

Events can either be user-de�ned or prede�ned by the runtime system. A user-de�ned
event, such as the one related to timer expiration above, is exported (declared) by a given
micro-protocol and explicitly raised by invoking a routine implemented by the framework.
Prede�ned events, on the other hand, are exported by the runtime framework and implic-
itly raised when the framework detects that the event has occurred. In both cases, the
event can be imported (handled) by any number of other micro-protocols.

The following list gives the prede�ned events currently supported; here, xMsg refers
to an x-kernel message and CPMsg refers to a composite protocol message, both of which
are described in more detail in Section 4.1:

� Message Popped To CP(xMsg): An x-kernel message from a lower-level x-kernel pro-
tocol has been popped to the composite protocol.

� Message Popped From CP(CPMsg): A message has been popped from the composite
protocol to the x-kernel higher-level protocol.

49

� Message Pushed To CP(xMsg): An x-kernel message from a higher-level x-kernel
protocol has been pushed to the composite protocol.

� Message Pushed From CP(CPMsg): A message has been pushed from the composite
protocol to the x-kernel lower-level protocol.

� Message Inserted Into Bag(CPMsg): A message has been constructed and inserted
into the shared bag of messages.

� Message Deleted From Bag(CPMsg): A message has been deleted from the shared
bag of messages.

� Message Ready To Be Sent(CPMsg): All micro-protocols are satis�ed that the mes-
sage can leave the composite protocol, either to be popped or pushed.

Handlers are scheduled for execution when an event is raised. If there are multiple
handlers registered for that event, the order in which they are executed is indeterminate.
In fact, they may be executed in parallel given the appropriate hardware. Dependencies
between handlers are programmed explicitly using the event mechanism.

Execution of a micro-protocol that raises an event can either block until all handlers
have completed (synchronous) or proceed without blocking (asynchronous). The choice
of semantics is speci�ed as an argument in the system call that raises an event, implying
that it can vary on a per-invocation basis. These semantics extend as expected through
multiple levels of recursively raised events.

3.5 Timer Events

Support is also provided for timer events that are generated after a speci�ed amount of time
has passed, rather than by any particular action of a micro-protocol or framework. Timer
events are essential for detecting timeouts and performing periodic protocol functions.
There are no prede�ned timer events, so all timer events are user-de�ned, and, like other
events, value parameters can be passed to handlers. When a timer event is set, the user
speci�es the timer interval and if the event will repeat or be a single occurrence. When
the speci�ed timer interval expires, the framework asynchronously executes all handlers
in parallel.

Unlike other events, timer events can be canceled. Cancellation is atomic with respect
to handler execution; even if handlers have started to execute when the cancellation occurs,
they are allowed to run to completion. When a single occurrence timer event is canceled,
there are three possible event states: the event has not yet been triggered, the event has
completed, or event handlers are currently running. If the event has not been triggered,
then cancellation ensures that the event will never be raised. If all handlers for the event
have completed execution, then cancellation has no e�ect. If the event has been triggered
and handlers have started to execute, then all handlers are allowed to complete.

Cancellation of repeating events is similar to single occurrence events, but also prohibits
any further occurrences of the event. As with single occurrence events, if the event has
not been triggered, cancellation ensures that it will never trigger. If the event has already

50

occurred but no handlers are currently executing, then no further occurrence will be
triggered. If cancellation occurs during execution of the handlers associated with the
event, then all handlers are allowed to terminate and further occurrences are prohibited.
For both single occurrence and repeating events, a return value from the cancel function
indicates if the timer event was successfully cancelled.

3.6 Framework

The framework is a runtime system that implements the event mechanism and provides a
shared bag of messages on which micro-protocols operate. It also implements an x-kernel
compliant interface for the composite protocol, which enables it to inter-operate with other
x-kernel protocols in the standard way.

The framework accepts messages from the x-kernel and transfers control to micro-
protocols by raising the appropriate events and executing the appropriate event handlers.
As already noted, in the x-kernel, one thread shepherds any given message through the
entire protocol graph, executing code in various protocol objects on behalf of the message.
To handle the execution of potentially many event handlers, however, we extend this
model to allow multiple threads to execute on behalf of the message during its residence
in the composite protocol. This model provides more exibility than the one thread per
message in the context of composite protocols, and also allows the possibility of true
parallel execution, as noted above. The one thread per message model is restored when a
message leaves a composite protocol and is handed over to a standard x-kernel protocol
object.

Messages that arrive at a composite protocol are placed in an unordered bag of mes-
sages maintained by the framework that functions as a global pool accessible to all micro-
protocols. This feature is intended to support two aspects of programming that are com-
mon in the type of high-level protocols for which this approach is intended. First, it
allows micro-protocols to make state changes based on information in an entire collection
of messages, rather than just a single message as is typical in a hierarchical system. This
can be important, for example, in an atomic multicast protocol that requires waiting for
a collection of messages to arrive and then deterministically sorting the collection before
presenting messages to higher levels [PBS89, MPS93a]. Second, a shared bag of messages
allows multiple micro-protocols to access messages concurrently. This can be important,
for example, in a situation where a message is acknowledged by one micro-protocol while
concurrently being ordered relative to other messages by a second micro-protocol.

Prior to being placed in the bag, a verify micro-protocol is executed to determine if the
message is acceptable. For instance, a message might be rejected if corruption is detected
or if it is destined for a process that no longer exists. If the message is acceptable, the
verifying micro-protocol places the message in the bag using a routine provided by the
framework. The verify micro-protocol is written by the user, so that message screening
and bag insertion are under program control; deletion from the bag is similarly done by
the user. Commonly-used variants of verify can be supplied from a library, if desired.

Each message in the bag has a collection of attributes that encode certain types of
per-message information. Prede�ned attributes are supplied by the framework. For ex-

51

ample, one such attribute is direction, which indicates whether the message is being sent
up or down the x-kernel graph. Micro-protocol attributes contain micro-protocol-speci�c
information about the message. For example, a reliability protocol may keep private state
information about the message indicating whether it was acknowledged or is being re-
transmitted and by which hosts. Such attributes can be declared either private or public;
a private attribute is visible only to the micro-protocol that de�nes it, while a public
attribute can be read by all micro-protocols. In addition, attributes are used to build
headers for messages that are pushed from the framework. This is done by an attribute-
to-header routine provided by the user and invoked by the framework as a message is
exiting the composite protocol. Similarly, when a message is popped to the framework, a
header-to-attribute mapping routine is invoked that unpacks the header and creates at-
tributes using this information. Both of these mapping routines are currently supplied by
the user, although it is easy to imagine generating them automatically from appropriate
speci�cations.

As already noted, data de�ned within a micro-protocol can also be shared by exporting
appropriate inspection routines. Any necessary synchronization within these routines is
done explicitly using semaphores. With our prototype implementation, such synchroniza-
tion is only necessary if the data is not written atomically and either a message push or
an explicit event triggering is done in the middle of the code e�ecting the change.

3.7 Message Sending and Garbage Collection

In many cases, when to send a message up to the application or down to a lower-level
protocol is a decision that cannot be made by one protocol alone, so coordinated sending
is needed. For example, consider a message that has arrived from the network via a
lower-level protocol. The acknowledgment protocol has dispatched a reply message to
acknowledge receipt of the message, so it is completely satis�ed that the message can
be sent up to the application layer. However, an ordering protocol that places strict
requirements on message ordering may wish to force the message to stay in the composite
protocol. Realizing such coordination is especially di�cult since it must function correctly
for any combination of micro-protocols.

Determining when a message is \ready to send", then, can be a complex process
involving multiple micro-protocols. The framework supports such coordination with the
use of send bits associated with a message. There is one bit per micro-protocol, and when
all send bits have been set, the framework automatically sends the message. If a micro-
protocol does not need to restrict when a message can be sent, it sets its send bit by default.
Often, this is done in the handler bound to the Message Inserted Into Bag(CPMsg)

event, which is always one of the �rst executed when a message arrives. Usually, the last
send bit is set by the micro-protocol with the most restrictive conditions.

Similar to send bits are deallocate bits, which function to coordinate message deallo-
cation. Again, each micro-protocol has a unique deallocate bit for each message. When
all deallocate bits are set, the framework raises the Message Ready To Be Deallocat-

ed(CPMsg) event. The micro-protocols can then free any information related to the mes-
sage. Note that if there are any outstanding send operations with references to the mes-

52

sage, then deallocation is deferred until all such operations have completed. This is done
to avoid pending send operations with references to deallocated memory.

An alternative to coordinated deallocation is a more centralized scheme that employs
a micro-protocol that knows when it is safe to free messages based on other events. Some
composite protocols naturally lend themselves to this approach. For example, once a
message is sent or written to stable storage it can often be deallocated safely. Conversely,
other micro-protocol suites may need to keep messages for retransmissions and hence, mul-
tiple micro-protocols could be involved. To provide a exible environment, the framework
accommodates both styles of garbage collection.

In addition to coordinated sending of messages, micro-protocols can also send messages
without any other micro-protocol being informed. This is referred to as an out of band

message because it is sent directly without using send bits or being inserted into the shared
bag. Similarly, no events are triggered. Micro-protocols use out of band communication for
sending control messages to peers without notifying other micro protocols in the composite
protocol. Out of band messages are only supported for messages sent to the network via
a lower-level protocol and not messages sent to the application. Sending of the message
is synchronous and no Message Pushed From CP(CPMsg) event is raised after the send
operation is complete.

3.8 Examples

To illustrate the structure of micro-protocols and the event-driven programming paradigm,
we present two short examples of micro-protocols that might be part of a suite used to
implement an group communication service. The �rst is a simple membership micro-
protocol that updates a membership list whenever a host is suspected of having failed.
The second is an acknowledgment micro-protocol that sends an ACK message for each
reply message received, sends a \still working" message to a client if the reply from the
local server is slow, and raises the Suspect Host Dead event if a server is suspected to
have failed. Both are written in PDL pseudo-code.

3.8.1 Membership Micro-Protocol

Figure 3.3 shows the code for the membership micro-protocol. At the top is an exports

section that speci�es inspection routines, events, and attributes that are exported for
use by other micro-protocols. Here, an event for membership change and a routine for
accessing the current group membership are provided. Note that the event speci�cation
includes a parameter to indicate whether the event of interest is the failure or recovery of a
host. The exports are followed by an imports section, in this case an event corresponding
to a suspected failure. This particular event is raised by the acknowledgment micro-
protocol below and �elded by an event handler in MEMBERSHIP. Note that this speci�cation
also includes a parameter, speci�cally, an indication of which host is suspected to have
failed. Next, the micro-protocol includes declarations for any private data, attributes,
and events. In this case, the only private data is the membership list maintained by the
micro-protocol.

53

micro-protocol MEMBERSHIP f

exportsf
event Membership Change(ch t type);
proc memList t GetGroup();

g

importsf
event Suspect Host Dead(mem t host);

g

privatef
memList t MemberList;

g

initializef
initMembershipList();

g

actionsf
Suspect Host Dead(mem t host) !

if (find(host, MemberList)) f

deleteMember(MemberList, host)
raiseEvent(Membership Change, DELETION, ASYNC)

g

g

... code for deleteMember, GetGroup, and initMembershipList ...

g end micro-protocol MEMBERSHIP

Figure 3.3: Simple membership micro-protocol

The declarations are followed by the procedures that make up the body of the micro-
protocol. The �rst is an initialization routine, which initializes the membership list from
some external source; for example, it may be read from a �le. This routine is executed, in
x-kernel terms, at initialization time prior to execution of the standard open or openenable
routines.

After the initialization code is the actions section, which contains the event-handling
code. In MEMBERSHIP, there is one handler that deletes a member from the list when the
Suspect Host Dead event is triggered. The parameters to the event are available to the
handler, as is any private data declared within the micro-protocol.

The remainder of the micro-protocol contains inspection routines for export, local
procedures, etc. In this micro-protocol, there are three such routines: deleteMember,
GetGroup, and initMembershipList. Their code is omitted here for simplicity.

3.8.2 Acknowledgment Micro-Protocol

Figure 3.4 shows the code for a simple acknowledgment micro-protocol ACK that generates
the Suspect Host Dead event when a message has not been acknowledged after some
interval of time. This interval can be adjusted by a call to the setInterval routine. The
timer is started at the time the message is pushed from the composite protocol. The timer
is set by the setTimerEvent call, which gives the interval to wait and an indication that
this event is to be generated only once rather than periodically. This Timeout event is
declared in the private section of the protocol and is therefore raised and handled only by

54

micro-protocol ACK f

exports f

event Suspect Host Dead(mem t host);
proc SetInterval(int millisec);

g

imports f
boolean client, server;

g

private f

event Timeout(CP Msg t msg);
attribute serverList t servers ;
int interval;

g

initializef
InitTimerVal();

g

actions f

/� Set timer event for each message sent to detect loss.�/
Message Pushed From CP(CP Msg t msg) && client &&
msg.attr.type == REQUEST !
setTimerEvent(Timeout, CP msg, interval, ONCE);

/� Set timer event for request received so we reply in time.�/
Message Inserted Into Bag(CP Msg t msg) && server &&
msg.attr.type == REQUEST !
setTimerEvent(Timeout, CP msg, interval, ONCE);

/� Send an ACK message for each reply message received.�/
Message Inserted Into Bag(CP Msg t msg) &&

msg.attr.type == REPLY !
sendAckToSender(msg,REPLY RECEIVED);

/� Send a "still working" message if server slow.�/
Timeout(CP Msg t msg) && Server !
sendAckToSender(msg, STILL WORKING);

/� Some server has not responded in time. �/
Timeout(CP Msg t msg, host) && Client !

if (hostNotResponding(msg, host)) f

RaiseEvent(Suspect Host Dead, host, ASYNC);
g

g

... code for SetInterval, InitTimerVal, sendAckToSender, and
hostNotResponding ...

g end micro-protocol ACK

Figure 3.4: Simple acknowledgment micro-protocol

55

ACK.
The second set of tasks done by ACK involve acknowledging any messages that are

received. It accomplishes this by handling the Message Inserted Into Bag event for
messages of type REPLY. The event is quali�ed so that only reply messages are acknowl-
edged. Request messages are only acknowledged if the server is slow in responding, which
is also handled using the Timeout event. The server and client sides of the communication
are handled by the same micro-protocol, with the imported state variables server and
client being used in the code to distinguish between the two.

3.9 Summary

Our approach to constructing con�gurable communication services is realized using the
two-level protocol composition model. The �rst level is the x-kernel protocol graph, which
de�nes the basic characteristics of the network subsystem using both composite and simple
protocols. The second is the composite protocol, which de�nes the speci�c semantics of the
relevant communication service using micro-protocols. The framework encapsulates the
micro-protocols and supports event-driven micro-protocol interaction. Since the composite
protocol exports the x-kernel UPI, it can be combined with existing x-kernel protocols,
thereby making it easier to build new communication services on top of simpler existing
networking protocols.

The micro-protocol structure and composite protocol model allow a protocol designer
to create modular implementations of communication services. Each micro-protocol in the
composite protocol implements a speci�c property or functionality, so the speci�c micro-
protocols included govern the behavior of the resulting service. This approach allows
applications to have �ne-grained control over their communication support. The event-
driven model also provides a novel execution paradigm and structured communication
between micro-protocols.

56

57

CHAPTER 4

IMPLEMENTATION

Our prototype implementation of the framework is based on x-kernel version 3.2, which
runs as a user-level task on Mach version MK82. Written in C, the prototype is structured
as a collection of library routines that are linked with the user-written micro-protocols to
create a composite protocol. The x-kernel, framework, and micro-protocols are compiled
with gcc version 2.1. The composite protocol is then included in the x-kernel protocol
graph in the normal way. The x-kernel was selected as the implementation environment
because of its e�cient message handling, novel thread execution architecture, ease of
con�guration and modi�cation, and portability.

The primary test platform consists of DecStation 5000/240s connected by a 10 Mb
Ethernet. These systems are based on MIPS R3000 micro-processor running at 40 MHz
with a separate o�-chip 64 KB instruction and data caches, and 16 MB of memory.

Here, we focus on describing the implementation details of the runtime framework
since much of the system's functionality is implemented there. Initial performance results
from a group RPC micro-protocol suite are given in Chapter 5.

4.1 Framework

4.1.1 Uniform Interfaces.

The framework encapsulates micro-protocols and delivers messages to and from other
x-kernel protocols. Externally, the framework provides the standard x-kernel interface
operations such as call, push, pop, and demux. This allows composite protocols to be
added to an existing x-kernel protocol graph without requiring changes to the existing
protocols. The framework can be con�gured to provide a synchronous call interface or
an asynchronous push interface to accommodate both styles of x-kernel protocols. A call-
style protocol is blocked when doing a call operation and is unblocked only after the reply
message can be returned. If the push style is used, the caller is not blocked and the reply
message (if any) is returned asynchronously.

4.1.2 Thread Management

As described in Chapter 3, multiple threads of control may be spawned in the course of
executing event handlers. In the prototype, the x-kernel thread facility based on Mach
C-threads is used as the underlying mechanism. The choice to use this facility rather
than spawning C-threads directly was made for two reasons. The �rst is that this makes
the threads visible to the x-kernel, which permits the programmer to use the built-in
x-kernel features for doing execution monitoring and debugging, simplifying the program-
ming process. The second is that it allows us to exploit the x-kernel's optimized thread
management. In particular, the x-kernel preallocates a pool of C-threads at initialization

58

time and manages them directly, which avoids the overhead of thread creation when an
event is raised.

When an event is raised, a thread is allocated from this pool to execute each associated
handler. The execution model is logically multi-threaded, so that multiple handlers|
either associated with the same or di�erent event occurrences|may in general be executed
concurrently. No new threads are allocated for events that are executed synchronously;
rather, the same thread that triggered the event will execute all handlers for the event
one by one in the order speci�ed in the event de�nition. Such semantics can simplify
micro-protocol code in certain cases when execution order is important, such as when a
subsequent event handler depends on a side e�ect caused by an event handler. However,
this can lead to implicit dependencies between handlers so caution should be used. Section
7.2.3 contains further discussion of handler dependencies.

The protocol writer can choose to have event handler invocations be implemented
by procedure calls rather than threads even in the case when the event is raised asyn-
chronously. This optimization is targeted for sequential machines where a procedure call
is typically more e�cient than spawning a thread. No changes are required in the code for
the micro-protocols. In fact, which version of the runtime is used is transparent to both
the x-kernel and the protocol writer.

We also alter the x-kernel thread behavior by assuming control over a thread that
enters the composite protocol. In general, it will execute some sequence of event handlers
and then a push or pop to exit the composite protocol. Alternatively, it can simply
terminate within the protocol after the last event has been handled. The thread behavior
is naturally di�erent depending on whether handler execution is implemented by threads
or procedure calls. In the thread implementation, the thread that enters the composite
protocol returns to the caller after raising the �rst event. Once the event is raised, other
threads are activated to execute the handlers. On the other hand, with the procedure-
based implementation, the entering thread executes each event handler until all handlers
are executed (recursively) and then returns to the caller. Timing events are necessarily
implemented as threads and are based on x-kernel timer events.

4.1.3 Messages

The composite protocol exists to receive, process, and send messages so it is unsurprising
that the bag of messages is a centralized structure available to all micro-protocols. As
described in Chapter 3, messages in the bag, referred to as CP Messages, are network
messages augmented with additional attributes that micro-protocols use to share per-
message data with each other. Since micro-protocols collectively process messages, the
coordination of when a message is \�nished" | ready to send or discard | is more
complex than the layered model where only one protocol is in control of the message at
any time. The framework provides for coordinated control of message attributes, creation
of headers and attributes, sending, and deallocation.

CP Messages. CP messages are based on x-kernel messages, which optimize manipu-
lations such as header pushes and pops, fragmentation, and assembly. The usual x-kernel
message operations are supported, but we add additional information in the form of at-

59

tributes that are e�ciently accessed. The scope of private attribute names is limited to
the micro-protocol in which they are declared, but public attributes must have globally
unique names.

Bag of Messages. A CP message is a structure that contains an x-kernel message, at-
tributes, and send bits. The attributes are created by combining the attribute declarations
from all micro-protocols into a \super structure" of attributes.

The following operations are provided for manipulating the shared bag of messages:

� CPMsg = newItem(xMsg, direction): Allocates and initializes a new CP message;
returning a pointer to the appropriate structure. direction indicates if the message
is traveling up or down through the x-kernel protocol graph when it enters the
composite protocol.

