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ABSTRACT

If X 1, X 2, . . . , Xn is a sequence of non-negative independent random variables with
common distribution function F (t), we write X (n) for the maximum of the sequence and Sn
for its sum. The ratio variate Rn = X (n) /Sn is a quantity arising in the analysis of process
speedup and the performance of scheduling. O’Brien (1980) showed that Rn → 0 almost
surely ⇔ EX 1 < ∞ as n → ∞. Since {Rn} is a uniformly bounded sequence it follows that
EX 1 < ∞ ⇒ ERn → 0 as n → ∞.
Here we show that, provided either that (i) EX12 < ∞ or that (ii) 1 − F(t) is a regularly vary-
ing function with index ρ < −1, it follows that

ERn = ESn
EX (n) 1 + o(1) (n → ∞) .

Since the asymptotics of EX (n) is often readily calculated, this provides a useful estimate for
the most significant behavior of the ratio Rn in expectation. We apply this result to multipro-
cessor scheduling policies and to the behavior of sample statistics.
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The Ratio of the Extreme to the Sum in a Random Sequence
with Applications

1. Introduction and Results
Let X 1, X 2, . . . , Xn be a sequence of independent non-negative random variables (r.v.) with the common

distribution function (d.f.) F(t). The extreme and the sum of the sequence are the r.v.s

X (n) := max(X 1, X 2, . . . , Xn) , Sn :=
i =1
Σ
n
Xi .

How influential a contribution does the extreme term X (n) make to the sum Sn for large n? Its relative contribu-
tion is the ratio

Rn := Sn

X (n) .

It is not difficult to see that if F has finite mean, Rn becomes asymptotically negligible: Rn → 0 almost surely
and ERn → 0 as well. O’Brien [OBr80] gave necessary and sufficient conditions on F for Rn to converge to
zero almost surely and in probability, and that characterize convergence in moment. It will be seen from appli-
cations below that is it is useful to be able to quantify the rate of approach to zero. One way to do this is to
express ERn in terms of the simpler expectations EX (n) and ESn. Of course, the expected ratio is in general not
the ratio of the latter expectations—because Rn and Sn are typically correlated random variables. Nevertheless,
we will show in this paper that for many distributions F this relationship is asymptotically true. In Theorem
(6.1) we provide mild sufficient conditions on F that imply

ERn ∼ ESn
EX (n)

=
µn
EX (n) (n → ∞) ,

where µ := EX 1. Whenever the theorem applies, it serves to reduce estimation of ERn to the easier task of
estimating EX (n) , a quantity that has been well studied.

After some preliminary definitions, we review the known results on the asymptotic behavior of Rn. We then
state our main result, and provide some illustrative applications. The bulk of the paper is then devoted to the
proof of Theorem (6.1).

1.1 Definitions
Unless otherwise indicated, all random variables are non-negative. If random variables X and Y are identi-

cally distributed, we write X =d Y. Similarly, we use the shorthand X =d F to mean that X has distribution func-
tion F. The complementary distribution function 1 − F(x) is denoted F(x). To avoid trivialities, we will assume
that F is not a single atom.

Expectations are denoted by E. For non-negative variates, EX exists and is either finite or infinite. For a
non-negative random variable X =d F

EXp =
0
∫
∞

xp dF(x) = p
0
∫
∞

xp−1F(x)dx . (1.1.1)

where the integrals are both finite or both infinite together. If E[Xp] is finite, so is E[Xq] for all q < p.
Define the truncated moments of X =d F by

µi(z) :=
0
∫
z

t i dF(t)
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We write µ(z) for the truncated mean µ1(z), and often write µ (= µ(∞)) for the mean.
Let f and g be functions. The relation of approximate dominance, denoted f (x) = O(g (x)), means that the

ratio | f (x)/g (x) | is bounded as x → ∞. The strong version of this relation, denoted f (x) = o(g (x)), means
that the ratio | f (x)/g (x) | goes to zero as x → ∞. The relation of asymptotic equality, denoted
f (x) ∼ g (x), (x → ∞), means that the ratio f (x)/g (x) tends to 1 in the limit of large x. The relation of
approximate asymptotic equality, denoted f (x) = Θ(g(x)) means that, as x → ∞, the ratio f (x)/g (x) is con-
tained in some closed positive interval [l, u], 0 < l ≤ u < ∞.