� insertItem(CPMsg): Inserts CPMsg into the bag. Automatically triggers the
Message Inserted Into Bag event.

� deleteItem(CPMsg): Removes CPMsg from the bag, but does not deallocate storage
for the item. Deallocation is done under micro-protocol control, although a message
is usually deallocated as soon as it is deleted unless needed for retransmissions, etc.
Automatically triggers the Message Deleted From Bag event.

� empty(): Removes all messages in the bag.

� n = count(): Returns a count of the number of messages in the bag.

� setSendBit(ProtocolID, CPMsg): When all micro-protocols have called setSend-

Bit (i.e., all send bits are set) the Message Ready To Be Sent event is triggered.

� setDeallocateBit(ProtocolID, CPMsg): Sets the deallocation bit for micro-proto-
col ProtocolID. When all bits are set (i.e., all micro-protocols have called setDe-

allocateBit), the Message Deallocate event is triggered.

� sprintItem(string, CPMsg): The current state of CPMsg (including attribute val-
ues) is placed into string. Used for debugging.

� printBag(): Prints the current contents of the bag to stdout. Useful for debugging.

Attributes and Headers. CP message attribute values are often derived from infor-
mation contained in message headers, such as the sender id, destination id, and mes-
sage type. To aid this function, all protocol suites are required to include a single
header to attribute procedure that sets attributes based on header values and local-
izes header format knowledge to one procedure. Typically, this procedure is called by
a veri�cation micro-protocol after the incoming message has been validated. The CPMsg

attributes are initialized and the message is inserted into the shared bag of messages so
that other protocols can access message header information without knowledge of mes-
sage header formats. Similarly, when a message is about to be sent, the message header is
normally constructed from the attributes. The attribute to header procedure is called
by the framework during a send message operation for this purpose.

60

Coordinated Sending of Messages. When a message is created with newItem, all the
send bits are cleared. A micro-protocol sets its corresponding bit with the setSendBit(CP-
Msg, ProtocolID) procedure. Protocols distinguish their send bit by their unique pro-
tocol id that is assigned at initialization. When all send bits are set, the CP Message is
ready to be sent and the Message Ready To Be Sent event is raised by the framework.
The send bits restrict sending of messages both in the upward direction (to applications)
and downward direction (to the network). If a micro-protocol is not directly involved in
the decision when to sent a message, it normally would set its send bit when the message is
inserted into the bag (i.e., when handling the Message Inserted Into Bag(CPMsg) event).
Typically, the last protocol to set its send bit has the strongest restrictions about when
a message can be sent. For example, an ordering micro-protocol will not mark a message
for sending until all predecessors of the message have been delivered to the application.

Sending Out of Band. Although coordinated sending is the expected norm, there are
occasions when a particular micro-protocol might wish to send a message without another
micro-protocol's interference or knowledge. This is accomplished with sendMessageOutOf-
Band(CPMsg), which sends the message without raising any events.

Coordinated Deallocation of Messages. As described in Chapter 3, garbage collec-
tion in the composite protocol can be realized in one of two ways: either centralized into
one micro-protocol or distributed among many protocols through the use of deallocation
bits. Deallocation bits are very similar to send bits: for each CP message, there is one
bit for each micro-protocol. In the distributed deallocation style, an unset deallocation
bit indicates that a message is still in use by a micro-protocol. When all the deallo-
cate bits have been set, the Message Ready To Be Deallocate Message(CPMsg) event is
raised. The handlers for this event perform the actual mechanics of message deallocation
and deletion from the bag (i.e., calling deleteItem() and then freeing memory). The
user chooses the style of deallocation support that is desired by setting a C preprocessor
variable that activates the deallocation-based events and bits.

4.1.4 Implementation Portability.

The runtime framework relies almost entirely on facilities provided by the x-kernel. As a re-
sult, it is nearly automatically portable to another environment that has a working x-kernel
implementation. The only non-x-kernel facilities that are used beyond normal C language
library routines are three Mach functions for C-thread management: cthread yield for
assistance in cthread scheduling, cthread set data for associating data with a thread,
and cthread data for event execution management.

4.2 Events

This section describes the C structures and execution architecture used to implement
events. Prede�ned events and user de�ned events, whether timer or regular, have the same
structure and scheduling. All have a common event description structure that is initialized
once with the handler functions, handler names, and the number of event parameters. This

61

structure is passed as the event descriptor for every raiseEvent call. The structure is
never modi�ed after the event handlers are initialized. A second structure is allocated
when the the event is raised that contains the parameter values for the current invocation.
One invocation structure is created for each event handler of the triggered event. The
structures remain the same for asynchronous and synchronous execution but the execution
is performed di�erently. Timer events require additional structures to record the state of
timer event and the current execution status to support cancellation and repetition.

4.2.1 Event Operations

The following operations are provided for manipulating events:

� event = createEvent(eventName, numParams): Allocates and initializes a new
event t structure and returns a handle to the event that is used for later operations.
eventName is a descriptive string naming the event, and numParams is the number of
parameters that will be passed to handlers when the event is raised. Used for both
regular and timer events.

� addEventHandler(event, handler, handlerName): Appends a
handler function pointer to the list of handlers for the event. The ordering of the
add operations determines the execution order for sequential events. handlerName

is a descriptive name for the handler, used for debugging and execution tracing.

� deleteEventHandler(event, handler): Removes handler from the list of han-
dlers for event.

� raiseEvent(event, type, numParams, param1, param2, param3,

param4, param5): Used by micro-protocols for triggering user-de�ned events, and
by the framework for prede�ned events. An instance of the event is triggered and
numParams are passed to handlers (maximum of �ve). All unused parameters values
should be set to NULL. type is SYNC if the event is to be executed synchronously
(blocking and sequentially executed), or ASYNC if executed asynchronously (non-
blocking and handlers execute in any order). Note that the raiseEvent call deter-
mines how the event will be handled rather than the event de�nition.

� event invoke = setTimerEvent(event, type, interval, numParams,

param1, param2, param3, param4, param5): Sets a timer event to execute af-
ter interval microseconds have elapsed. type determines if this timer event will
schedule itself to repeat or execute once only. Handlers are executed concurrently
for asynchronous execution. numParams indicates how many parameters are passed.
The event invoke is a timer event handle that is needed for the cancel and detach
functions.

� outcome = cancelTimerEvent(event invoke): Cancels a timer event. Return
value of outcome indicates:

{ unknown: No such event is known (bad handle value); the request is ignored.

62

...

...

3
4

"Membership Change"

{
{

char *name

"Third Handler"

"First Handler"
"Second Handler"

PFV = pointer to function returning void

int numParameters

int numHandlers

PFV handler[]

char *handlerName[]

event_t

Handler 1

Handler 3
Handler 2

Figure 4.1: Event description structure.

{ started: The event has already started to execute so if it was a once-only
event, the timer event will run to completion; cancelling will have no e�ect.
A repeating event will not reschedule itself but the current execution will be
allowed to terminate normally.

{ completed: The event has completed and so there is no instance to cancel.
This can occur only for once-only events.

{ cancelled: The event has already been cancelled. This cancel request will
have no e�ect.

{ successful: The event has successfully been cancelled.

� detachTimerEvent(event invoke): Since timer event handles are returned from
the setTimerEvent function, the micro-protocol must indicate when the event invoke

structure can be deallocated. A detach call on an event will cause the timer event
to deallocate structures when the event completes. If a timer event will never be
cancelled, then the timer can be set and immediately detached. Otherwise, the event
should be detached after cancellation or completion.

4.2.2 Event Structures

Prede�ned events are declared and raised by the framework, while user-de�ned events
are created with createEvent(eventName, numParams), which returns an allocated and
initialized event structure of type event t (Figure 4.1). Micro-protocols create events and
assign handlers to events during their initialization. Handlers are registered for events
through the addEventHandler(event, handler, handlerName) procedure. The order
in which handlers are added to the event speci�es the execution order for sequential events.
Figure 4.1 shows an example event named \membership change" with three handlers and

63

four parameters. The event t structure is static since it is a description of the event and
does not change. Note that the parameters are not stored within this structure; they are
stored in the invoke t structure, which is automatically created for an individual occur-
rence of an event. This structure is shown in Figure 4.2. Each invoke t structure has a
reference to the event structure, which is essential for timing events and debugging sup-
port. The invocation structure is automatically deallocated when the framework detects
that all event handlers have terminated.

The x-kernel does not provide general purpose thread support, so the framework creates
threads by scheduling x-kernel timing events to execute with 0 seconds delay. These x-
kernel events are, in turn implemented with C-threads. This is the only place where the
implementation of the x-kernel is explicitly used by the framework. The x-kernel timing
event implementation makes the composite protocol threads visible to x-kernel debugging
tools, and also reduces the context switch time since the threads are allocated from a
pool created at initialization time. Speci�cally, when a raiseEvent procedure triggers an
event, the timing event is scheduled, which upon expiration places the allocated thread
on the ready list to be scheduled with other C-threads.

The x-kernel timer events accept a function pointer and one parameter. Since frame-
work events can have multiple handlers and parameters, the invoke t structure containing
the handler function pointer and parameters is passed as the single x-kernel timer event
parameter. The x-kernel event is passed a \super handler" procedure to execute when
the timer expires. The super handler unpacks parameters from the invoke t structure
and passes them individually to the handler. Thus, the super handler acts as a proce-
dural wrapper around handler executions, recording the start and termination of handler
execution.

To maintain uniformity, synchronous event execution uses the same invoke t structure
to pass parameters. However, no x-kernel event is used to schedule execution in this case.
Instead, the super handler is invoked directly as a procedure, which provides a synchronous
call style with blocking semantics. The super handler is the same as in the asynchronous
case, and, in fact, is unaware whether it was called from an x-kernel event or directly as a
procedure. As mentioned earlier, the framework allows for asynchronous execution to be
optimized as procedure calls. When the user de�nes the PROC CALLS ONLY C preprocessor
variable, asynchronous event triggers are also executed with procedure calls.

4.2.3 Timer Event Structures

Timer events, since they can be repeating or cancelled, have an information structure
that contains the state of the execution. This structure is created by the setTimerEvent
function and passed back as the timer event handle that is used in cancellation. It has
information about whether the handlers for the event are waiting to execute, started to
execute, or completed execution.

Timing events are handled as asynchronous invocations that are scheduled to execute
with a delay. The same event description structure, event invocation structure, and super
handler is used. A repeating event will schedule itself again after the last handler has
�nished executing. However, since timing events can be cancelled, an additional structure
is needed to cancel the underlying x-kernel events. Also, timing event cancellation must

64

event_t *event

PFV handler

void * parameters

Type
null

ASYNC

member name
change type{ ...

2

1
timer_info_t *timerStatus

...

...

3

"Membership Change"

{
{

char *handlerName

char *name

PFV handler

"Third Handler"

"First Handler"
"Second Handler"

int numHandlers

int numParameters

int numParam

int Index

(SYNC, ASYNC, REPEAT, ONCE)

(only used for timer events)

(handler index)

event_t

2

invoke_t

Handler 1

Handler 1

Handler 3
Handler 2

Figure 4.2: Event invocation structure with event description structure.

65

...

...

2
2

event_t

...{

...{

...{

identifier

interval

finished

started

TIMER_ID

FALSE

FALSE

2

0
0

125

WAITING
WAITING

invoke_t

invoke_t

Handler1

Handler 2

...

REPEATING

2

1

...

REPEATING

2

2

x-kernel event for handler 2
x-kernel event for handler 1

(RUNNING,
DONE,
WAITING)

numHanders

cancelRequested

detachRequested

timer_info_t

xevents[]

invoke[]

state[] =

Figure 4.3: Timer event information structure for repeating event with two event handlers.

be atomic with respect to handler execution, so the structure must contain information
about the status of handler execution. A unique handle is returned for each set timer event
call, since the same timer event may have several concurrently executing instances. This
handle is known is a timer info t structure and is given in Figure 4.3. timer info t

contains pointers to the same type of invoke t structures used for regular events, including
a pointer to the event description structure event t.

When the timer handler handle is passed to the cancel routine, the identi�er is validated
and then the timer can be cancelled. If execution has not started for this period execution
(as recorded in the started count �eld), then all the x-kernel events (saved in the xevents
array) can be cancelled. Otherwise, the cancel requested boolean is marked as true and
a repeating event will not reschedule itself for the next period. The status (running, done,
waiting) of each handler is recorded in the state �eld.

66

4.2.4 Call Depth

A1

B1

C1

A2

B1

C1

A3

B1

C1
A3

B1

C1

B1

C1

B1

A1

B1

C1

A2

A1

B1

C1

A2

A3

B1

C1

B1

C1

B1

OR

procedures only

two possible execution orderings

 = thread

procedures with call depth = 4

Figure 4.4: Possible event handler executions with and without call depth bounding.

Nesting of events executing as procedure calls can cause stack overow and unfair schedul-
ing. Recall that synchronous event execution is implemented as procedure calls and asyn-
chronous execution can be optimized in this way. It is typical for events to raise other
events, creating nested events. If this nesting goes very deep, stack overow can occur. In
addition, we found during experimentation that asynchronous event execution was some-
times necessary to make progress in certain protocols. If all asynchronous execution is
implemented as procedure calls, then a call chain will continue to execute event handlers
while other events not raised by the call chain go unserviced, which results in starvation
of other events. In other words, procedure calls favor the current call chain leaving asyn-
chronous events unserviced. Section 7.2.2 provides additional discussion of the need for
asynchronous thread execution.

To eliminate this problem, call depth bounding can be enabled. This creates a hybrid
execution structure that will continue to execute handlers as procedure calls until a speci�c
nesting depth has been reached. At that point, the next asynchronous trigger will be
executed by a new thread and the current thread will be allowed to terminate, thereby
completing the call chain. The current call depth is recorded by associating a call depth
count with each C-thread that executes events. When another event handler is executed

67

as a procedure call, the call depth is incremented.
As an example, consider an event A with three handlers A1, A2, A3. Each of these

handlers raise event B, which has one handler B1. B1 in turn raises event C with one
handler C1. All events are raised as \ASYNC" events and the framework is con�gured to
execute events with procedure calls. The execution order of the procedure-based events
will be A1 B1 C1 A2 B1 C1 A3 B1 C1, as shown in the left panel of Figure 4.4. If
the framework is con�gured with a call depth of 4, then A1 B1 C1 A2 would execute as
procedure calls by a single thread. Having reached the maximum call depth, this thread
would terminate, and B1 and A3 and would be scheduled asynchronously to execute in
random order. If B1 were to execute �rst then the rest of the execution order would be B1
C1 A3 B1 C1. Both instances of C1 and the second B1 would be executed as procedure
calls. The situation is analogous if A3 were to execute �rst. Figure 4.4 shows the execution
structure of procedure call based events with and without call depth bounding.

4.3 Measurements of Event Implementation Performance

Event invocation and handler execution are the heart of the composite protocol, and
therefore, the e�ciency of events are central to the performance of the system. As discussed
above, there are two implementation of events that can be used: light-weight user-level
threads or procedure calls. We considered both styles and compared the performance and
runtime behavior of each implementation.

The relative cost of using procedure calls versus a thread-based implementation was
assessed using a null composite protocol designed to measure event execution times. Each
test measured the round trip message transmission time based on 1000 round trips for
two processes. The �rst is a normal x-kernel implementation of UDP without composite
protocols; this provides a baseline. In the second, a composite protocol using the procedure
call event implementation (CP-P) is inserted between the UDP protocol and user program
on both the client and server sides. On the client side, CP-P simply passes messages and
acknowledgments to the UDP protocol and user program, respectively, with no changes.
On the server side, CP-P generates an acknowledgment for each message, as well as passing
it through to the user program. 19 events are generated for each message round trip, and
19 handlers are invoked. The third test is identical, except that a runtime framework with
the thread-based event mechanism is used. This composite protocol is called CP-T. Figure
4.5 illustrates the structure and message ow of the second and third con�gurations.

The results are shown in Table 4.1. Although these numbers clearly indicate some
overhead, the results are encouraging. Based on the one byte test, each event handler
activation costs no more than 33.7 microseconds for procedure-based event dispatching
and 206 microseconds for thread based. Note that this �gure includes amortizing all
execution costs associated with a composite protocol over the handler activations, not
just the cost of the invocation itself. The variance was observed to be low.

4.4 Creating a Composite Protocol

Source �les are used to structure the components of a composite protocol. There are three
categories of �les: user supplied, user modi�able, and read only.

68

CP

UDP

ARP ARP

CP

ETH ETH

UDP

Client Server

Figure 4.5: Experimental con�guration

Packet Size x-kernel UDP +CP-P +CP-T

1 byte 1.57 2.2 5.48
1 K 4.18 4.84 8.19
2 K 7.39 7.89 11.38
4 K 12.65 12.93 16.96
8 K 23.77 23.78 27.63

Table 4.1: Roundtrip time for null CP (in msec)

� User supplied �les contain micro-protocol code and required routines such as attribute-
to-header, header-to-attribute, attribute printing, and the initialization micro-protocol.
The majority of the user's e�orts are in creating this code.

� User modi�able �les exist but can be modi�ed to further customize the service. For
example, push and pop procedures can be customized for multicast or other sending
styles. The user can also modify de�nes to con�gure the composite protocol for
call style interface or push style, enable procedure based execution of asynchronous
event execution, bound call depth, and enable deallocation bit support. Some of the
possible modi�cations require x-kernel speci�c knowledge, such as changing active
and passive keys used to lookup sessions. However, the user only needs to make
modi�cations if di�erent behavior is needed, so for most protocol suites the minimal
setup should be su�cient.

� Read only �les contain only framework-speci�c code and are not alterable. These
�les include standard functions, such as bag of messages routines, event support,
and the x-kernel encapsulation protocol. The user links these �les with the rest of
the composite protocol.

69

One user modi�able �le concerns the lower-level protocol used. By default, a compos-
ite protocol uses UDP, which is su�cient for any composite protocol that only requires
unreliable datagram service. However, the user has the option of changing the lower-level
protocol to any x-kernel protocol, perhaps even another composite protocol. To do this, a
support �le must be created that contains procedures to create participant addresses and
manage communication channels built on the new lower-level protocol sessions.

While many protocol suites can be build using UDP, the selection of the lower-level
protocol naturally a�ects the selection of micro-protocols in the composite protocol. For
example, if the lower-level protocol is an unreliable multicast protocol, then the send
routine in the composite protocol can be much simpler since the lower-level protocol can
issue a message to each group member automatically.

4.5 Possible Optimizations

Two additional optimizations that we have considered for reducing event overhead are in-
lining of event handlers and evaluation of event guards. The simplest way to reduce event
invocation overhead is to remove invocation entirely and in-line all event handlers. With
complier support, the framework raiseEvent() procedure could be replaced with the
micro-protocol code. The compiler would enforce all visibility rules and rename variables
in the handler code that clash with variables in the surrounding micro-protocol code.

Implementation of event guards can greatly reduce the number of event invocations
that terminate quickly after checking that the event guard is unsatis�ed. Currently, event
guards used in the PDL descriptions of micro-protocols are unimplemented, so the micro-
protocol evaluates the guard explicitly after the handler has been invoked. While this is
semantically equivalent to evaluation of guards before event handler execution, it results
in greater overhead. If the guard could be evaluated by the raiseEvent() procedure
in the framework instead, handlers with unsatis�ed guards | i.e., guards that evaluate
to false | could be discarded. For example, almost all micro-protocols register for the
Message Inserted Into Bag event, but most handlers are concerned with only a speci�c
message type. In the current implementation, all the handlers are invoked and each
handler executes an a conditional statement that succeeds in only the few handlers that
go on to execute the rest of the handler. The other handlers simply exit, having added
cost to the event execution time. Event guard evaluation could reduce the number of
handler invocations substantially.

4.6 Summary

We have presented the implementation of the composite protocol approach based on the
x-kernel. The implementation supports event execution using both threads and procedure
calls, a shared bag of messages, coordinated sending of messages and deallocation, and
message attributes. Primary event data structures and the organization of timer as well
as regular events was discussed.

70

71

CHAPTER 5

GROUP RPC PERFORMANCE

In this chapter, we present performance measurements of multiple communication
services con�gured from a collection of micro-protocols implementing di�erent variants of
regular and group RPC (GRPC). Micro-protocols are con�gured together into a composite
protocol called Group RPC. As described in Chapter 3, once constructed, Group RPC gets
included in an x-kernel protocol graph with UDP as its lower-level supporting protocol
(see Figure 3.1). Measuring the performance of Group RPC therefore yields the relative
cost of the di�erent con�gurations and their underlying semantic properties.

Our version of GRPC is based on point-to-point messages, so clients send individual
requests to each server group member. Figure 5.1 shows the process level architecture and
message ow between clients and servers. Request messages, Req(x), are sent from clients,
while servers send reply messages, Rep(x), back to the client. Once reply messages are
received, the client creates a return value according to its collation semantics. If total order
is included, then one server acts as a coordinator that determines the ordering of requests.
Thus, for each request, the coordinator sends an ordering message, Order(Req(x)), to all
other servers.

5.1 Group RPC Micro-protocols

The micro-protocol suite is based on the semantic variations of GRPC described in
[HS95a]; the categories that follow represent semantic variations of termination, order-
ing, communication, collation, call style, membership, and failure.

5.1.1 Termination Semantics

Termination semantics specify the guarantees that are given about the termination of a
call. Included in the client composite protocol (CP).

� BOUNDED (BND). Provides for bounded termination of client requests, i.e., either the
request is executed within some interval or an exception is returned. When a request
is sent, a timer event is set to generate a timeout.

� UNBOUNDED(UBND). No a priori bound is set on a client request, so the client may
wait inde�nitely for a response.

5.1.2 Ordering semantics

Ordering semantics determine what guarantees are given about the execution order of
requests by servers. If none of the micro-protocols are included, any ordering is possible.

72

Rep(x)

Req(x)

Order(Req(x))

Client

Server*

Server

Server

* Coordinator

Figure 5.1: Process and message architecture.

� FIFO. Forces FIFO ordering of client requests at a server; if not included, the server
may receive requests from a given client in any order. Servers order client requests
using sequence numbers that are assigned by clients. Requests from multi-threaded
clients are serialized before transmission. Included in both clients and servers.

� TOTAL. Forces total ordering of all client requests at all servers; if not included, the
servers may not execute clients request in the same global order. The ordering of
client requests is determined by a designated server process that acts as a coordi-
nator. All non-coordinator servers receive requests but do not execute them until
an ordering message is received from the coordinator. The coordinator processes
requests only after at least one other server process has acknowledged receipt of
the ordering message, which ensures a correct ordering even if the coordinator fails.
Included only in servers.

� FIFO and TOTAL. Total order that preserves FIFO ordering. Requires inclusion of
both FIFO and TOTAL micro-protocols.

5.1.3 Communication Semantics

Communication semantics specify guarantees about the communication between the client
and server. Reliable transmissions are guaranteed if acknowledgment and retransmission
micro-protocols are both included.

73

� ACK. Acknowledges request and response messages, and handles timeouts. If an
acknowledgment message is not received in time, an event is raised notifying other
protocols for possible retransmission. Included in clients and servers.

� RETRANSMIT (RET). Sends retransmission requests for missing messages and re-
sponds to retransmission requests. Included in clients and servers.

� CONTROL RETRANSMISSION(CRET). Only used with totally ordered communication.
Sends acknowledgments and waits for acknowledgment of control messages between
servers. Included in servers only.

5.1.4 Collation Semantics

Collation semantics specify how responses from the server group are combined and the
result returned to the client. All protocols included only in clients.

� ONE ACCEPT (1ACC). Implements a policy of accepting the �rst reply from any server
as satisfying the client's request. Other responses are ignored.

� ALL ACCEPT (AAC). Implements a policy of collecting replies from all functioning
servers before the RPC call is completed. If a server is no longer functioning, the
new membership is used to prevent waiting forever for a response from a failed server.

5.1.5 Call Semantics

Call semantics specify whether the call thread in the client is blocked for synchronous call
style or if it returns immediately for an asynchronous style. All protocols are included
only in clients.

� SYNC. Provides synchronous request/reply call-style interface. The call thread is
blocked until the call completes.

� ASYNC. Provides asynchronous push-style interface. The result of the call is returned
by an upcall.

5.1.6 Membership Semantics

Membership semantics specify how information is collected about failed and functioning
processes, and what can be guaranteed about the correctness of this information. Since
point-to-point messages are used, clients must maintain information about server group
membership to send requests and for collation of responses.

When total ordering of messages is used, server groups must also maintain their own
membership to determine if all messages are received by all hosts and to ensure that
requests are executed by all hosts. A single failure of any server member is tolerated,
including the coordinator. When membership does change, the change event is ordered at
each server so servers agree when the change occurred. The virtual synchrony property
ensures that the membership change event occurs in the same place in the message stream.

74

� CLIENT SERVER MEMBERSHIP (CSMEM). Manages the server membership for a client.
Using the ACK protocol, a client times out unresponsive servers and removes them
from the server list. This membership list is used by the ALL ACCEPT micro-protocol
to determine when all responses are received and for sending point-to-point messages
to all servers. CSMEM is required for all con�gurations and is included in clients.

� SERVER MEMBERSHIP (SMEM). Manages the server membership list for members of
a server group. Membership is initialized at boot time from a static list and later,
when dead servers are detected, they are removed from the membership list. Note
that the server with the largest host address is the coordinator. No negotiation is
required to determine the coordinator. Included in servers.

� LIVE. Servers send liveness messages to each other in a ring topology to detect when
a server fails. If no liveness message is received within the interval, then the member
is suspected to have failed and the \suspect host dead event" is raised. This triggers
the membership micro-protocol to determine if the server is really dead. Included
in servers only.

� SIMPLE AGREEMENT(SIM). Simple agreement will send \server is dead" messages to
other servers if a \suspect host dead" event is triggered. All other servers simply
accept this declaration of a defunct server even if they have information to the
contrary. Included in servers only.

� VIRTUAL SYNCHRONY(VS). Virtual synchrony insures that membership change mes-
sages appear in the same order relative to data messages for all hosts. When a
failure occurs, non-failing servers exchange information about the highest ordering
message that has been received before the failure occurred. This allows servers to
synchronize on what messages should have been received before the membership
change occurred. Included in servers only.

5.1.7 Failure Semantics

Failure semantics specify what guarantees are given to the client about the execution of
requests by the server.

� UNIQUE. Eliminates duplicate request or reply messages using sequence numbers.
Ensures that a request is never executed more than once even if the call returns
unsuccessfully. Included in servers only

5.1.8 Driver Protocol

The suite requires a driver protocol, GRPC, for all combinations of micro-protocols. Veri�es
incoming messages and maintains client and server state information. Required for clients
and servers.

75

UNIQUE

 or or or

BND

UBND

1AC

AAC

no order, unreliable

no order, reliable

no order, unreliable, unique

no order, reliable, unique

FIFO, reliable, unique

FIFO, reliable

total, reliable, unique

total, fifo, reliable, unique

(no protocols)

TOTAL SMEM

ACK RET

RET

ACK RETFIFO

FIFO ACK RET

CRET SIM

ACKRETLIVEVS

TOTAL SMEM CRET

VS LIVE RET

FIFO

SYNC

ASYNC

UNIQUE

UNIQUE

UNIQUE

ACK

ACK

SIM

select one of
8 ORDERINGS

UNIQUE

Figure 5.2: Group RPC con�guration selections.

5.2 Combining Micro-Protocols

There are 64 possible GRPC con�gurations given the above collection of micro-protocols.
The composite protocol may have synchronous or asynchronous call style, bounded or
unbounded calls, one accept or all accept collation, and 8 selections of orderings. Figure
5.2 illustrates the possible selections of micro-protocols. All con�gurations require the
GRPC and CSMEM micro-protocols.

The selection of call style, bounding of calls, and acceptance policies are independent
choices and each only requires the inclusion of one micro-protocol implementing that prop-
erty. Unique execution and FIFO ordering are each achieved through the inclusion of one
micro-protocol. Reliable transmission of messages is accomplished through acknowledg-
ment and retransmissions of messages, which requires the ACK and RET micro-protocols.

Total ordering is complex and requires several micro-protocols, because the servers

76

must maintain there own membership to ensure totally ordered execution of client re-
quests. As already noted, all servers receive request messages and one server acts as the
coordinator, generating ordering messages that guide all servers to complete the requests
in total order. All servers must receive all the request messages, so servers maintain their
membership through the use of a liveness micro-protocol, LIVE. When a server is sus-
pected of having failed, a simple agreement micro-protocol, SIM, is executed, which causes
all servers to delete failed servers from membership lists. Virtual synchrony, VS, is used
to ensure that the membership change occurs in the same point with respect to the re-
quest/reply message stream. Servers must communicate reliably or communication would
halt if an ordering message was lost. This functionality is provided by CRET.

5.3 Measurements of Group RPC Con�gurations

Tests consisted of one or more clients sending a 4-byte integer to one or more servers,
which respond with an integer. Each test makes 1000 RPC calls and was run 10 times.
The round trip times are the average of the 10 test runs. To provide a baseline, a version
of Sun RPC implemented using the standard x-kernel was also tested. Note, however, that
Sun RPC is a peer-to-peer rather than group protocol, and, as a result, implements less
functionality than Group RPC.

All measurements were done on the experimental platform described in Chapter 4.
In addition, tests requiring three or less hosts execute server and client processes on
DecStation 5000/240s. For tests requiring more than three hosts, all server processes
execute on DecStation 5000/240s and client processes execute on DecStation 5000/200s.
Like the DecStation 2000/240s, DecStation 5000/200s are MIPS R3000 micro-processor
based systems with separate o�-chip 64 KB instruction and data caches, and 16 MB of
memory. However, the DecStation 5000/200's processor clock rate is 25 MHz instead of
40 MHz.

The average roundtrip times for the various con�gurations are given in Table 5.1. All
communication between hosts are point-to-point network messages. The relative ordering
is what one would expect: normal Sun RPC using the x-kernel (BL) is fastest, and for the
same micro-protocol con�gurations, increasing the number of servers and clients results in
increased execution time. As noted, the x-kernel Sun RPC is included only for comparison.
Such a protocol would naturally be used for simple client/server communication, but
does not provide the multiple acceptance policies, group membership, multiple servers, or
message ordering options needed for more complex applications.

In general, increasing the guarantees the communication service provides results in
a slower roundtrip execution time. This is as expected, since the more guarantees that
are given, the more expensive the algorithms required to implement the communication
service. However, micro-protocols that increase message tra�c degrade performance more
than micro-protocols that only add computation time to clients or servers. For example,
adding FIFO to con�guration C8 (measured in con�guration C9) results in a small increase
in timing (0.02 msec) because it only adds sequence numbers to requests. On the other
hand, the di�erence between con�guration C7 and C8 is the addition of server membership
and total ordering. The timing di�erence between these tests is appreciable (1.71 msec),

77

System Con�guration Clients Servers avg var

BL x-kernel Sun RPC one one 4.38 0.00035

C1 GRPC,SYNC,1AC,CSMEM,UBND one one 6.30 0.018

one two 8.82 0.032

C2 GRPC,SYNC,AAC,CSMEM,UBND one two 8.85 0.052

C3 GRPC,ASYNC,FIFO,1AC,CSMEM,UBND one one 5.68 0.024

C4 GRPC,ASYNC,FIFO,1AC,CSMEM,BND one one 6.12 0.019

C5 GRPC,ASYNC,1AC,CSMEM,BND one one 5.58 0.012

C6 GRPC,ASYNC,AAC,CSMEM,BND, one one 8.49 0.026

RET,ACK

two two 16.59 0.849

two three 22.71 0.008

C7 GRPC,ASYNC,FIFO,AAC,CSMEM,BND, one one 8.91 0.043

UNIQUE,RET,ACK

two two 19.68 0.018

two three 23.76 0.003

C8 GRPC,ASYNC,AAC,CSMEM,BND, one one 10.62 0.077

UNIQUE,RET,ACK,SMEM,LIVE,SIM

CRET,TOTAL,VS

two two 35.22 0.230

two three 48.47 0.224

C9 GRPC,ASYNC,FIFO,AAC,CSMEM,BND, one one 10.64 0.219

UNIQUE,RET,ACK,SMEM,LIVE,SIM

CRET,TOTAL,VS

two two 44.19 2.40

two three 50.66 0.83

Table 5.1: Time for Group RPC call (in msec)

because con�guration C8 increases message tra�c between servers. Similarly, the increase
in the number of servers for con�gurations using total order results in big increases in
running time, because the message tra�c grows quadratically with the number of servers.
For con�gurations C8 and C9, we can also see large increases (10 msec) with the addition
of another server.

5.4 Detailed Analysis

Each con�guration and its performance results are discussed below.
Con�guration BL. x-kernel implementation of Sun RPC. Only supports a single client

and server. Given as a baseline for comparison.
Con�guration C1. Implements a group RPC service that provides a synchronous call

interface and returns when the �rst response is received (i.e., a one accept policy). This
variation could be used for applications that need to execute a request on any server before
continuing but do not require that server responses be identical. The �rst performance
�gure is for one client and one server, which makes this con�guration closest to BL.

78

However, this test runs slower than BL due to extra code that could handle multiple
clients and servers. The second test uses two servers with the single client. As expected,
two servers execute slower than one server. Even though only one server response is needed
to complete the call, both servers generate responses, which means message tra�c is at
least double compared to the test of one server. As a result, network contention slows
down the test.

Con�guration C2. Identical to C1 but with an all accept policy, which causes the client
to wait until responses from all servers are received. Hence, the call does not complete
until the request has been executed on all servers. Such a con�guration might be used,
for example, in a simple replicated database, where the application must know that each
group member has completed the request before continuing. The execution time for two
servers is almost exactly the same time as C1 because both con�gurations generate the
same amount of message tra�c; although C1 only needs one reply, two replies are always
generated. Network contention is the limiting factor in both con�guration tests.

Con�guration C3. Implements an asynchronous call style with FIFO ordering. The
FIFO ordering micro-protocol ensures that the server executes all calls from a given client
in FIFO order. Since the client executes with the asynchronous call style, multiple concur-
rent RPC requests can be issued, and may arrive at the server in any order. Multithreaded
clients that need their actions serially executed in the server �nd this a useful con�gura-
tion. The test of one client and server shows that the concurrent requests result in faster
performance for clients. C3 executes faster than C1 even though both achieve serial exe-
cution of client requests. Speci�cally, C3 achieves this by the FIFO micro-protocol, while
C1 achieves this by only requesting the next RPC call after the �rst call has completed.

Con�guration C4. Adds bounded termination to C3, which makes this appropriate for
applications that need to raise an exception when servers are not responding, so that the
client will not appear \frozen" waiting for the RPC call to terminate. The addition of the
bounded termination micro-protocol requires starting and resetting timers, which slightly
increases the execution time over the unbounded con�guration, C3.

Con�guration C5. Same as C4 without FIFO ordering of client requests, which makes
this suitable for applications that require detecting that servers are not responding but
can execute client requests in any order. Runs slightly faster than the same one client,
one server test of C4, since requests can be executed in any order. Servers can execute
requests as soon as they are received and no FIFO micro-protocol code is executed.

Con�guration C6. Reliable communication between clients and servers. All request
and reply messages are acknowledged and if no acknowledgment is received, the message
will be retransmitted. Such a con�guration is suitable for reliable unordered communica-
tion between clients and servers, such as might be used by a reliable name service providing
information about host utilization and resource availability. No requests or responses are
lost but they may be executed in any order by all servers.

The �rst performance number is for execution with one client and one server. This
runs slower than all previous con�gurations because it provides reliable communication,
which adds more micro-protocol code and more message tra�c for acknowledgments and
retransmissions. The second test is executed with two clients and two servers, which
essentially doubles the message tra�c and execution time. The third test is executed with

79

two clients and three servers, resulting in an expected proportional increase in message
tra�c.

Con�guration C7. Adds unique execution to reliable communication. This is useful
for applications that require no ordering of reliably delivery requests, but can only allow
servers to execute the request only once. Such a facility is essential for non-idempotent
operations, such as incrementing a value. The test of one client and one server of C7 com-
pared with C6 reveals the cost of adding unique execution. To implement this, the server
must record the identity of all client requests with the response message. If an identical
request is received, the saved response message is retransmitted. The extra execution time
results from checking every request to see if it is unique and saving messages. The test
executed with two clients and two servers slightly more than doubles the message tra�c
and the execution time. The test executed with two clients and three servers result in a
proportional increase in message tra�c.

Con�guration C8. Provides totally ordered execution of reliably transmitted request.
Ordering is accomplished using a server that acts as the coordinator, sending ordering
information about each request. Each non-coordinator server must receive the request
message and an ordering message before it may execute the request. The servers maintain
common membership by detecting server failures and then informing the rest of the group
about the failure.

The execution time of C8 for one client and one server is 1.71 msec greater than
the one server, one client test of C7, which provides an idea of the extra execution time
resulting from the addition of �ve micro-protocols. The next test, executed with two
clients and two servers, more than triples the execution time because message tra�c
increases quadratically with the number of servers and all servers must wait for total
ordering messages before executing any requests. The �nal test was executed with two
clients and three servers. Message tra�c increases signi�cantly, again resulting in much
slower execution.

Con�guration C9. Same as C8 but adds FIFO ordering of client requests, which
results in total order that preserves FIFO ordering. These semantics are ideal for banking
transactions that are executed on a cluster of servers for fault-tolerance. Each client
transaction must be executed in the order that the client made the request, and all servers
should execute all transactions in the same order for consistency.

The addition of FIFO increases the time only modestly from C8 for the single client,
single server test, since no additional message tra�c is introduced. When executed with
two clients and two servers, the timing is quite a bit higher than the analogous con�gura-
tion of C8, which was unexpected. We think this is due to the increased message tra�c
causing more messages to arrive out of order, and therefore, the servers having to wait to
order the messages. The increase in variance is also large, which may indicate sensitivity
to network tra�c arrival rates. The �nal con�guration is executed with two clients and
three servers. Timing is close to C8, which indicates that performance is probably limited
by the network.

80

5.5 Summary

In this chapter, a con�gurable group RPC service is described in which selected micro-
protocols are combined to form a composite protocol that executes in the x-kernel. A
variety of semantics are supported that cover the requirements of many di�erent group
communications applications. We also demonstrate that the services have reasonable per-
formance, especially considering the preliminary nature of the prototype implementation.
This chapter demonstrates the feasibility of our approach to designing and implementing
modular communication protocols.

81

CHAPTER 6

PROTOCOLS FOR MOBILE COMPUTING

Mobile computing systems can bene�t from con�gurable communication services in
much the same way that fault-tolerant systems can bene�t from the GRPC services de-
scribed in the previous chapter. Here, we present the design of a micro-protocol suite
intended for a range of mobile computing architectures and applications to illustrate the
suitability of our approach for another type of distributed system. While the discus-
sion of fault-tolerant systems centered around abstractions useful for supporting common
structuring paradigms, our approach to mobile computing is based on supporting multi-
ple hardware architectures, routing policies and qualities of service. Our speci�c focus is
on building con�gurable services for base stations, mobile hosts and agents. Recall from
Chapter 2 that base stations are gateways that connect the wired and wireless networks,
where each base station administers connections to mobile hosts within its cell. An agent
is a stationery process that acts as a proxy for a mobile host by maintaining connections
to the applications.

6.1 Communication Requirements

The ability to vary the communication services for mobile computing is useful for several
reasons, including to match the architecture, to allow di�erent semantics, and for experi-
mentation. Architecturally motivated variations are necessary because mobile hosts have
a wide range of hardware capabilities. Some, such as the Apple Powerbook, have compute
power that rivals desk top machines and are useful in a stand-alone capacity. These au-
tonomous machines may be active participants in hando�s between base stations and are
aware of their current connections. At the other end of the spectrum are machines such
as the Xerox PARC TAB [AGSW93] that have very little storage capacity or processing
power, which means that storage and processing are provided by resource rich machines in
the stationary infrastructure. Such machines are often unaware of hando�s and therefore
are passive participants. In addition, a communication service for mobile systems may
have to accommodate an existing software architecture, including wireless protocols, pro-
tocols used to communicate between base stations, and routing software such as mobile
IP.