If X 1, X 2, . . . is a sequence of r.v.s, and X is an r.v., then the notations

Xn →as X, Xn →pr X, Xn →d X, and EXn → EX
denote that the sequence converges almost surely, in probability, in distribution and in moment, respectively.
For definitions see [Chu74].

If f is a positive function, it said to be regularly varying with index ρ (f ∈ Rρ) iff for all constants c > 0

f(ct) ∼ c ρ f(t) (t → ∞) .

Functions in R 0 are called slowly varying. A fuller account of regular variation appears in section 2.1 below.

1.2 History
We begin with results characterizing when Rn vanishes for large n. As is the case throughout, we assume

that X 1, . . . , Xn are independent and identically distributed (i.i.d.) with d.f. F.
THEOREM [OBr80]. Assume X 1, . . . , Xn are i.i.d. with d.f. F. The following are equivalent:

(i) Rn →as 0 (1.1.2)

(ii) EX 1 < ∞ .

A slightly larger class of distributions allows for weak convergence:
THEOREM [OBr80]. Assume X 1, . . . , Xn are i.i.d. with d.f. F. The following are equivalent:

(i) Rn →pr 0 (1.1.3)

(ii) µ(x) ∈ R 0 , i.e., the truncated mean varies slowly as x → ∞

(iii) ERn → 0 .

Proof: (i) ⇔ (ii) is proved in [OBr80]. Convergence in mean always implies convergence in probability
[Chu74], so (iii) ⇒ (i). Conversely, since the sequence Rn is uniformly bounded by 1 and converges in proba-
bility to zero, then it converges in mean as well [Chu74]. This shows (i) ⇒ (iii).

Another necessary and sufficient condition for (i) is given in [Bre65].
EXAMPLE. The d.f. given by F (t) = 1− t−1 on [1, ∞) has an infinite mean; however µ(x) = ln x − 1 is slowly
varying and so Theorem (1.1.3) applies, yet the sequence Rn has a limit superior of 1 almost surely.

If a d.f. has no finite moments of any order ε > 0, the extreme term X (n) is of the same order as the entire
sum. This counterintuitive state of affairs was characterized in [Mal84], building on prior work of [Dar52].
THEOREM [Mal84]. Assume X 1, . . . , Xn are i.i.d. with d.f. F. The following are equivalent:

(i) Rn →pr 1 (1.1.4)

(ii) F(t) ∈ R 0 .

Note that (i) implies ERn → 1. A somewhat technical necessary and sufficient condition for Rn → 1 almost
surely is given in [Pru87].
EXAMPLE. The d.f. F (t) = 1− ( ln t)−1 defined on [e, ∞) is such that F(t) is slowly varying. One sees that
E[X ε] = ∞ for all ε > 0. Here Rn converges to 1 in probability and expectation for large n.

For d.f.s F that fail to have a finite mean, but have finite moments of some fractional order, the maximum
term X (n) can make up a fixed proportion of the sum. Prior work of [Dar52, Aro60, Bre65] culminates in
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THEOREM [Bin81]. Assume X 1, . . . , Xn are i.i.d. with d.f. F. The following are equivalent:

(i) Rn →d R where R has a non-degenerate distribution; (1.1.5)

(ii) F(t) ∈ R−α for some α ∈ (0, 1) ,

(i.e., F is attracted to a stable law of index α in (0, 1))

(iii) E[Sn /X (n)] → 1−α
1 for some α ∈ (0, 1) .

EXAMPLE. In the case α = 1⁄2, [Bre65] shows that the sequence of distributions of the variates Rn converges to
the limiting d.f. of R given by the β1⁄2,1⁄2 distribution P[R ≤ t] = (2/π) arcsin(√t ).