A second reason communication requirements can di�er is semantics, especially those
related to quality of service. These guarantees may be given on a per connection basis or
renegotiated when the host moves. The former guarantees a given quality of service even
when the host moves to another cell, so that for example, a host with a high bandwidth
connection retains that guarantee no matter what its location. If connection characteristics
must be renegotiated, the negotiation may involve several rounds of messages to relevant
applications. Renegotiated connections may only a�ect the mobile host that is moving or

82

may also a�ect other preexisting connections. Yet another approach is to monitor band-
width utilization of a mobile host, with unused allocation being given to other mobile
hosts. Variations of such semantics can be customized to the application. For example, to
facilitate multimedia display applications, a communication service can be selected that
guarantees no changes to bandwidth allocations. However, mail reading applications can
function with less strict guarantees, and a patient monitor application requires high reli-
ability but less throughput. Some applications are tolerant of lossy transmissions during
crossover into a new cell, making immediate hando�s less critical.

Finally, the ability to easily prototype experimental communication services is impor-
tant in the �eld of mobile computing and is essential for rapid development of new dis-
tributed systems. Hardware, protocols for base station and host communication, hando�,
and routing are all active areas of experimental system design. Sometimes this experi-
mentation is to accommodate di�erent hardware or protocols, but more often it is to test
di�erent ideas and philosophies of system design. For example, some designs promote
the notion that mobile hosts should be unaware of their location; consequently, mobile
hosts are not involved in hando�s in such systems. Another philosophy is to preserve the
state of a mobile host in an agent process that mirrors the mobile host state, and to have
this agent manage all interaction between the mobile host and applications. A system of
protocols that make it easy to con�gure and implement di�erent behaviors can only help
facilitate this experimentation.

In this chapter, a micro-protocol suite that supports multiple variants of communi-
cation services for mobile computing is described. We focus our attention speci�cally on
micro-protocols for base stations, mobile hosts, and agents. The base station and mobile
host software is where control of mobility and cell boundary crossings resides; if these
components are con�gurable, core mobility behavior can be changed to account for di�er-
ences in architecture and semantics, or for experimental prototyping. Thus, core behavior
can be divided further into two broad categories: hando� and quality of service. Hand-
o�s are composed of three separate stages: detecting hando�s, hando� negotiation, and
disconnection from the current base station. Variations of each stage are implemented
by di�erent micro-protocols that can be combined to create a complete hando� protocol.
Quality of service micro-protocols are optional and can be included if desired.

6.2 Hando� Related Variations

Micro-protocols related to hando� are divided into orthogonal behaviors governing detec-
tion of when a hando� is needed or desirable, the actual hando� procedure, and discon-
nection. Micro-protocols can be combined to achieve di�erent behaviors. For example,
several detection mechanisms can be used with the same hando� protocol. To enhance
con�gurability, we decouple behaviors; one set of micro-protocols make the hando� deci-
sion, while a di�erent set governs how to execute the hando� and disconnect from the old
base station. Each is addressed in turn below.

83

6.2.1 Hando� Detection

Hando� detection determines that a cell hando� is either desirable or necessary. There are
two classes of approaches depending on whether the detection is done by the base station
or mobile host. In addition, detection can be either performed with the assistance of a
lower-level protocol that monitors the signal strength of base stations or solely by higher-
level protocols. Finally, there are di�erent strategies for preventing oscillation between
the same two cells or doing hando�s between two equally reachable cells. Next, we outline
several di�erent detection approaches.

Using ICMP Messages

In this approach, base stations periodically transmit an ICMP (Internet Control Message
Protocol) message requesting that mobile hosts in the area identify themselves by trans-
mitting a response message. Mobile hosts then respond with their unique identi�cations,
which enables the base station to detect the arrival of a new host. When such a host is
detected, it becomes a candidate for a hando� from the old base station. Also, the lack
of response allows detection of inactive hosts that have presumably left the cell, which is
important for maintaining a correct list of active hosts for use in hando� requests. That
is, if one cell has an inactive host and receives a hando� request there is little question
that the host has moved from the area and can be released. Detecting an inactive host
can also trigger an event that causes a message to be sent to applications or an agent
indicating that no active connection is being maintained.

Using Host Beacons

Mobile hosts facilitate detection in this strategy by periodically transmitting a beacon
message that informs base stations that the host is in the area. Except that the message
is automatically generated by the mobile host rather than being sent in response to a
query, this protocol is very similar to the ICMP protocol. Mobile hosts that are actively
communicating and have sent a message within the beacon period do not need to send a
separate message.

Monitor Based Detection

A lower-level protocol implemented in either hardware or software detects another base
station that has better transmission and reception quality. When this happens, the de-
tection protocol signals higher-level protocols to initiate a possible hando�. This is the
simplest approach, although it requires lower-level support.

Lazy Detection

As an optimization, hando�s of inactive hosts can be implemented using a lazy strategy.
In this case, a hando� is not performed if there has not been activity within some speci�ed
period, even if the host has moved. This can save communication overhead since connec-
tivity is not maintained to hosts that are not transmitting. However, applications may
not be able to initiate contact since current host location is not continually maintained.

84

Therefore, this micro-protocol would not be a good choice for those kinds of applications
that require mobile hosts to be contacted at any time. An example of a good application
for this kind of micro-protocol is a portable Web browser where activity is generally in-
stigated by the mobile host. In this case, if there is activity then the host would perform
hando�s; otherwise no hando�s are needed.

6.2.2 Hando�

The hando� micro-protocol governs the addition of a mobile host to di�erent cells, and
the update of location information within the rest of the system. In a hando�, a new base
station attempts to \acquire" a mobile host by requesting a \release" from the old base
station. Di�erences between hando� schemes include whether the mobile host is aware of
the hando�, if the old base station participates in the negotiation, and if hando�s can be
refused. It is also important that a single base station manage the sending and receiving
of data for each mobile host at all times during the hando� process. Hando� schemes
involve code in the base station, as well as in the mobile hosts and possibly agents.

The behavior for hando�s often starts with the new base station sending a request to
the old base station to release the mobile host. The rest of the process determines under
what conditions the old base station removes the mobile host from its active members
list and releases the host. Some schemes always let the new base station have the new
host, while others will not release the mobile host if the candidate host has communicated
successfully within some speci�ed time interval. In some schemes, the old base station is
not known, so the agent for the mobile host must be contacted to coordinate the hando�,
or the coordination is done by broadcasting the new connection to all base stations. In
still other protocols, the new base station just assumes that the acquisition of the mobile
host is successful unless some other base station responds otherwise. This is a negative
acknowledgment style. Below, several speci�c schemes are described.

Negative Acknowledgment (NACK)

In the negative acknowledgment (NACK) approach, a host is acquired by a new base sta-
tion only after a broadcast is made to all base stations and none responds with a \request
denied" messages within the allowed time interval. After the hando� is completed, the
base station broadcasts a noti�cation message so all base stations are aware of the host's
new base station. This type of broadcast-based protocol is typical of architectures that
have fast control message transmission capability, such as the ATM Crosspoint system
described in Chapter 2. Base stations that receive a hando� request will generally comply
if they have had no activity from the host within a speci�ed interval. Otherwise, it will
contest the hando� by transmitting a \hando� request denied" message. Note that, un-
like some hando� schemes, this protocol does not require any knowledge about the speci�c
identity of the old base station.

It is possible for two base stations to attempt to add the same mobile host to their cells
concurrently. To avoid this race condition, a random number is used to break ties. When
the \hando� request" message is broadcast to all base stations, a newly generated random
number is included in the message. If a base station receives a request that contains a

85

higher number than it generated, it gives up its attempt to acquire the host and allows
the other base station to win. Typically, startup communication is done this same way.

Mobile Host Initiated

The previous detection styles are all base station initiated. Hando�s can also be initiated
by a mobile host when it crosses cell boundaries. This style is appropriate for mobile
hosts that use a lower-level protocol to do detection, as discussed in the previous section.
In this case, a mobile host can address a join message directly to the new base station,
usually including the identi�er of its current base station in the message. This results
in negotiation between the old and new base stations about the hando�. For example,
the old base station can choose to deny the request because it believes it has an on-going
active connection with the mobile host. Another variation is to always grant control to
the new base station and only notify the old one, in which case no negotiation is needed.
This strategy is only appropriate for mobile hosts that have enough capability to store the
state of current connections.

Agent Coordinated

In this approach, a mobile host's agent process functions as the �nal arbiter of which base
station acquires the mobile host. A base station sends a message to the agent to request a
hando�. If the agent has an active connection with the mobile host, it denies the hando�
request; otherwise it allows the hando� to proceed. Base stations locate agent processes
using a name service that maps mobile host identi�ers to agent process addresses. Note
that agent-coordinated hando� does not require that base stations communicate with each
other.

6.2.3 Oscillation Prevention

In mobile systems, overlap of base station cells is needed to provide complete coverage
for a geographic area. As a result, two base stations can simultaneously decide to add
a host to their respective cell. This may even continue inde�nitely if the host remains
in this crossover area, shown in Figure 6.1. Oscillation prevention prevents a host from
undergoing such constant hando�s. Most architectures do not address this issue, probably
because current test situations do not involve large numbers of mobile hosts.

An oscillation prevention protocol can be included with any of the hando� protocols to
prevent the algorithm from attempting to acquire the same mobile host repeatedly. This
protocol counts the number of unsuccessful hando� attempts and if it passes a threshold,
the hando� is not run again until a time interval has passed. While not preventing the
problem entirely, this strategy will reduce extra hando�s and prevent a base station from
constantly making unsuccessful hando� attempts. Oscillation protocol is installed in the
mobile host if hando�s are initiated there or in the base station otherwise.

6.2.4 Disconnection

Disconnection covers how the old base station disposes of packets and state from a mobile
host that has been handed o�. Packets from a mobile host that are addressed to an

86

mobile host

BS 1 BS2

Figure 6.1: Mobile host in range of two base stations.

application are simple to deal with, since they can be sent to an application or agent using
the stationary wired network. The di�cult question is how to dispose of the undelivered
packets at the old base station that are bound for the mobile hosts.

There are three approaches to handling leftover packets from a connection: drop them,
forward them to the new base station for delivery, or quickly deliver as many as possible
(i.e., to \drain" packets). Certainly, the simplest is to drop them, in which case, an end to
end protocol must handle the retransmission of these packets if reliability is needed. While
seemingly wasteful, it can be argued that the wired links are much faster than wireless
medium so the retransmission delay of these packets is negligible. The second approach,
forwarding the packets to the new base station, saves retransmission of the packets by
the application. In this case, the new base station receives forwarded packets and delivers
them in order, making the forwarding transparent to the mobile host. The �nal approach,
to drain packets, is based on the argument that when a hando� is occurring, the mobile
host is still reachable and the old base station should delivery the enqueued messages
as soon as possible. Of course, this assumes that the old base station can still maintain
contact with the mobile host, perhaps at degraded transmission quality. If a drain is
unsuccessful and packets are undeliverable, then the behavior can revert to dumping or
forwarding packets.

6.3 Example Mobility Micro-Protocols

This section contains micro-protocols for detecting hando� conditions, performing hand-
o�s, and disconnecting. The particulars of each micro-protocol are explained, as is their
relationship and compatibility with other micro-protocols. In Section 6.5 we show how to
augment these protocols by adding micro-protocols implementing quality of service guar-
antees. Then in Section 6.7 we describe some sample communication services using the
micro-protocols that have been presented.

Figure 6.2 summarizes the micro-protocols for detection, hando�, and disconnection,
as well as illustrates the micro-protocol combinations that can be selected for a commu-

87

FORWARD

DROP

DRAIN

REQ/REPL

NACK

AGENT

ICMP

BEACON

TRANSLATE

AUTONMOUS

Handoff

Disconnection

SIMPLE W/OSC

SIMPLE

LAZY

BS Initiated DetectionMH Initiated Detection

Figure 6.2: Overall micro-protocol structure.

nication service. The brackets indicate a choice and can be nested, as in the selection of
detection micro-protocols where either a mobile host or base station initiated detection
scheme can be used. An arrow indicates that events or messages are sent between two
micro-protocols, so both micro-protocols must be included if either is selected. For exam-
ple, if any micro-protocol from the set fSIMPLE, SIMPLE W/OSC, LAZYg is selected,
then TRANSLATE and AUTONOMOUS must also be included since there are message
and event arrows between these micro-protocols. However, if either ICMP or BEACON
are selected, then TRANSLATE and AUTONOMOUS are not needed since there is no
event or message communication.

6.3.1 Detection Micro-Protocols

This section presents �ve micro-protocols for detection of hando� conditions. As noted
above, there are two classes of detection micro-protocols, those initiated by base stations

88

and those initiated by mobile hosts. The former will be presented �rst (ICMP and BEA-
CON), followed by the latter (SIMPLE, SIMPLE W/OSC, LAZY). Each micro-protocol
is given a descriptive name followed by either \MOBILE HOST" or \BASE STATION"
depending on whether the micro-protocol is to be executed in a composite protocol for
mobile hosts or base stations.

micro-protocol ICMP MOBILE HOSTf
actionsf
Message Inserted Into Bag(CP Msg t Msg)

& Msg->type == ICMP ID REQUEST !
sendMsg(ICMP RESPONSE, myId);

g

g end micro-protocol ICMP MOBILE HOST

Figure 6.3: ICMP based detection for mobile hosts

The ICMP MOBILE HOST micro-protocol (Figure 6.3) responds to ICMP requests
that are broadcast by base stations to detect which hosts are in their cell. When such a
ICMP ID REQUEST message arrives, a corresponding ICMP RESPONSE message is sent with
the host identi�cation.

The ICMP BASE STATION micro-protocol (Figure 6.4) sends out the required ICMP
requests once every detection interval. A repeating timer event is started when the micro-
protocol is initialized and will continue to repeat until the micro-protocol has terminated.
This timer causes a private event to be raised every interval that invokes a handler to
send the request messages. Mobile hosts in the area are stored in a table of active hosts
and marked with the timestamp for each interval that it responds to a request. A new
host is detected when a response is received from a host not in the table; this triggers the
Join New MH event. Hosts that have not responded within a certain interval are removed
from the table, and the MH Inactive event is triggered. When a host has been successfully
acquired, the Host Joined(MH) event is generated by a hando� micro-protocol. In this
case, the host is added to the active table. This micro-protocol also provides access to the
last activity timestamp of hosts, which can be used by quality of service micro-protocols.

89

micro-protocol ICMP BASE STATIONf
exportsf
proc SetICMPInterval(int val);
proc int GetICMPInterval();
proc timestamp t MemberLastTimestamp(member t MH);
event Join New MH(member t MH);
event MH Inactive(member t MH);

g

importsf
proc boolean LookupMemList(member t MH);

g

privatef
event ICMP Timer();
int ICMPIntervalDEFAULT ICMP INTERVAL BS;
table t timestampMembers;
timestamp t curTimestamp;

g

initializef
setTimerEvent(ICMPTimer, REPEATING, ICMPInterval);
curTimestamp = INIT;

g

actionsf
Message Inserted Into Bag(CP Msg t Msg) & type == ICMP RESPONSE !

if (LookupMemList(Msg->MH) == FALSE) f

raiseEvent(Join New MH, ASYNC, Msg->MH);
g

else f

entry = lookup(timestampMembers, MH) ;
entry->timestamp = curTimestamp;

g

ICMP Timer() !

for each entry(timestampMembers)) f

if ((curTimestamp - entry->timestamp) > INACTIVE THRESH)f
raiseEvent(MH Inactive, SYNC, entry->MH);
deleteEntry(entry, timestampMembers);

g

g

increment(curTimestamp);
Host Joined(MH) !
entry = tableInsert(timestampMembers, MH);
entry->timestamp = curTimestamp;

g

... code for SetICMPInterval, GetICMPInterval, MemberLastTimestamp...

g end micro-protocol ICMP BASE STATION

Figure 6.4: ICMP based detection for base stations

90

micro-protocol BEACON MOBILE HOSTf
exportsf
proc SetBeaconInterval(int val);
proc int GetBeaconInterval();

g

importsf
g

privatef
event Beacon Timer();
boolean msgSent=FALSE;
Msg t beacon;
int beaconInterval=DEFAULT BEACON INTERVAL MH;

g

initializef
setTimerEvent(beaconTimer, REPEATING, beaconInterval);

g

actionsf
Message Pushed From CP(CP Msg t Msg) !

msgSent = TRUE;
Beacon Timer() !

if (!msgSent) f

sendMsg(beacon);
g

g

... code for SetBeaconInterval, GetBeaconInterval...

g end micro-protocol BEACON MOBILE HOST

Figure 6.5: Beacon based detection for mobile hosts

The BEACON micro-protocols are similar to those using ICMP except that the mes-
sages are periodically generated automatically by a mobile host rather than in response to
a query. BEACON MOBILE HOST (Figure 6.5) sets a timer event to trigger the sending
of a beacon packet with the appropriate host identi�er. Data messages are su�cient for
informing the base station of the mobile host's presence, which means that the beacon is
piggybacked on every outgoing message.

BEACON BASE STATION (Figure 6.6) has an interval timer and table of active hosts
that is used to detect mobile hosts that have recently entered the cell. The base station
adds and removes hosts from this table in the same manner as the ICMP BASE STATION
micro-protocol. It also triggers the same Join New MH and MH Inactive events.

91

micro-protocol BEACON BASE STATIONf
exportsf
proc SetBeaconInterval(int val);
proc int GetBeaconInterval();
proc timestamp t MemberLastTimestamp(member t MH);
event Join New MH(member t MH);
event MH Inactive(member t MH);

g

importsf
proc boolean LookupMemList(member t MH);

g

privatef
event Beacon Timer();
int beaconIntervalDEFAULT BEACON INTERVAL BS;
table t timestampMembers;
timestamp t curTimestamp;

g

initializef
setTimerEvent(beaconTimer, REPEATING, beaconInterval);
curTimestamp = INIT;

g

actionsf
Message Inserted Into Bag(CP Msg t Msg) !

if (LookupMemList(Msg->MH) == FALSE) f

raiseEvent(Join New MH, ASYNC, Msg->MH);
g

else f

entry = lookup(timestampMembers, MH) ;
entry->timestamp = curTimestamp;

f

Beacon Timer() !

for each entry(timestampMembers)) f

if ((curTimestamp - entry->timestamp) > INACTIVE THRESH)f
raiseEvent(MH Inactive, SYNC, entry->MH);
deleteEntry(entry, timestampMembers);

g

g

increment(curTimestamp);
Host Joined(MH) !
entry = tableInsert(timestampMembers, MH);
entry->timestamp = curTimestamp;

g

... code for SetBeaconInterval, GetBeaconInterval, MemberLastTimestamp...

g end micro-protocol BEACON BASE STATION

Figure 6.6: Beacon based detection for Base stations

92

micro-protocol SIMPLE MOBILE HOSTf
exportsf
event Join New BS(bs t oldBS, newBs);

g

importsf
bs t curBS /* global variable */

g

privatef
g

initializef
g

actionsf
Message Popped To CP(CP Msg t Msg) & Msg->type == BETTER BS !

/* Message from lower-level protocol */
raiseEvent(joinNewBS, ASYNC, MH, curBS, Msg->newBS);

g

g end micro-protocol SIMPLE MOBILE HOST

Figure 6.7: Simple detection micro-protocol for mobile hosts

SIMPLE MOBILE HOST is the �rst of the mobile host initiated detection micro-
protocols that rely on a lower-level protocol to determine if there is a base station in the
area with better signal quality. For all these micro-protocols, only the mobile mobile host
micro-protocol is described. The base station component is trivial; either it does nothing
because a lower-level protocol transmits the identi�cation packets as part of its wireless
channel management or it just transmits identi�cation packets periodically. When any of
the mobile host initiated micro-protocols are used, the AUTONOMOUS MOBILE HOST
micro-protocol must also be included.

The code for SIMPLE MOBILE HOST (Figure 6.7) relies on a lower-level protocol
to send up a message indicating that a better or new base station has been detected. In
response, the micro-protocol sends a wireless message to the new base station to request
a hando� (join) to the cell.

93

SIMPLE W/OSC PREVENTION MOBILE HOST in Figure 6.8 is similar to SIMPLE
MOBILE HOST but with the addition of oscillation prevention. The micro-protocol keeps
a timestamp of the last cell change and the base stations involved to prevent an attempt
to immediately switch back to the previous base station.

micro-protocol SIMPLE W/ OSC MOBILE HOST f

exportsf
event Join New BS(bs t oldBS, newBs);

g

importsf
event Join Complete(bs t newBS);
bs t curBS; /* global variable */
boolean handoffEnabled; /* global variable set by QoS */

g

privatef
timestamp t lastChangeTimestamp;

g

initializef
lastChangeTimestamp = INIT;

g

actionsf
Message Popped To CP(CP Msg t Msg) & Msg->type == BETTER BS !

/* Message from lower-level protocol */
if (Msg->newBS == lastBS)
if (((currentTimestamp() - lastChangeTimestamp) > TRESH) &&
handoffenabled) f

raiseEvent(joinNewBS, ASYNC, MH, curBS, Msg->newBS);
g

Join Complete(bs t newBS) !
setTimestamp(lastChangeTimestamp);

g

g end micro-protocol SIMPLE W/ OSC MOBILE HOST

Figure 6.8: Simple detection with oscillation prevention for mobile hosts

LAZY MOBILE HOST (Figure 6.9) is similar to SIMPLE MOBILE HOST but does
not request a hando� unless there has been activity in the last ACTIVITY THRESH time
period. Note that the activity threshold interval records both sending and receiving, so
even if the host is just receiving a stream of data, hando�s will still be performed.

6.3.2 Hando� Protocols

Hando� micro-protocols govern how the hando� is negotiated after it has been detected by
a detection micro-protocol. The �rst micro-protocol, AUTONOMOUS MOBILE HOST
(Figure 6.10), is required for mobile hosts that are using any of the mobile host initiated
detection micro-protocols. In this strategy, the event of hando� detection in the mobile
host is translated into a message that is sent to the new base station. The response is then
translated into a Join Complete event, or the join may time out. The micro-protocol also
controls the sending of data to base stations by enabling or disabling uplink capability with
the mode variable. Since many architectures prohibit data transmissions when a hando�

94

micro-protocol LAZY MOBILE HOSTf
exportsf
event Join New BS(bs t oldBS, newBs);

g

importsf
event Join Complete(bs t newBS);
bs t curBS; /* global variable */
boolean handoffEnabled; /* global variable set by QoS */

g

privatef
timestamp t activityTimestamp;

g

initializef
activityTimestamp = INIT;

g

actionsf
Message Popped To CP(CP Msg t Msg) & Msg->type == BETTER BS !

/* Message from lower-level protocol */
if ((curTimestamp() - activityTimer) > ACTIVITY THRESH) f

raiseEvent(joinNewBS, ASYNC, MH, curBS, Msg->newBS);
g

Message Popped To CP(CP Msg t Msg) & Msg->type != BETTER BS !
setTimestamp(activityTimestamp);

Message Pushed From CP(CP Msg t Msg) & Msg->type != BETTER BS !
setTimestamp(activityTimestamp);

g

g end micro-protocol LAZY MOBILE HOST

Figure 6.9: Lazy detection for mobile hosts

is in progress, the mode variable is monitored by the send micro-protocol and used as a
signal that sending should be disabled. This could also have been implemented using an
event, with the send module changing the transmission mode when the event is triggered.

REQUEST/REPLY BASE STATION (Figure 6.11) is executed by the new base station
during a hando�. The base station responds to the Join New MH event by checking if the
host is already in the active list, which would indicate that it had recently been in the cell
and no hando� is needed. Otherwise, a message is sent to the old base station to request
a release of this host. If granted, the old base station informs applications interacting
with the host that it has moved and the identity of the new base station. Then the old
base station initiates a disconnect micro-protocol, which disposes of packets that were
addressed to the host. When disconnection is complete, a RELEASE GRANTED message is
sent to the new base station. A table named MHRequestingJoin is used to match up
RELEASE GRANTED messages with mobile hosts that have started the hando� procedure.

An alternative strategy is implemented by NACK BASE STATION (Figure 6.12),
which broadcasts a hando� request to all base stations. The micro-protocol responds to
the Join New MH message by setting a timer and then broadcasting a RELEASE REQUESTED

message to all base stations. If a RELEASE DENIED message is received before the timer
event is triggered, the hando� is aborted. Otherwise, the hando� is completed and a
HANDOFF message is sent to all base stations. If the RELEASE DENIED message is also

95

broadcast, then the HANDOFF message can be omitted since all base stations can infer the
result of the request.

96

micro-protocol AUTONOMOUS MOBILE HOSTf
exportsf
event Join Complete(bs t newBS);

g

importsf
event Join New BS(bs t oldBS, newBs);
event QOS Handoff(QoS t *QoS);
mode t mode; /* controlling sending */

g

privatef
timer t requestJoinTimerHandle;
bs t joiningBS; /* global variable */

g

initializef
g

actionsf
Join New BS(bs t newBS) !
/* do not transmit any messages while join in progress */
mode = NO UPLINK;
raiseEvent(QOS Handoff, SYNC, QoS);
sendMsg(JOIN REQUEST, newBS, curBS, *QoS);
requestJoinTimerHandle =
setTimerEvent(requestJoinTimer, ONCE, JOIN INTERVAL, newBS);

joiningBS = newBS;
requestJoinTimer !

/* Abort joining attempt */
mode = UPLINK;

Message Inserted Into Bag(CP Msg t Msg) & Msg->type = JOIN REPLY YES !
/* Joining accepted */
if (Msg->BS == joiningBS) f

cancelTimer(requestJoinTimerHandle);
prevBS = curBS;
curBS = Msg->BS;
raiseEvent(Join Complete, ASYNC, Msg->BS);

g

Message Inserted Into Bag(CP Msg t Msg) &
Msg->type = JOIN REPLY DENIED !

/* Joining denied! */
cancelTimer(requestJoinTimerHandle);
mode = UPLINK;

g

g end micro-protocol AUTONOMOUS MOBILE HOST

Figure 6.10: Autonomous mobile host hando� for mobile hosts

97

micro-protocol REQUEST/REPLY BASE STATION f

exportsf
event Start Disconnect(member t MH, bs t oldBS);
event Host Joined(member t MH);
event Host Released(member t MH);
event QOS Handoff(member t MH, QoS t *QoS);
event QOS Info Request(Member t MH, QoS t *QoS);

g

importsf
event End Disconnect(member t MH, bs t oldBS);
event Join New MH(member t MH, bs t oldBS);

g

privatef
table t MHRequestingJoin;

g

initializef
initTable(MHRequestingJoin);

g

actionsf
Join New MH(member t MH, bs t oldBS) !

if (LookupMemList(MH) == TRUE) f

/* already in list of active hosts */
sendMsg(JOIN REPLY YES, MyID);

g

else f

tableInsert(MHRequestingJoin, MH, oldBS);
sendControlMsg(RELEASE REQUESTED, MH, oldBS);

g

Message Inserted Into Bag(CP Msg t Msg) & Msg->type = RELEASE GRANTED !

if ((entry = tableLookup(MHRequestingJoin, Msg->MH))) f

tableDelete(MHRequestingJoin, entry);
raiseEvent(Host Joined, SYNC, entry->MH, Msg->QoS);

g

else f

sendControlMsg(ERROR, Msg->BS, Msg);
g

Message Inserted Into Bag(CP Msg t Msg)
& Msg->type = RELEASE REQUESTED !

for all server connected f

sendControlMsg(HANDOFF, myId, Msg->BS);
g

raiseEvent(Start Disconnect, ASYNC, Msg->MH, Msg->newBS);
End Disconnect(member t MH, bs t newBS) !
raiseEvent(QOS Handoff, SYNC, MH, QoS);
sendControlMsg(RELEASE GRANTED, newBS, *QoS);
raiseEvent(Host Released, ASYNC, MH);

g

g end micro-protocol REQUEST/REPLY BASE STATION

Figure 6.11: Request/reply hando� for base stations

98

micro-protocol NACK BASE STATION f

exportsf
event Start Disconnect(member t MH, bs t oldBS);
event Host Joined(member t MH);
event Host Released(member t MH);

g

importsf
event Join New MH(member t MH);
proc timestamp t MemberLastTimestamp(member t MH);

g

privatef
table t MHRequestingJoin;
timer t joinTimerHandle;
event joinTimer(member t MH);

g

initializef
initTable(MHRequestingJoin);

g

actionsf
Join New MH(member t MH) !

entry = tableInsert(MHRequestingJoin, MH);
joinTimerHandle = setTimerEvent(JoinTimer, ONCE, JOIN TIME, MH);
addToEntry(entry, joinTimerHandle);
/* message is broadcast to all base stations */
sendControlMsg(RELEASE REQUESTED, item->MH, item->oldBS);

Join Timer(member t MH) !
/* if no BS responds can add the host to my cell */
if ((entry = tableLookup(MHRequestingJoin, MH)) f

raiseEvent(host Joined, SYNC, MH);
tableDelete(MHRequestingJoin, MH);
/* all base stations and routers informed */
sendControlMsg(HANDOFF, MH, myId);

g

Message Inserted Into Bag(CP Msg t Msg) & Msg->type = RELEASE DENIED !

if ((entry = tableLookup(MHRequestingJoin, Msg->MH))) f

cancelTimer(entry->joinTimerHandle);
tableDelete(MHRequestingJoin, entry);
raiseEvent(Host Denied, entry->MH);

g

else f

sendControlMsg(ERROR, Msg->BS, Msg);
g

Message Inserted Into Bag(CP Msg t Msg) &
Msg->type = RELEASE REQUESTED !

if (LookupMemList(Msg->MH)) f

if ((curTimestamp - MemberLastTimestamp(Msg->MH)) >
INACTIVE THRESH) f

raiseEvent(Host Released, ASYNC, Msg->MH);
raiseEvent(Start Disconnect, AYNC, Msg->MH, Msg->oldBS);

g

else f

sendControlMsg(RELEASE DENIED, Msg->MH, myId);
g

g

g end micro-protocol NACK BASE STATION

Figure 6.12: NACK hando� micro-protocol for base stations

99

micro-protocol AGENT COORDINATED BASE STATION f

exportsf
event Start Disconnect(member t MH, bs t oldBS);
event Host Joined(member t MH);
event Host Released(member t MH);
event QOS Handoff(Member t MH, QoS t *QoS);
event QOS Info Request(Member t MH, QoS t *QoS);

g

importsf
event Join New MH(member t MH);
proc getHostAgent(member t MH);

g

actionsf
Join New MH(member t MH) !
agent = getHostAgent(MH);
/* Inform MH agent, it forward request to old base station */
sendControlMsg(RELEASE REQUESTED, agent, MH, MyID);

Message Inserted Into Bag(CP Msg t Msg) &
Msg->type = RELEASE REQUESTED !

/* Release is always OK send back QoS response */
raiseEvent(QOS Handoff, SYNC, Msg->MH, QoS);
sendControlMsg(RELEASE GRANTED, Msg->BS, MyId, *QoS);
raiseEvent(Host Released, ASYNC, MH);
raiseEvent(Start Disconnect, ASYNC, Msg->MH, Msg->newBS);

Message Inserted Into Bag(CP Msg t Msg) & Msg->type = RELEASE GRANTED !
raiseEvent(Host Joined, ASYNC, MH, Msg->QoS);

g end micro-protocol AGENT COORDINATED BASE STATION

Figure 6.13: Agent Coordinated hando� for base stations

The �nal hando� style, implemented in the AGENT COORDINATED BASE STA-
TION (Figure 6.13), allows agents to coordinate hando� requests. Since agents already
coordinate the data going to the host, this simply involves informing the base stations,
so it knows where to forward new packets. The old base station cannot refuse in this
approach, so the agent just sends it noti�cation to allow it to deal with extra packets and
update its active table.

100

micro-protocol TRANSLATE BASE STATION f

exportsf
event Join New NM(bs t oldBS, newBs);

g

importsf
event Host Joined(member t MH);
event Host Denied(member t MH);

g

actionsf
Message Popped To CP(CP Msg t Msg) & Msg->type == JOIN REQUEST !

/* Set timer and if not response in time then denied */
raiseEvent(Join New MH, ASYNC, Msg->MH, Msg->curBS, Msg->newBS,
Msg->QoS);

Host Joined(member t MH) !
sendMsg(JOIN REPLY YES, MH, MyId);

Host Denied(member t MH) !
sendMsg(JOIN REPLY YES, MH, MyId);

g

g end micro-protocol TRANSLATE BASE STATION

Figure 6.14: Translate messages into events for base stations

All the base station hando� micro-protocols described above execute handlers when
the Join New NM event is triggered. However, some of the detection micro-protocols | in
particular SIMPLE, SIMPLE W/ OSC, and LAZY | all send a message when a hando�
is triggered since the detection is done on the mobile host rather than the base station.
Hence, to use the same hando� micro-protocols, this message must be translated into an
event. The TRANSLATE micro-protocol (Figure 6.14) performs this function. It also
translates the completion of the hando� micro-protocol from an event into a message that
is sent to the mobile host.

101

6.3.3 Disconnection

Separate and orthogonal from hando� is the decision about what to do with packets left
in the old base station during and after a hando�. This section contains three micro-
protocols for disconnection: DROP, DRAIN, and FORWARD. All three are executed on
the old base station and start to process packets of the mobile host to be handed o� when
the Start Disconnect event is triggered. The End Disconnect event is raised when the
disconnection has completed. The disconnection micro-protocol is intimately connected
with the send micro-protocol that controls the sending of packets and manages queues of
outgoing messages. We omit the details of send, but essential features are mentioned.

micro-protocol DROP BASE STATION f

exportsf
event End Disconnect(member t MH, bs t newBS);

g

importsf
event Start Disconnect(member t MH, bs t newBS);
proc DropPackets(member t MH);

g

actionsf
Start Disconnect(member t MH, bs t newBS) !

/* Throw away packets that can not be delivered */
DropPackets(MH);
raiseEvent(End Disconnect, MH, newBS);

g

g end micro-protocol DROP BASE STATION

Figure 6.15: Drop packet disconnection scheme for base stations

DROP BASE STATION (Figure 6.15) discards packets of a host that has left the cell.
The DropPackets procedure is imported from the send micro-protocol and deletes the
host's packets from all queues. As noted above, if reliable transmission is needed then a
higher-level protocol must be providing the guarantees.

DRAIN BASE STATION (Figure 6.16) takes the view that the host may still be
reachable even if a hando� is occurring. The micro-protocol takes advantage of this by
adjusting the priority of any remaining host packets and quickly transmitting them as the
hando� occurs. The Top Priority And Send All event prompts the send micro-protocol
to set the packets for quick delivery and if they are not acknowledged, to discard them.
The event is raised synchronously, so that the micro-protocol will block until the send of
the packets is completed or the packets are dumped.

FORWARD BASE STATION (Figure 6.17) removes packets from a departed host from
the sending queues of the old base station and forwards them to the new one. The new
base station then inserts them in the correct sending order, and adds them to the queues
of outgoing messages for the mobile host. When all the packets have been forwarded, the
End Disconnect event is raised.

102

micro-protocol DRAIN BASE STATION f

exportsf
event End Disconnect(member t MH, bs t newBS);
event Top Priority And Send ALL(member t MH);

g

importsf
event Start Disconnect(member t MH, bs t newBS);

g

actionsf
Start Disconnect(member t MH, bs t newBS) !
/* Throw away packets that can not be delivered */
raiseEvent(Top Priority And Send All, SYNC,MH);
raiseEvent(End Disconnect, SYNC, MH, newBS);
g

g end micro-protocol DRAIN BASE STATION

Figure 6.16: Drain disconnection scheme for base stations

6.4 Variations of Quality of Service

Quality of service (QoS) micro-protocols can be separated from mobility micro-protocols
since they are not directly involved in hando�s and other mechanics of routing. This sep-
aration is important for creating communication services with di�ering quality of service
policies, but the same basic system architecture for routing and hando�s. Recall from
Chapter 2 that InfoPad is the only current system that speci�cally addresses quality of
service, largely because it is speci�cally designed for multimedia applications.

QoS for mobile systems is complicated because the negotiation between applications,
mobile hosts, and base stations cannot necessarily be done once, as in stationary dis-
tributed systems. Mobile hosts move, of course, which means that a new base station
must provide these resources when a hando� occurs. If the cell is already being heavily
used, the new arrival with its connections may be be too much for the new base station to
guarantee. The overall result is that quality of service must be dynamically renegotiated
many times over the lifetime of a connection.

To aid the negotiation, QoS attributes are part of the connection parameters between
a mobile host and an application, and migrate with the connection as the host moves.
The connection contains a description of performance parameters, such as throughput,
jitter, latency, packet retransmission limits and requirements, and perhaps transmission
priority. These descriptions are passed during a hando� to the new base station along
with the mobile host's connections to applications. Agent-based architectures cache the
connection parameters in the agent, so in this case base stations contact the agent directly
for performance parameters. These parameters are modi�ed by QoS algorithms to realize
di�erent qualities of service.

We have identi�ed four classes of properties related to QoS in mobile systems: scope,
authority, locality of scheduling, and information types. Each constitutes an individual
orthogonal aspect independent of other selections.

103

micro-protocol FORWARD BASE STATION f

exportsf
event End Disconnect(member t MH, bs t newBS);

g

importsf
event Start Disconnect(member t MH, bs t newBS);
proc getPacketFromQueues(member t MH);

g

actionsf
Start Disconnect(member t MH, bs t newBS) !

/* Forward packets to new base station for delivery */
while (packet = getPacketFromQueues(MH)) f

msg = createForwardPacket(packet, newBS);
sendMsg(FORWARD, newBS, msg);

g

raiseEvent(End Disconnect, MH, newBS);
g

g end micro-protocol FORWARD BASE STATION

Figure 6.17: Forward packets disconnection schemes for base stations

Scope. An algorithm that governs QoS can either use information from one cell or infor-
mation from neighboring cells. An algorithm of single cell scope would adjust priorities
and allocations only in a single base station. However, an algorithm of multiple cell scope
could use information from neighboring cells to do, for example, load balancing. That is,
if a host is reachable by two di�erent base stations, the algorithm could assign the mobile
host to the more lightly loaded cell. This idea can be generalized to multiple overlapping
cells.

Authority. QoS parameters are maintained by the QoS authority. Depending on the
architecture and the algorithm, there are several choices of QoS authority. A common
choice is the current base station, which caches all connection data for hosts in its cell.
When using the base station authority, QoS information is either passed automatically
as part of the hando� or requested from the old base station, as described above. Note
that this information may only be a reection of what the base station allocated to the
connection, not necessarily what the host originally requested. A second option for mobile
hosts that are autonomous is for the mobile host itself to be the authority. In this scheme,
when a mobile host establishes a connection, it passes this information along to the new
base station. A third possibility is the applications, in which case new base stations request
QoS information from the application for each connection associated with a mobile host
that enters its cell. In general for all three options, applications participate in allocation
decisions, because they are knowledgeable about what parameters they require and how
requirements can be adjusted. For example, video applications could respond to a reduced
throughput allocation by slowing the frame rate or reducing the resolution.

104

Locality of Scheduling. The scheduling of resources (allocation) within a single cell by a
base station can be local or global depending on whether the algorithm a�ects only one
host or all hosts. Local scheduling allocates a share of resources to a mobile host and
its applications that may be adjusted as requirements change or more resources become
available. However, using local scheduling, an increase in the allocation of one host does
not a�ect another host, i.e., regardless of later mobile host activity or arrivals, a host
would be assured its allocation. Local scheduling also implies that late comers may not
be able to acquire enough resources if all have already been allocated. On the other hand,
global scheduling considers all the resources within the cell when making decisions, and
can make adjustments to existing allocations. Thus, global scheduling algorithms may
reduce the resources allocated to a mobile host to accommodate a new arriving host or a
current host that starts running additional applications that require additional resources.

Information Types. Two types of information can be used for resource scheduling: re-
quest and usage. Request-based scheduling uses only requirements stated by applications
and mobile hosts. In contrast, usage-based monitors actual use instead of or in addition to
request-based information, which can result in better overall service to all hosts in the cell.
If a guarantee of service to accommodate bursty tra�c has been made, then the allocation
must be request-based, and an application may end up acquiring larger allocations than
actual usage patterns would dictate.

6.5 Example QoS Micro-Protocols

In this section, we describe generic high-level micro-protocols for QoS. Instead of a speci�c
algorithm, the micro-protocols that are presented provide structure for adding QoS into a
communication service for mobile systems. In this sense, the QoS micro-protocol is treated
as a \black box", and we concentrate on describing the connections and relationships to
other modules in the micro-protocol suite. The speci�c micro-protocols presented are to
manage base station QoS and transmission QoS attributes by a base station or a mobile
host during hando�s. The micro-protocols for managing sending of messages and usage
monitoring are essential to QoS, and are described in Section 6.6.

The most complex QoS management occurs in the base station micro-protocol that
allocates resources to mobile hosts and applications, negotiates QoS attributes, and dy-
namically adjusts QoS allocations. A generic micro-protocol, QOS BASE STATION, is
given in Figure 6.18. It covers mobile hosts joining a cell, hosts leaving the cell, negoti-
ating with applications for QoS attributes, and handling performance panics when QoS
attributes are not being met.

In this micro-protocol, a number of situations are handled. When a host is released
from the cell, the Host Released(MH) event is raised and all allocations associated with
the host can be given to other hosts as needed. The micro-protocol stores QoS attribute
information of unmet requests to use in this situation. When hosts join a cell, the ini-
tial QoS attributes are assigned after negotiation and possible adjustments are made to
allocations of other hosts. The negotiation may involve the monitor micro-protocol. The
LookupQoS procedure determines what attribute values have been assigned to a host, so

105

that this information can be passed along with the hando� if the QoS authority is the
current base station. After QoS attributes are established, the QoS authority is informed.

When a host joins a cell, its QoS requirements may be passed as part of the hando�
information; for example, the HANDOFF QoS BASE STATION micro-protocol (Figure
6.19) sends QoS attributes during a hando�. Other schemes where the QoS authority
is the mobile host would use the HANDOFF QoS MOBILE HOST (Figure 6.20), which
looks up QoS information when a hando� is occurring. In this case, the information would
be included in the hando� message to the new base station. If the QoS authority is the
application or agent, then the base station directly requests this information from the
authority.

The QoS attributes received by the base station during a hando� are a temporary
resource allocation that is used until the base station can negotiate. If these attributes
acceptable | i.e., they can be met | then they are used permanently; otherwise, the base
station negotiates to obtain achievable values. This negotiation can involve applications,
modifying allocations for current mobile hosts, modifying other connections for the same
mobile host, or use of monitor information to downgrade connections allocated but not
being used. After the attributes are established, the QoS authority is informed of the new
parameter values.

Anytime during the lifetime of a connection, an application can signal a desire for
an adjustment to the QoS attributes by sending a QOS New Request message to the base
station. The message can come directly from an application or from an agent on behalf of
an application. This request will be met if possible, and a response sent back along with
a message to the QoS authority about the change in parameters.

In certain situations, the monitor or send micro-protocols may alert the QoS micro-
protocol that certain QoS attributes are not being maintained. This can occur either
because a mobile host or application is not adhering to the negotiated values or because
the resources have been over-scheduled. When this occurs, the QoS micro-protocol can
modify QoS parameters and start a new negotiation phase or ignore the panic.

106

micro-protocol QOS BASE STATION f

exportsf
proc LookupQoS(member t MH, QoS t *QoS);
event QoS Modified(member t MH, QoS t *QoS);
event QoS Added(member t MH, QoS t *QoS);

g

importsf
event Host Joined(member t MH, QoS t *QoS);
event Host Released(member t MH);
event QoS Panic(Panic Status t status);
proc UsageMonitorData(member t MH, use t *Usage);

g

privatef
table t TableOfAllocations;

g

initializef
ClearTableOfAllocations();

g

actionsf
Host Released(MH) !
Remove mobile host from TableOfAllocations, cleanup allocations given to host,
perhaps increase other connection allocations

Host Joined(MH,QoS) !

if (QoS == NULL) f

/* no QoS information with the handoff, start with default */
InsertTable(TableOfAlloactions, DEFAULT QOS) ;
Other schemes can request QoS information from QoS Authority
for initial allocation

g

else f

If the initial QoS can be accommodated then insert into table.
Otherwise apply negotiation algorithm to attain new QoS attributes
employing any of the following methods.
1. Negotiate with application to reduce requirements
2. Change the allocation of other MH's and inform hosts and applications
3. Change allocation of the other connections of this MH
4. Use monitor information to downgrade connection not used to allocation

Inform QoS Authority of �nal QoS parameters
raiseEvent(QoS Added, ASYNC, MH, QoS);

g

Message Popped To CP(CP Msg t Msg) & Msg->type == QOS New Request !
/* Application wants to request different QoS requirements */
Apply above algorithm with new QoS from Msg->QoS
Send �nal QoS parameter message back to application
Inform QoS Authority of �nal QoS parameters
raiseEvent(QoS Modified, ASYNC, MH, QoS);

QoS Panic(status) !
Send unable to meet QoS requirements, missed deadlines, etc.
Consult with monitor to isolate di�culty and modify QoS attributes
Possibly send additional QoS messages to applications

g

... code for lookupQoS, calculateQoS

g end micro-protocol QOS BASE STATION

Figure 6.18: Quality of service management

107

micro-protocol HANDOFF QOS BASE STATION f

importsf
event QOS Handoff(member t MH, QoS t *QoS);
proc LookupQoS(member t MH, QoS t *QoS);

g

actionsf
QOS Handoff(member t MH, QoS t *QoS) !

LookupQoS(MH, QoS);
Message Popped To CP(CP Msg t Msg) & Msg->type == QOS Info Request !
LookupQoS(MH, QoS); /* get current QoS characteristics */
sendControlMsg(QOS Info, Msg->sender, QoS);

g

g end micro-protocol HANDOFF QOS BASE STATION

Figure 6.19: QoS information provided by base stations

micro-protocol HANDOFF QOS MOBILE HOST f

importsf
event QOS Handoff(QoS t *QoS);
proc LookupQoS(QoS t *QoS);

g

actionsf
QOS Handoff(QoS t *QoS) !

/* Fill in QoS structure */
LookupQoS(QoS);

g

g end micro-protocol HANDOFF QOS MOBILE HOST

Figure 6.20: QoS information provided by a mobile host

6.6 Supporting Micro-Protocols

The QoS micro-protocols are intimately connected to the send and monitor micro-protocols.
The �rst is responsible for translating the QoS information to priorities for scheduling
transmission of messages to mobile hosts. In particular, it multiplexes the shared resource
of wireless bandwidth among all the mobile hosts in the cell. Some wireless transmission
protocols assign each mobile host separate channels that can simplify scheduling, but even
then, multiple applications using the same channel must be scheduled.

The monitor micro-protocol is essential for implementing usage-based QoS policies, as
noted above. Unlike the send micro-protocol, monitor is a passive observer. It collects
information about the aggregate allocation of resources in the cell, the usage patterns for
each mobile host, and whether real-time deadlines for jitter and throughput are being
met. The monitoring also determines which hosts are not using their allocated resources,
so the QoS module can reassign them to other connections or adjust sending priorities.
The monitor module supports global scheduling by answering queries from its peers in

108

Inspiration Detect Hando� Disconnect

Crosspoint ICMP NACK FORWARD

PARC TAB BEACON AGENT DROP

InfoPad SIMPLE, TRANSLATE, AUTONOMOUS REQ/REP DRAIN

DataMan LAZY, TRANSLATE, AUTONOMOUS REQ/REP FORWARD

Table 6.1: Existing mobile system inspired con�gurations.

neighboring cells to implement load balancing.
For all micro-protocol suites, a membership micro-protocol is needed to add and remove

hosts from the active table. In addition, veri�cation micro-protocols are included to check
the format of a message prior to being added to the shared bag of messages. Some
veri�cation micro-protocols also drop messages from hosts not in the table unless it is a
control message requesting addition to the cell.

6.7 Example Con�gurations

Combining the micro-protocols described in this chapter together can result in a variety of
communication services for mobile systems. All together there are 5 choices for detection,
3 choices for hando�s and 3 choices for disconnection, resulting in 45 possible composite
protocols. The selection of QoS micro-protocols is orthogonal and adds another dimension
of behavior that can be added to any of the 45 combinations. As an example of some of
the possible choices, several con�gurations inspired by systems described in Chapter 2
are shown in Table 6.1. The table lists the detection, hando�, and disconnection micro-
protocols that would be combined to create a system with mobility behavior similar to
the named systems. In addition, a system such as InfoPad that includes QoS guarantees
would include some variation of the QoS and supporting micro-protocols.

6.8 Conclusions

In this chapter, we have seen how mobile systems can bene�t from con�gurable commu-
nication services. Micro-protocols for detection of hando�s, hando�s, and disconnection
can be selected and con�gured to match a variety of di�erences in the architecture and
semantics, or to facilitate rapid protocol development. In addition, the micro-protocol ap-
proach allows for incremental system construction, which is essential in an experimental
�eld. We also showed several di�erent con�gurations using this one collection of micro-
protocols that result in semantics similar to existing systems. Finally, quality of service
issues and policies are separated from those concerned directly with mobility in this ap-
proach, thereby simplifying system design and construction.

109

CHAPTER 7

EVALUATION

The goals of this research as stated in Section 3.1 are broad both in scope and in
character, which makes conclusive statements and quantitative measurements against ob-
jective standards di�cult. Furthermore, limitations in the programming and execution
environments constrained experimentation in several important areas. Nevertheless, our
experience allows us to reach several tentative conclusions about the e�ectiveness of our
programming model for constructing communication services, and the viability of the
prototype implementation.

The next section presents our overall assessment of this research. Following is an
explanation of the limitations imposed by the current implementation and programming
environment, and how they might be overcome. We conclude by discussing additional
issues that arise when supporting mobile systems with real-time requirements and evalu-
ating related work.

7.1 General Assessment

7.1.1 Overview

Our x-kernel-based prototype implementation is an e�ective realization of the composite
protocol model and achieved the majority of the objectives described in Section 3.1. The
model has been used to design four widely-di�ering communications services | group
RPC, membership, atomic multicast [GBB+95], and mobile communication | with the
�rst three implemented by three di�erent people. Based on these experiences, we have
reached several conclusions. First, the system is indeed con�gurable, with construction
of a new service being no more complicated than re-linking the framework with di�erent
micro-protocol object �les. Second, our performance measurements suggest that the event-
driven, data-centered approach is not only a useful design tool, but a viable implementation
technique as well. Third, the prototype successfully interfaced with existing x-kernel
protocols without modi�cation, which makes it possible to use in a variety of settings and
for a variety of applications.

Finally, and perhaps most importantly, the composite protocol model, like the x-kernel
itself, simpli�es development and debugging by encouraging protocol designers to decom-
pose protocols into more manageable pieces. In order to implement and test each com-
ponent separately, designers are forced to minimize the amount of external state and
interaction required between components, which helps identify more precisely the distinct
semantic categories contained in their protocol speci�cations. As a result, communications
services built from micro-protocol suites really do seem to encapsulate speci�c semantic
properties much better than existing alternative implementation forms.

We now examine in greater detail how well the goals of e�ciency, reusability, ease of

110

debugging and maintenance, and explicit dependencies have been achieved.

7.1.2 E�ciency

E�ciency can be measured in many di�erent ways. In Chapter 5, we presented mea-
surements of protocol performance for the group RPC micro-protocol suite. Given the
limitation of the environment | a relatively old and slow hardware platform, and execu-
tion as a user-level task on top of Mach MK82 | the execution times were encouraging
and lead us to believe that micro-protocol suites constructed using the event-driven model
can be competitive with other system architectures.

Another approach to ascertaining performance would be to make comparisons with
similar existing systems. However, this introduces a number of problems. For example,
we must �rst determine which metrics would be appropriate to compare. In addition, for
the results to be fair, the other systems must have similar design goals. Unfortunately,
as discussed in Chapter 2, there are few systems that provide similar functionality, and
those that do run on hardware or OS platforms that are su�ciently di�erent to prevent
meaningful comparisons.

Finally, if further experimentation convinces us that performance of the existing pro-
totype is inadequate, we are aware of several areas where enhancements and optimizations
are possible. These are discussed in Section 7.2.

7.1.3 Resuability

Our initial experimentation has focused on demonstrating the wide range of communica-
tions services that can be constructed using the composite protocol model. Consequently,
we have had little opportunity to experiment with reusing micro-protocols in di�erent
protocol suites. However, from studying the structure of the group RPC suite (Section
5.1), we believe that many of these micro-protocols could be used in other suites, partic-
ularly multicast. Alternatively, by providing additional semantic choices using additional
micro-protocols, the group RPC suite could be generalized to create a reliable group com-
munication suite.

7.1.4 Ease of Debugging and Maintenance

Building a high-level communication service is a di�cult task. One of the greatest bene�ts
of the prototype has been the opportunity to build and test elements of the communication
service individually. Each semantic behavior, coded as a separate micro-protocol, can be
tested either stand-alone or in peer-to-peer communication using the existing x-kernel
protocol graph. Because each micro-protocol is relatively small, tracking down bugs is
comparatively easy.

In addition, the framework provides a number of built-in debugging aids. One of the
most useful is an event-level tracing facility that reports all event triggers along with their
arguments, and the sequence of event handler execution. This service is entirely provided
by the framework, so no special code is required in the micro-protocol. Similarly, message
creation and destruction, and changes to message attribute values can be tracked. It is
also possible to trace thread execution using debugging facilities in the x-kernel.

111

The composite protocol model, with its clearly expressed dependencies, also aids in
program maintenance. First, changes are generally con�ned to one micro-protocol at a
time, greatly reducing the amount of code that must be examined to �nd an error. Second,
if the error is due to an unexpected interaction with other micro-protocols, it can easily
be checked by tracing event execution and message attribute values. Contrast this to
the normal protocol construction and debugging procedures, where no such corresponding
high-level interactions can be identi�ed, much less traced.

7.1.5 Explicit Dependencies

The micro-protocol structure makes dependencies explicit and clearly visible. Events and
message attributes | the external interface to a micro-protocol | are de�ned at the
beginning of the code. When a micro-protocol imports an event, it clearly indicates that
it is relying on some other micro-protocol to generate that event.

By making these elements part of the language de�nition, it is straightforward for a
language translator (or smart linker) to verify that these expectations are in fact being met.
Unfortunately, in our prototype implementation micro-protocols must be hand-translated
into the implementation language (C), so only limited checks are performed. Section 7.2
discusses this in more detail.

One important semantic aspect not captured by the interface de�nition is event or-
dering, i.e., that event A must be processed before events B or C. Also not expressed is
the relationship between events and changes to message attributes. Concisely express-
ing these constraints in the interface would make it easier to understand the behavior of
the micro-protocol, and potentially permit some level of automated veri�cation, either at
translation time or at runtime.

7.2 Programming Issues

7.2.1 Synchronous and Asynchronous Event Execution

The framework implementation has combined two orthogonal characteristics, call seman-
tics and execution semantics, into synchronous or asynchronous styles of event execution.
Recall that call semantics can either be blocking (i.e., calls do not terminate until all han-
dlers terminate) or non-blocking (i.e., calls return immediately). Similarly, event handlers
can execute either sequentially or in parallel. In the framework, raising an event with the
synchronous parameter results in a blocking call and sequential execution, while raising
an event with the asynchronous parameter results in a non-blocking call and parallel ex-
ecution. Figure 7.1 shows the four possible combinations and the two choices that are
supported by the framework, labeled ASYNC and SYNC.

Given that only two combinations are supported, the natural question is whether the
other two might be useful. Blocking call style with parallel execution would be useful
for a micro-protocol that can only proceed when all handlers complete execution but
the handlers do not have to execute sequentially. For example, the framework event
Message Ready To Be Sentmust be handled by all micro-protocols before actually sending
the message, but the micro-protocols need not execute sequentially. The last combination,

112

Blocking

Non-Blocking

Parallel
Call Style

Sequential

SYNC

ASYNC

Handler Execution

Figure 7.1: Possible combinations.

non-blocking sequential style, could be used when there are dependencies between micro-
protocols, but no need for noti�cation when the handlers complete. To allow variation
conveniently, perhaps call and execution semantics should be speci�ed independently.

7.2.2 Call Depth

In the course of constructing and experimenting with the prototype, we learned some sur-
prising lessons about the interactions of events and handler execution with the procedure
call optimization. In particular, when a single thread is used in this way, asynchronous
event execution is sometimes required to make computational progress, and repeated syn-
chronous event execution can cause stack overow. The basic problem is that event han-
dlers can raise other events that cause nested event handlers to execute, which results in
the thread executing to a great depth without returning. In other words, the execution
takes on a depth-�rst execution style, executing all nested events �rst before completing
the execution of handlers in the outermost events. Favoring nested events in this way can
prevent handlers associated with other triggered events from running.

Stack overow is a straightforward problem that results from long execution chains of
nested events handlers. For example, consider the following scenario. A message arrives
from the network, which causes all event handlers registered for the message arrival event
to be scheduled for execution. One of these handlers reacts to this arrival by delivering
messages to the user, for instance, if the message was the missing predecessor in a context
graph. This in turn may cause a cascade of new messages from the user and more han-
dlers being scheduled. Since all these activities are executed with the same thread, stack
overow may result.

The need for asynchronous event execution to make progress is more subtle but arises
from the same depth-�rst execution scenario. Speci�cally, if the triggering of an event
results only in a hander being added to the ready queue (to be executed later using fair
scheduling), then all handlers will eventually execute. However, with the procedure call
optimization, handlers that appear later in the list may be inde�nitely postponed. Also,
since the single call thread can continue to execute nested events and their corresponding

113

handlers, new messages that arrive may not even be processed in a timely manner. Our
experimentation with the group RPC micro-protocol suite demonstrated this problem;
often a message was sent requesting a retransmission because no thread had run to retrieve
arriving messages. In other words, message retransmissions were requested for messages
the composite protocol possessed but was unaware of! The use of true asynchronous event
execution with multiple threads solves these problems by servicing event handlers fairly,
thereby allowing handlers associated with incoming messages to execute.

The call depth optimization discussed in Section 4.2.4 was introduced as a way to,
in essence, force asynchrony. Recall that when using this optimization, a new thread is
created when the call depth exceeds a threshold set by the user. After implementing call
depth control, we noticed that GRPC made many fewer retransmission requests. Changing
the call depth threshold signi�cantly a�ected the running time, and in fact, we tuned this
value to achieve the best results from our micro-protocol suite. If the call depth was set
fairly shallow, 5 to 10, event execution caused more C-thread context switches, but fewer
extra retransmission requests were sent. When the call depth was set fairly deep, 50 to
100, event execution was more rapid, but far more control message tra�c was generated,
which resulted in signi�cant performance degradation as the network became severely
overloaded. The best results for GRPC were achieved with a call depth setting around
30, which achieved the best tradeo� between the number of retransmissions requests and
C-thread context switches.

Call depth monitoring is a simple �x that solved the immediate problem, but perhaps
a priority scheduling scheme is a better long-term solution. The need for this type of
scheduling control is discussed in Section 7.4.

7.2.3 Ordering Handler Execution

The current way in which synchronous event execution is realized allows the programmer
to assume a given ordering for its associated handlers. Speci�cally, execution order is the
order in which the handlers were installed. Knowing the execution order can be used to
advantage, for example, when a second handler depends on data modi�ed by the �rst. If
ordered execution is not guaranteed, then the �rst event handler would have to explicitly
trigger the second using an intermediate event. This issue is irrelevant for asynchronous
event execution since in this case, handlers are executed concurrently with no guaranteed
order.

The primary advantage of ordering handler execution is that the micro-protocol code
can be simpli�ed since intermediate events do not have to be used. Without the need
to include minor events that capture only small state changes in the micro-protocols,
the protocol writer can concentrate on structuring the code to support cleanly the major
events that drive execution of the communication service. Also, the intermediate events
introduce an extra layer of indirection that could potentially degrade performance.

On the other hand, ordering handler execution in this way has the major disadvantage
of violating the modularity of micro-protocols. That is, ordering adds hidden dependencies
that are not captured clearly in the speci�cation of the micro-protocol as captured in the
list of imported and exported events. This makes it di�cult to recon�gure micro-protocol
suites, since when a new micro-protocol is added or replaced, the execution order must

114

be adjusted to accommodate this change. As the number of micro-protocols increases,
this situation worsens due to all the possible con�gurations and corresponding orderings.
In addition, using a micro-protocol from one suite in another becomes almost impossi-
ble. Since intermediate events can always be used to force handler dependencies, ordered
handler execution adds no additional functionality, so its use is primarily a question of
programming style.

While ordering of synchronous event execution is supported in the framework to en-
hance exibility, on balance, our feeling is that its use should be avoided. By doing so, the
protocol writer preserves the explicitness of dependencies, thereby enhancing the overall
con�gurability of the communication service. We note that the RPC micro-protocol suite
was written without relying on implicit ordering, and as a result, uses a more concurrent
style of programming.

7.2.4 Event Scheduling

Another problem that was encountered during experimentation was the lack of control over
event scheduling. For example, when two messages arrive and the corresponding events are
raised, it would be useful to have a mechanism to control which is handled �rst. This could
be used to ensure that the messages are processed in sequence number order (transmis-
sion order), thereby avoiding unnecessary retransmission requests. However, such control
requires scheduling support from the underlying system, which is unfortunately lacking in
our version of Mach.

Scheduling control is also essential for correctness in a multiprocessor environment. If
two threads are popping up ordered messages to an application, it is essential that they
execute in the order that these pops were issued. Otherwise, the messages could have
been ordered by the composite protocol and the pops executed in correct order, but the
messages actually arrive at the application in the wrong order. This kind of scenario is
again di�cult to prevent without support from the underlying system.

7.2.5 Programming Language Support

As mentioned in Chapter 3, there is currently no translator for the Protocol Description
Language (PDL) used for examples in this dissertation. This leads to several limitations
in our prototype, which can be grouped into three categories: obscuring the model, no
static checking of PDL language rules, and no opportunity for optimizations.

The �rst is perhaps the most serious, since the key elements to our paradigm | events,
handlers, messages, and message attributes | disappear when a protocol is coded in C,
becoming ordinary function calls and de�nitions. This makes the essential elements of a
micro-protocol's interface and behavior much less visible and complicates debugging.

The second problem is that language checks cannot be done without a translator. For
example, we had to rely on C visibility rules that make functions and global variables
public by default, where the opposite is true in PDL. Similarly, there are no shared global
variables in PDL since this would create implicit dependencies between micro-protocols,
while C's �le-level scoping makes it impossible to enforce this restriction if a micro-protocol
is split into multiple source �les. It is also impossible to perform a number of module-
speci�c checks, which could have facilitated adding a new micro-protocol and con�guring

115

new communication services. For example, a translator could issue a warning when events
are raised but not handled, or when handlers are declared but no micro-protocol generates
the corresponding event. This type of feedback can simplify the process of detecting
incompatibilities between micro-protocols, and therefore, make con�guration of micro-
protocol suites more automatic.

Finally, a translator would provide an opportunity to optimize event execution with ef-
�cient evaluation of guards on handlers. Without this feature, each handler must evaluate
the guard itself and exit if it evaluates to false. This would be better done before handlers
are invoked to eliminate the need to process the event and execute the handler in all cases.
Guard evaluation also provides other opportunities for optimization, such as evaluating
a guard only once if several handlers have identical conditions. Event execution can also
be optimized using techniques such as in-lining code to remove event handler execution
overhead completely.

On a related issue, micro-protocols are actually objects, so an implementation in an
object-oriented language would naturally provide bene�ts. As noted in Section 3.1, a
C++ prototype using a simulated network has been developed in which micro-protocol,
events, and messages are classes. Further explorations in this direction would be useful.
For example, micro-protocols could be structured into specialized classes, such as ordering
micro-protocols that represent orthogonal behaviors. This may help the user identify
which micro-protocols may be substituted for one another.

7.3 Experimentation Issues

7.3.1 Performance Pro�ling

Performance pro�ling posed a number of challenges given the experimentation environ-
ment. Round trip message tests are the typical way to measure performance of network
protocols. However, since our composite protocol is a mix of framework and user-supplied
micro-protocol code, we would also like to measure the cost of di�erent framework func-
tions. Unfortunately, due to the lack of pro�ling tools on Mach, we developed only vague
ideas of what percentage of execution time is involved in framework procedures versus
micro-protocol speci�c code. This hampered our ability to improve runtime performance,
which naturally should be based on reliable pro�les of individual routines.

Also, as noted in Section 7.1.2, we would like to compare our performance with other
comparable protocol suites. However, this is di�cult because other suites are not based
on the same hardware or operating system. Moreover, the DecStations used for testing
are processors that run at 40 MHz and 25 MHz, which is very slow by modern standards.
More modern hardware and operating systems platform would be desirable, and might
provide a common basis for comparison with other approaches.

7.3.2 Testing

Running tests of composite protocols to gather data is the same as running any other
x-kernel protocol suite, although testing all the di�erent combinations of micro-protocols
clearly involves more e�ort. For testing of individual modules, the con�gurability of
the approach makes things easier because each can be tested incrementally. Tests are

116

started with a weaker set of semantics requiring fewer micro-protocols, and once those are
completed, stronger semantics and additional micro-protocols can be added. For example,
acknowledgment and retransmission micro-protocols are very easily veri�ed individually so
these might be tested �rst. Then ordering micro-protocols might be added. This also has
the additional bene�t that the composite protocol provides a working system throughout
and thus can serve as a testbed for the new micro-protocols.

Another advantage of our composite protocol approach is that the framework provides
a convenient place to implement facilities needed for event-based testing. In particular, the
framework can report all event trigger occurrences and handler executions, which provides
valuable information for debugging micro-protocol suites. In addition, the framework
allows speci�cation of what level of debugging messages are printed, or if only events
speci�c to one micro-protocol are reported. The framework also has a command line
interface to a test program that can trigger events to simulate event generation. This is
useful for testing individual micro-protocols.

7.3.3 Use of the x-kernel

Using the x-kernel had both positive and negative aspects. On the positive side, the
x-kernel is speci�cally designed for network programming and experimentation with pro-
tocols, which allowed us to focus on our model and not deal with such details as integration
with network device drivers. We were also able to exploit its other facilities such as the
e�cient message tool and novel thread architecture, both of which simpli�ed our imple-
mentation e�ort.

Another advantage was that the standardized protocol interface simpli�ed the integra-
tion of the composite protocol with the x-kernel protocol graph. Speci�cally, the composite
protocol only needed to support a few operations that make up the x-kernel uniform pro-
tocol interface. Moreover, when a message is brought into the composite protocol via a
pop or push operation, the framework can control further execution, which allows the
composite protocol to enforce its own execution model within the composite protocol.
That is, once the composite protocol handles messages that cross protocol boundaries,
the framework can completely control the form of messages and handling of these mes-
sages by micro-protocols. We were also able to augment the x-kernel messages easily with
attributes to create CP messages.

On the negative side, it was sometimes di�cult to isolate the micro-protocol program-
mer from all the details associated with writing protocols for the x-kernel. For example,
one of the goals of the implementation was to create a composite protocol that could
be completely independent of the protocol immediately below it in the protocol stack.
However, in our prototype this is only partially true; we have managed to localize the
layer-dependent code to one user-modi�able �le, but not eliminate it completely. Most of
the di�culties are associated with specifying the participant addresses used to open up
x-kernel sessions for the lower-level protocol. Perhaps a better environment would have
provided a generalized mechanism for specifying the participant addresses in a protocol-
independent fashion.

Another shortcoming of using the x-kernel is the lack of a multiprocessor implemen-
tation. While there are two multiprocessor versions of the x-kernel [NYKT94, Bjo93],

117

they are not widely available and are not the standard distribution. In addition, few
existing x-kernel protocols are written for multiprocessors, so for compatibility, the frame-
work is restricted to sequential execution. However, our model is speci�cally designed to
allow micro-protocols to execute in parallel when asynchronous event execution is used.
Thus, the availability of a multiprocessor version of the x-kernel and appropriate hardware
would have allowed for optimization and an assessment of parallel asynchronous handler
execution.

7.4 Mobility and Real-Time

An issue that arose in the context of mobile computing concerns support for real-time
deadlines and control of real-time aspects of scheduling. For example, the Crosspoint
architecture uses a negative acknowledgment scheme to add new mobile hosts to a base
station; if the new base station does not receive a NACK message, then it will add the
host to its cell. There are two potential problems: for timeouts to work, timer events
on the sender and receiver side need to execute fairly close to real time, and incoming
messages must be serviced shortly after their arrival. The second problem arises because,
as discussed in Section 7.2.4 above, the message may be held by a thread that is suspended
and destined not to execute within the required time. A similar problem is that occurences
of repeating events are not guaranteed to execute in the order they were triggered.

Another useful facility would be some mechanism for informing micro-protocols when
tasks are not executed on time and deadlines are missed. For example, generating an
exception for missed deadlines would allow micro-protocols to take some corrective action,
such as increasing the period between task execution or adapting its behavior to a more
loaded system. Since no information about missed deadlines is available, the system
currently has no opportunity to correct behavior. A similar opportunity is to discard
execution instances of repeating timer events that have missed their deadline, since such
events are often of no use.

7.5 Related Work

A number of other papers have addressed areas related to this work. Several are in the
area of fault-tolerance, where researchers have explored use of modularization or system
customization. Examples include the ANSA system [OOW91] and the work on multicast
reported in [Gol92]. In contrast to these, our approach is more general and provides more
exibility for the protocol designer. Also in the area of fault-tolerance, [Bla91] explores
orthogonal properties of transactions. Such characterizations are complementary to our
work since they suggest applications that might be suitable for implementation using our
model.

Another area of related work concerns development of system support for constructing
modular protocols. The x-kernel itself is, of course, one such system. Our work is an ex-
tension of the x-kernel model, with the goal of supporting �ner-grain protocol objects that
require richer facilities for communication and data sharing, while retaining the program-
ming and con�gurability advantages of the x-kernel. Many of our goals related to system
customization, code reuse, and protocol con�gurability are adopted from the x-kernel.

118

Other x-kernel related work has explored the use of �ner-grain protocol objects [OP92],
but the emphasis there is on syntactic decomposition of higher-level protocols within a
hierarchical framework. This work, however, does lend credence to the claim that such �ne-
grain modularity can be introduced without sacri�cing performance. System V Streams
[Rit84] also supports modularization of protocols, but its model is also hierarchical and
relatively coarse-grained. Horus [vRHB94] supports stack-line con�gurations of coarse-
grained protocols.

Somewhat closer to our work is the ADAPTIVE system [SBS93], which is also de-
signed to support exible combinations of protocol objects. The goal of the system is
to support e�cient construction of transport services with di�erent QoS characteristics,
especially for multimedia applications using high-performance networks. In contrast with
our work, the designers of ADAPTIVE emphasize runtime recon�guration, automatic
generation of sessions|i.e., instances of protocol objects|from high-level speci�cations,
and support for alternative process architectures and parallel execution. Moreover, the
type of protocol objects supported appear relatively coarse-grained when compared to our
objects|multicast rather than individual properties of multicast, for instance|and more
oriented toward hierarchical composition and limited data sharing.

Several other e�orts have also concentrated on supporting parallel execution of mod-
ular protocols, including [GNI92, LAKS93]. While similar to our work in the sense of
decomposing protocols along semantic lines, these e�orts di�er in their emphasis on using
parallel execution to improve throughput and latency for high-performance scienti�c ap-
plications. They also retain a single-level composition model, which we believe does not
o�er enough exibility for high-level protocols.

Protocol languages can be used to specify and validate protocols. The Language of
Temporal Ordering Speci�cations (LOTOS) is based on the Calculus of Communicating
Systems (CCS) [Bri87]. Lotos provides a high-level abstraction through the use of speci�-
cation algebras that allow a designer to reason formally about protocol behavior. Estelle
is another formal description language designed to program reactive systems [BD87]. The
language execution model is based on an extended �nite state machine, where protocols
are described as a set of modules that contains responses to events and a�ect the en-
vironment through output events. In contrast to our work, these e�orts concentrate on
automatic validation of protocols.

Finally, as noted in Chapter 2, recent work on new generation operating systems has
emphasized similar customization goals, but in a more general context [BCE+95, HPM93,
MMO+94]. These projects attempt to increase the ability of users to con�gure di�erent
types of services, but for many aspects of operating system functionality rather than just
network protocols. However, the con�gurability they provide is typically more coarse-
grained than our approach, which emphasizes choice among speci�c semantic properties
of high-level protocols.

119

7.6 Summary of Contributions

This dissertation makes a number of contributions to the study of communication ser-
vices for distributed systems. The primary contribution is a new model for constructing
con�gurable communication services that can be customized to meet the speci�c require-
ments of a distributed application. The approach is novel because communication services
are decomposed into distinct semantic properties, each implemented by a �ne-grained
micro-protocol. Micro-protocols have well-de�ned interfaces and interact according to an
event-driven paradigm.

Another signi�cant contribution is an x-kernel based implementation that supports our
model. The implementation extends the standard hierarchical model of the x-kernel with a
composite protocol in which micro-protocol objects are composed with a standard runtime
system. Using this implementation, we constructed a GRPC micro-protocol suite that can
be con�gured to provide many customized variations of a group RPC service. The GRPC
suite also provides a measure of the implementation cost of the event-driven model and
an assessment of the incremental costs of communication properties for common group
communication paradigms.

Finally, we demonstrated the widespread applicability of the approach by designing a
suite of micro-protocols for mobile computing. We discovered general semantic properties
for mobile computing, and designed micro-protocols for negotiation of quality of service,
and detection, hando�, and disconnection, These can be combined to accommodate a
variety of mobile computing architectures and applications.

120

121

REFERENCES

[AB93] A. Acharya and B. R. Badrinath. Delivering multicast messages in networks
with mobile hosts. In Proceedings of the 13th IEEE Symp. on Distributed
Computing Systems, pages 292{299. IEEE, May 1993.

[ABI93] A. Acharya, B. R. Badrinath, and T. Imielinski. Checkpointing distributed
applications on mobile computers. Technical report, Department of Com-
puter Science, Rutgers University, New Brunswick, NJ 08903, 1993.

[ABSK95] E. Amir, H. Balakrishnan, S. Seshan, and R. Katz. E�cient TCP over
networks with wireless links. In Proceedings of the HotOS-V Workshop,
Orcus Island, May 1995.

[ADKM92] Y. Amir, D. Dolev, S. Kramer, and D. Malki. Transis: A communication
sub-system for high availability. In Proceedings of the 22nd IEEE Symp. on
Fault-Tolerant Computing, pages 76{84, Boston, July 1992.

[AGKK91] J. Auerbach, M. Gopal, M. Kaplan, and S. Kutten. Multicast group mem-
bership management in high speed wide area networks. In Proceedings of

the 11th IEEE Symp. on Distributed Computing Systems, page 231, Arling-
ton, TX, May 20-24 1991.

[AGSW93] N. Adams, R. Gold, B. Schilit, and R. Want. An infrared network for
mobile computers. In Proceedings of the 1st USENIX Mobile and Location-
Independent Computing Symp., pages 41{51, August 1993.

[AIB] A. Acharya, T. Imielinski, and B. R. Badrinath. DATAMAN project: To-
wards a Mosaic-like location-dependent information service for mobile clients.
Technical Report DCS-TR-320, Department of Computer Science, Rutgers
University, New Brunswick, NJ 08903.

[ALB88] E. Arthurs, T.T. Lee, and R. Boorstyn. The architecture of a multi-
cast broadband packet switch. Technical report, Bell Communications Re-
search, Morristown, NJ 07960, 1988.

[AP93] M. B. Abbott and L. L. Peterson. Increasing network throughput by inte-
grating protocol layers. IEEE/ACM Trans. on Networking, 1(5), October
1993.

[ATK91] A. L. Ananda, B. H. Tay, and E.K. Koh. ASTRA | An asynchronous
remote procedure call facility. In Proceedings of the 8th IEEE Symp. on

Distributed Computing Systems, pages 172{179, Arlington, Texas, May 1991.

122

[BA89] N. E. Belkeir and M. Ahamad. Low cost algorithms for message delivery
in dynamic multicast groups. In Proceedings of the 9th IEEE Symp. on
Distributed Computing Systems, pages 110{119, Newport Beach, June 1989.
IEEE.

[BAI93a] B. R. Badrinath, A. Acharya, and T. Imielinski. Impact of mobility on
distributed computations. ACM Op. Syst. Review, 27(2):15{20, April 1993.

[BAI93b] B. R. Badrinath, A. Acharya, and T. Imielinski. Structuring distributed
algorithms for mobile hosts. Technical Report DCS{TR{298, Department
of Computer Science, Rutgers University, New Brunswick, NJ 08903, 1993.

[BALL90] B. Bershad, T. Anderson, E. Lazokska, and H. Levy. Lightweight remote
procedure call. ACM Trans. Comput. Syst., 6(1):37{55, February 1990.

[BB95] A. Bakre and B. R. Bandrinath. Hando� and system support for Indi-
rect TCP/IP. In Proceedings of the 2nd USENIX Mobile and Location-

Independent Computing Symp., pages 11{24, April 1995.

[BBIM93] B. R. Badrinath, A. Bakre, T. Imielinski, and R. Marantz. Handling mo-
bile clients: A case for indirect interaction. In Proceedings of the Fourth
Workshop on Workstation Operating Systems. IEEE, October 1993.

[BC91] K. Birman and R. Cooper. The ISIS project: Real experience with a fault-
tolerant programming system. ACM Op. Syst. Review, 25(2):103|107,
April 1991.

[BCE+95] B.N. Bershad, C. Chambers, S. Eggers, C. Maeda, D. McNamee, P. Pardyak,
S. Savage, and E. Sirer. SPIN - an extensible microkernel for application-
speci�c operating system services. ACM Op. Syst. Review, 29(1):74|77,
January 1995.

[BCG91] K. Birman, R. Cooper, and B. Gleeson. Programming with process groups:
Group and multicast semantics. Technical Report 91-1185, Department of
Computer Science, Cornell University, January 1991.

[BD87] S. Budkowski and P. Dembinski. An introduction to Estelle: a spec�cation
language for distributed systems. Computer Networks and ISDN Systems,
14:3{23, 1987.

[Bir85] K. Birman. Replication and fault-tolerance in the ISIS system. In Pro-

ceedings of the Tenth ACM Symp. on Operating System Principles, pages
79{86, Orcas Island, WA, December 1985.

[Bjo93] M. Bjorkman. The xx-kernel: An execution environment for parallel exe-
cution of communication protocols. Technical report, Uppsala University,
June 1993.

123

[BKPV95] B. Bakshi, P. Krishna, D. K. Pradhan, and N. H. Vaiyda. Performance
of TCP over wireless. Technical Report 95-049, Department of Computer
Science, Texas A&M University, December 1995.

[Bla91] A. Black. Understanding transations in an operating system context.
ACM Op. Syst. Review, 20(1):73{76, January 1991.

[BM89] K. Birman and K. Marzullo. The role of order in distributed programs.
Technical Report 89-1001, Department of Computer Science, Cornell Uni-
versity, 1989.

[BN84] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls.
ACM Trans. Comput. Syst., 2(1):39{59, February 1984.

[Bri87] E. Brinksman. An introduction to Lotos. In Proceedings of 7th IFIP WG

6.1 International Workshop on Protocol Speci�cation, Testing, and Veri�ca-
tion, 1987.

[BSAK95] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz. Improving TCP/IP
performance over wireless networks. In Proceedings of the 1st ACM Con-
ference on Mobile Computing and Networking, November 1995.

[BSS91a] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic
group multicast. Technical Report 91-1192, Department of Computer Sci-
ence, Cornell University, February 1991.

[BSS91b] K. Birman, A. Schiper, and P. Stephenson. Lightweight causal and atomic
group multicast. ACM Trans. Comput. Syst., 9(3):272{314, August 1991.

[Car82] W. C. Carter. A time for reection. In Proceedings of the 12th IEEE
Symp. on Fault-Tolerant Computing, 1982.

[Car92] K. G. Carlberg. A routing architecture that supports mobile end system.
In Proceedings of IEEE MILCOM 1992, October 1992.

[CASD85] F. Cristian, H. Aghili, R. Strong, and D. Dolev. Atomic broadcast: From
simple message di�usion to Byzantine agreement. In Proceedings of the 15th
IEEE Symp. on Fault-Tolerant Computing, pages 200{206, Ann Arbor, MI,
June 1985.

[CFL94a] P. Cao, E. W. Felten, and K. Li. Application-controlled �le caching policies.
In Proceedings of USENIX Summer 1994 Technical Conference, 1994.

[CFL94b] P. Cao, E. W. Felten, and K. Li. Implementation and performance of
application-controlled �le cache. In Proceedings of the First Operating Sys-

tems Design and Implementation Symp., 1994.

[CGR88] R. F. Cmelik, N. H. Gehani, and W. D. Roome. Fault Tolerant Concurrent
C: A tool for writing fault tolerant distributed programs. In Proceedings

124

of the 18th IEEE Symp. on Fault-Tolerant Computing, pages 55{61, Tokyo,
June 1988.

[Che86] D. R. Cheriton. VMTP: A transport protocol for the next generation of
communication systems. In Proceedings of SIGCOMM'86, pages 406{415,
August 1986.

[CLR95] D. E. Comer, J. C. Lin, and V. F. Russo. An architecture for a campus-
scale wireless mobile internet. Technical Report CSD-TR95-058, Purdue
University, Department of Computer Science, 1995.

[CM84] J. Chang and N. Maxemchuk. Reliable broadcast protocols. ACM Trans.
Comput. Syst., 2(3):251{273, August 1984.

[Coo85] E. C. Cooper. Replicated distributed programs. In Proceedings of the

Tenth ACM Symp. on Operating Systems Principles, pages 63{78, Orcas
Island, WA, 1985.

[Coo90] E. C. Cooper. Programming language support for multicast communica-
tion in distributed systems. In Proceedings of the 10th IEEE Symp. on
Distributed Computing Systems, pages 450{457, Paris, France, 1990.

[Cou81] Courier. Courier: The remote procedure call protocol. Technical Report
XSIS 038112, Xerox System Integration Standard, Stamford, CT, December
1981.

[CPR92] D. Cohen, J. Postel, and R. Rom. IP address and routing in a local wireless
network. IEEE INFOCOM, 1992.

[CR94] D. E. Comer and V. F. Russo. Using ATM for a campus-wide wireless inter-
network. In Proceedings of the 1994 IEEE Workshop on Mobile Computing,
1994.

[Cri89] F. Cristian. Synchronous atomic broadcast for redundant broadcast chan-
nels. Technical Report Research Report RJ 7203, IBM Almaden Research
Center, December 1989.

[DC90] S. E. Deering and D. R. Cheriton. Multicast routing in datagram inter-
networks and extended LANs. ACM Trans. Comput. Syst., 8(2):85, May
1990.

[Dee94] S. Deering. Internet multicasting. In ARPA HPCC 94 Symp. Advanced
Research Projects Agency Computing Systems Technology O�ce, March
1994.

[DEF+94] S. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu, and L. Wei.
An architecture for wide-area multicast routing. In Proceedings, 1994 SIG-
COMM Conference, pages 126{135, London, UK, August 31st - September
2nd 1994.

125

[Dou87] F. Douglis. Process migration in the Sprite operating system. Report No

UCB/CSD 87/343, [2] 1987.

[Dou89] F. Douglis. Experience with process migration in Sprite. In Workshop on
Experiences with Distributed and Multiprocessor Systems, pages 59{72, Fort
Lauderdale, Florida, October 5-6 1989.

[EKO95] D. Engler, M. Kaashoek, and J. O'Toole. Exokernel: An operating sys-
tem architecture for application-level resource management. In Proceedings
of the 15th ACM Symp. on Operating Systems Principles, pages 251{266,
Copper Mountain Resort, Colorado, December 1995.

[Fon94] H. J. F. Fonseca. Support environments for the modularization, implemen-
tation and execution of communication protocols. Master's thesis, Instituto
Superior T�ecnico, Lisboa, Portugal, June 1994. In Portuguese.

[GBB+95] D. Guedes, D. Bakken, N. Bhatti, M. Hiltunen, and R. D. Schlichting. A
customized communication subsystem for FT-Linda. In Proceedings of the

13th Brazilian Symposium on Computer Networks, pages 319{338, Belo Hor-
izonte, MG, Brazil, May 1995.

[GL92] R. A. Golding and D. D. E. Long. Quorum-oriented multicast protocols for
data replication. In Proceedings of the IEEE International Conference on

Data Engineering, page 490, Tempe, AZ, February 1992.

[GL93] R. A. Golding and D. D. E. Long. Using an object-oriented framework to
construct wide-area group communication mechanisms. Technical Report
UCSC-CLR-93-11, University of California, Santa Cruz, March 1993.

[GMK88] H. Garcia-Molina and B. Kogan. An implementation of reliable broadcast
using an unreliable broadcast facility. In Proceedings of the Seventh Symp.

on Reliable Distributed Systems, pages 101{111, Columbus, OH, October
1988.

[GMS89] H. Garcia-Molina and A. Spauster. Message ordering in a multicast envi-
ronment. In Proceedings of the 9th IEEE Symp. on Distributed Computing

Systems, pages 354{361, Newport Beach, CA, June 1989.

[GMS91] H. Garcia-Molina and A. Spauster. Ordered and reliable multicast commu-
nication. ACM Trans. Comput. Syst., 9(3):242{271, August 1991.

[GNI92] M. Goldberg, G. Neufeld, and M. Ito. The parallel protocol framework.
Technical Report 92-16, Dept. of Computer Science, University of British
Columbia, Vancouver, British Columbia, August 1992.

[Gol92] R. A. Golding. Weak-Consistency Group Communication and Membership.
PhD thesis, Dept of Computer Science, University of California, Santa Cruz,
Santa Cruz, CA, 1992.

126

[Hed88] C. Hedrick. Routing information protocol; RFC 1058. Internet Request

for Comments, June 1988.

[HH93] L. B. Huston and P. Honeyman. Disconnected operation for AFS. In
Proceedings of the 1st USENIX Mobile and Location-Independent Computing

Symp., pages 1{10, Cambridge, MA, August 2-3 1993. USENIX.

[Hil96] M. A. Hiltunen. Con�gurable Distributed Fault-Tolerant Services. PhD
thesis, Dept of Computer Science, University of Arizona, Tucson, AZ, July
1996.

[HP91] N. C. Hutchinson and L. L. Peterson. The x-kernel: An architecture for
implementing network protocols. IEEE Trans. on Software Engineering,
17(1):64{76, January 1991.

[HPM93] G. Hamilton, M. Powell, and J. Mitchell. Subcontract: A exible base
for distributed programming. In Proceedings of the 14th ACM Symp. on
Operating System Principles, pages 69{79, Asheville, NC, December 1993.

[HS95a] M. Hiltunen and R. D. Schlichting. Constructing a con�gurable group RPC
service. In Proceedings of the 15th IEEE Symp. on Distributed Computing
Systems, Vancouver, BC, May 1995.

[HS95b] M. Hiltunen and R. D. Schlichting. Properties of membership services. In
Proceedings of the Second IEEE Symp. on Autonomous Decentralized Sys-
tems, pages 200{207, Phoenix, AZ, April 1995.

[Hug88] L. Hughes. LAN gateway designs for multicast communication. In Pro-

ceedings of the 13th Conference on Local Computer Networks, pages 82{91,
Minneapolis, Minn., October 10-12 1988. IEEE Computer Society.

[IB93] T. Imielinksi and B. R. Badrinath. Data management for mobile comput-
ing. SIGMOD Record, 22(1):34, 1993.

[IBar] T. Imielinski and B. R. Badrinath. Mobile wireless computing challenges
in data management. Communications of the ACM, To appear.

[IDJ91] J. Ioannidis, D. Duchamp, and G. Q. Maguire Jr. IP-based protocols for
mobile internetworking. In Proceedings of ACM SIGCOMM 1991, Septem-
ber 1991.

[IJ93] J. Ioannidis and G. Q. Maguire Jr. The design and implementation of a mo-
bile internetworking architecture. In Proceedings of 1993 Winter USENIX,
pages 489{500, January 1993.

[Kis90] J. J. Kistler. Transparent disconnected operation for fault-tolerance. In
IEEE-CS/TC-OS Workshop on the Management of Replicated Data, Hous-
ton, TX, November 1990.

127

[KMS+93] K. Keeton, B. A. Mah, S. Seshan, R. H. Katz, and D. Ferrari. Providing
connection-oriented network services to mobile hosts. In Proceedings of the
1st USENIX Mobile and Location-Independent Computing Symp., pages 83{
102, Cambridge, MA, August 2-3 1993. USENIX.

[KS91] J. J. Kistler and M. Satyanarayanan. Disconnected operation in the Coda
File System. In Proceedings Thirteenth ACM Symp. on Operating System
Principles, page 213, Paci�c Grove, CA, October 1991.

[KTHB89] M. F. Kaashoek, A. Tanenbaum, S. F. Hummel, and H. Bal. An e�cient
reliable broadcast protocol. ACM Op. Syst. Review, 23(4):5{19, October
1989.

[LAKS93] B. Lindgren, M. Ammar, B. Krupczak, and K. Schwan. Parallel and con�g-
urable protocols: Experiences with a prototype and an architectural frame-
work. In Proceedings of International Conference on Network Protocols,
March 1993.

[Lam78] L. Lamport. Time, clocks, and the ordering of events in a distributed sys-
tem. Communications of the ACM, 21(7):558{565, July 1978.

[Lam81] B. Lampson. Atomic transactions. In Distributed Systems|Architecture

and Implementation, pages 246{265. Springer-Verlag, Berlin, 1981.

[Lap92] J. C. Laprie, editor. Dependability: Basic Concepts and Terminology.
Springer-Verlag, Vienna, 1992.

[LBSR95] M. T. Le, F. Burghardt, S. Seshan, and J. Rabaey. InfoNet: The networking
infrastructure of InfoPad. In Proceedings of COMPCON, San Francisco,
California, March 1995.

[LG85] K. J. Lin and J. D. Gannon. Atomic remote procedure call. IEEE Trans.
on Software Engineering, SE-11(10):1126{1135, October 1985.

[LSBR94] M. T. Le, S. Seshan, F. Burghardt, and J. Rabaey. Software architecture of
the InfoPad system. In Proceedings of the Mobidata Workshop on Mobile

and Wirelsss Information Systems, Rutgers, New Jersey, November 1994.

[MBM95] S. Ma�eis, W. Bischofberger, and K. M�atzel. A generic multicast trans-
port service to support disconnected operation. In Proceedings of the 2nd
USENIX Mobile and Location-Independent Computing Symp., Ann Arbor
Michigan (USA), April 1995.

[Mil83] D. L. Mills. DCN local-network protocols; RFC 891. Internet Request for

Comments, pages 1{26, December 1983.

[MMO+94] A. B. Montz, D. Mosberger, S. W. O'Malley, L. L. Peterson, T. A. Proeb-
sting, and J. H. Hartman. Scout: A communications-oriented operating
system. Technical Report 94-20, Dept. of Comp. Sci., Univ. of Arizona,
June 1994.

128

[MMSA+95] L. Moser, P. Melliar-Smith, D. Agrawak, R. Budhia, C. Lingley-
Papadopoulos, and T. Archambault. The Totem system. In Proceedings of
the 25th IEEE Symp. on Fault-Tolerant Computing, pages 61{66, Pasadena,
CA, June 1995.

[MP96] D. Mosberger and L. L. Peterson. Making paths explicit in the Scout op-
erating system. Technical Report 96-05, Department of Computer Science,
University of Arizona, Tucson, AZ, May 1996.

[MPS89] S. Mishra, L. L. Peterson, and R. D. Schlichting. Implementing replicated
objects using Psync. In Proceedings of the Eighth Symp. on Reliable Dis-

tributed Systems, pages 42{52, Seattle, Washington, October 1989.

[MPS92] S. Mishra, L. L. Peterson, and R. D. Schlichting. A membership proto-
col based on partial order. In J. F. Meyer and R. D. Schlichting, editors,
Dependable Computing for Critical Applications 2, pages 309{331. Springer-
Verlag, Vienna, 1992.

[MPS93a] S. Mishra, L. L. Peterson, and R. D. Schlichting. Consul: A communica-
tion substrate for fault-tolerant distributed programs. Distributed Systems

Engineering, 1(3):87{103, December 1993.

[MPS93b] S. Mishra, L. L. Peterson, and R. D. Schlichting. Experience with modular-
ity in Consul. Software{Practice & Experience, 23(10):1059{1075, October
1993.

[MPS93c] S. Mishra, L. L. Peterson, and R. D. Schlichting. Modularity in the design
and implementation of Consul. In Proceedings of the First IEEE Symp. on

Autonomous Decentralized Systems, pages 376{382, Kawasaki, Japan, March
1993.

[MS92] S. Mishra and R. D. Schlichting. Abstractions for constructing dependable
distributed systems. Technical Report 92-19, Dept of Computer Science,
University of Arizona, Tucson, AZ, 1992.

[MS93] B. Mukherjee and K. Schwan. Experimentation with a recon�gurable
micro-kernel. In Microkernels and Other Kernel Archtitectures Symp. II,
pages 45{60. USENIX, September 1993.

[MSK+93] B. A. Mah, S. Seshan, K. Keeton, R. H. Katz, and D. Ferrari. Provid-
ing network video service to mobile clients. In Proceedings of the Fourth

Workshop on Workstation Operating Systems. IEEE, October 1993.

[NCN88] S. Navaratnam, S. Chanson, and G. Neufeld. Reliable group communi-
cation in distributed systems. In Proceedings of the 8th IEEE Symp. on
Distributed Computing Systems, pages 439{446, San Jose, California, June
1988.

129

[Nel81] B.J. Nelson. Remote Procedure Call. PhD thesis, Dept of Computer Sci-
ence, Carnegie-Mellon University, Pittsburgh, PA, 1981.

[NK93] M. Nelson and Y. Khalidi. Generic support for caching and disconnected
operation. In 4th Workshop on Workstation Operating Systems (WWOS-

IV), pages 61{65, Napa, CA, 1993.

[NYKT94] E. Nahum, D. Yates, J. Kurose, and D. Towsley. Performance issues in par-
allelized network protocols. In Proceedings of the First Symp. on Operating
Systems Design and Implementation, November 1994.

[OCD+88] J. K. Ousterhout, A. R. Cherenson, F. Douglis, M. N. Nelson, and B. B.
Welch. The Sprite network operating system. IEEE Computer, 21(2):23,
February 1988.

[OOW91] M. Olsen, E. Oskiewicz, and J. Warne. A model for interface groups. In
Proceedings of the 10th IEEE Symp. on Reliable Distributed Systems, pages
98{107, Pisa, Italy, September 1991.

[OP92] S. W. O'Malley and L. L. Peterson. A dynamic network architecture.
ACM Trans. Comput. Syst., 10(2):110{143, May 1992.

[PB94] C. Perkins and O. Bhagwat. A mobile networking system based on Internet
Protocol. IEEE Personal Communications, 1994.

[PBS89] L. L. Peterson, N. C. Buchholz, and R. D. Schlichting. Preserving and using
context information in interprocess communication. ACM Trans. Comput.
Syst., 7(3):217{246, August 1989.

[Per96] C. Perkins. IP mobility support; rfc 2002. Internet Request for Com-

ments, October 1996.

[PKV96] D. K. Pradhan, P. Krishna, and N. H. Vaidya. Recoverable distributed
mobile environments: Design and tradeo� issues. In Proceedings of the

26nd IEEE Symp. on Fault-Tolerant Computing, June 1996.

[Pos80] J. Postel. User Datagram Protocol; RFC 768. Internet Request for Com-

ments, pages 1{3, August 1980.

[Pos81a] J. Postel. Internet Protocol; RFC 791. Internet Request for Comments,
pages 1{45, September 1981.

[Pos81b] J. Postel. Transmission Control Protocol; RFC 793. Internet Request for

Comments, pages 1{85, September 1981.

[PS88] F. Panzieri and S. K. Shrivastava. Rajdoot: A remote procedure call mech-
anism supporting orphan detection and killing. IEEE Trans. on Software

Engineering, SE-14(1):30{37, January 1988.

130

[RBM96] R. van Renesse, K. Birman, and S Ma�eis. Horus, a exible group commu-
nication system. Communications of the ACM, 39(4):76{83, Apr 1996.

[Rek93] Y. Rekhter. An architecture for transport layer transparent support for
mobility. Journal of Internetworking: Research and Experience, 4, 1993.

[Rit84] D. M. Ritchie. A stream input-output system. AT&T Bell Laboratories
Technical Journal, 63(8):311{324, October 1984.

[RS92] K. Ravindran and M. Sankhla. Multicast models and routing algorithms for
high speed multi-service networks. In Proceedings of the 12th IEEE Symp.

on Distributed Computing Systems, page 194, Yokohama, Japan, June 9-12
1992.

[SB90] M. Schroeder and M. Burrows. Performance of Firey RPC. ACM Trans.

Comput. Syst., 6(1):1{17, February 1990.

[SBS93] D. Schmidt, D. Box, and T. Suda. ADAPTIVE: A dynamically as-
sembled protocol transformation, integration, and evaluation environment.
Concurrency{Practice & Experience, 5(4):269{286, June 1993.

[Sch90] F. Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys, 22(4):299{319, December
1990.

[SKM+93] M. Satyanarayanan, J. J. Kistler, L. B. Mummert, M. R. Ebling, P. Kumar,
and Q. Lu. Experience with disconnected operation in a mobile environ-
ment. In Proceedings of the 1st USENIX Mobile and Location-Independent

Computing Symp., pages 11{28, Cambridge, MA, August 2-3 1993. USENIX.

[Spa91] A. Spauster. Ordered and reliable multicast communication. Techni-
cal Report CS-TR-312-91, Princeton UNIV, DEPT of CS, 1991. Thesis
(Ph.D.).

[SS90] M. Satyanarayanan and E. H. Siegel. Parallel communication in a large
distributed environment. IEEE Trans. on Computers, March 1990.

[SS94] D. Schmidt and T. Suda. The service con�gurator framework: An ex-
tensible architecture for dynamically con�guring concurrent, multi-service
network deamons. In Proceedings of the Second International Workshop on
Con�gurable Distributed Systems, pages 190{201, Pittsburgh, PE, 1994.

[STW93] B. Schilit, M. Theimer, and B. Welch. Customizing mobile applications.
In Proceedings of the 1st USENIX Mobile and Location-Independent Com-

puting Symp., pages 129{138, August 1993.

[TYT91] F. Teraoka, Y. Yokote, and M. Tokoro. A network archtitecture providing
host migration transparency. In Proceedings of AXM SIGCOMM 91, pages
209{220, 1991.

131

[VKP93] N. H. Vaidya, P. Krishna, and D. K. Pradhan. Recovery in distributed
mobile environments. In Proceedings of IEEE Workshop on Advances in
Parallel and Distributed Systems, pages 83{88. IEEE, October 1993.

[VM90] P. Verissimo and J. Marques. Reliable broadcast for fault-tolerance on lo-
cal computer networks. In Proceedings of the Ninth Symp. on Reliable Dis-
tributed Systems, pages 54{63, Huntsville, AL, October 1990.

[VRB89] P. Verissimo, L. Rodrigues, and M. Baptista. Amp: A highly parallel
atomic multicast protocol. In Proceedings of SIGCOMM'89, pages 83{93,
Austin, TX, September 1989.

[vRBF+95] R. van Renesse, K. Birman, R. Friedman, M. Hayden, and D. Karr. A
framework for protocol composition in Horus. In Proceedings of the ACM

Symp. on Principles of Distributed Computing, pages 89{102, Vancouver,
Canada, August 1995.

[vRBG+95] R. van Renesse, K. Birman, B. Galde, K. Guo, M. Hayden, T. Hickey,
D. Malki, A. Vaysburd, and W. Vogels. Horus: A exible group com-
munications system. Technical Report 95-1500, Cornell University, Dept.
of Computer Science, March 1995.

[vRHB94] R. van Renesse, T. M. Hickey, and K. P. Birman. Design and performance
of Horus: A lightweight group communications system. Technical Report
94-1442, Cornell University, Dept. of Computer Science, August 1994.

[Wal80] D. W. Wall. Mechanisms for Broadcast and Selective Broadcast. PhD
thesis, Department of Computer Science, Stanford University, Palo Alto,
CA, 1980.

[WPD88] D. Waitzman, C. Partridge, and S. Deering. Distance vector multicast rout-
ing protocol; RFC 1075. Internet Request for Comments, November 1988.

[WYOT93] H. Wada, T. Yozawa, T. Ohnishi, and Y. Tanaka. Mobile computing en-
vironment based on packet forwarding. In Proceedings of USENIX Winter

'93 Conference, pages 503{517, January 1993.

[WZZ93] X. Wang, H. Zhao, and J. Zhu. GRPC: A communication cooperation
mechanism in distributed systems. ACM Op. Syst. Review, 27(3):75{86,
July 1993.

[YJT88] K. Yap, P. Jalote, and S. Tripathi. Fault tolerant remote procedure call.
In Proceedings of the 8th IEEE Symp. on Distributed Computing Systems,
pages 48{54, June 1988.