An analogous result to (1.1.5) provides information about E[1/Rn] for regularly varying d.f.s having finite
mean. Extending earlier results of [Aro60, Dar52, Cho79], Bingham and Teugels showed:
THEOREM [Bin81]. Assume X 1, . . . , Xn are i.i.d. with d.f. F. The following are equivalent:

(i) [Sn − (n − 1)µ]/X (n) →d D where D has a non-degenerate distribution; (1.1.6)

(ii) F(t) ∈ R−α for some α ∈ (1, 2) ,

(i.e., F is attracted to a stable law of index α in (1, 2))

(iii) E[[Sn − (n − 1)µ]/X (n)] → c for some constant c .

Unlike (1.1.5), where X (n) accounts for a fixed proportion of the sum Sn, (1.1.6) gives conditions under which
X (n) accounts for a declining portion of Sn as n increases. Indeed, we give a complementary view of this in the
main Theorem (6.1) of this paper, which implies that for regularly varying d.f.s in this range of index
ERn ∼ EX (n) /(nµ).

1.3 Main Theorem
For certain F with finite first moment, we can quantify the approach to zero in expectation via the following

result. The proof is deferred to section 6.
THEOREM. Assume X 1, . . . , Xn are i.i.d. =d F. Suppose either that
(i) F ∈ R−α for some α > 1; or else
(ii) F has finite second moment.
Then

ERn = ESn
EX (n) 1 + o(1) (n → ∞) . (6.1)

REMARK. The hypotheses of Theorem (6.1) are familiar in classical probability theory: they are the necessary
and sufficient conditions for d.f. F to be in the domain of attraction of a stable distribution [Fel66, XVII.5,
IX.8]. We briefly review these domain of attraction conditions here.
(I) F is attracted to a normal limit law if and only if either

(a) E[X12 ] < ∞ (the usual Central Limit Theorem); or
(b) F ∈ R−α for α ∈ [2, ∞]; or
(c) the truncated second moment µ2(x) is slowly varying.

In fact, condition (c) subsumes both (a) and (b) [Fel66, VIII.9], so that F is attracted to a normal stable law
⇔ µ2 ∈ R 0.

(II)F is attracted to a non-normal stable law of index α∈ (0, 2) ⇔ F ∈R−α for α∈ (0, 2).
In spite of this intimate connection with stability, the proofs in this paper make no use of stable attraction expli-
citly, nor do we know that the hypotheses in (6.1) are necessary for its conclusion. This remains a tantalizing
open question.
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1.4 Applications
Theorem (6.1) has application in contexts where the ratio variate Rn naturally arises. Some illustrations are

given below. In this section, we will assume that F obeys the hypotheses of Theorem (6.1): either (i) F ∈ R−α

for some α > 1 or else (ii) F has finite second moment.

1.4.1 Sample Statistics
Among measures of dispersion of a distribution F, the most common is the coefficient of variation (c.v., rela-

tive standard deviation) σ/µ. Consider a sample X 1, . . . , Xn of i.i.d. r.v.s from F, and define the sample c.v.
as the random variable

Xn

sn :=
Xn

√(n − 1)−1
i
Σ(Xi −Xn)2

where Xn := Sn /n is the sample mean. Then, provided σ is finite, the strong law of large numbers implies that
the sample c.v. converges a.s. to the population c.v. σ/µ. It also conveges in moment, so that the sample c.v. is
unbiased.

Other sample measure of relative dispersion have been used that are based upon the extremes of the sample.
They include the relative deviation [Dav70]

RDn :=
Xn

X (n) − Xn ,

the relative center [Dav70]

RCn :=
2Xn

X (n) + X (1) ,

where X (1) is the minimum sample value, the relative range [Dav70]

RRn :=
Xn

X (n) − X (1) ,

and the peak-to-mean ratio

PMn :=
Xn

X (n) .

Now rather than being estimates of dispersion, all these statistics are asymptotically estimates of X (n) :
THEOREM. Under hypothesis (i) or (ii), if F has unbounded support, then

ERDn ∼ 2.ERCn ∼ ERRn ∼ EPMn ∼ µ

EX (n) (n → ∞) . (1.4.1.1)

Proof: The proof for RCn illustrates all the others. 2.RC 2 = nRn + nX (1) /Sn . Use the observation nX (1) ≤ Sn
and Theorem (6.1) to get 2.ERCn ∼ EX (n) /µ since EX (n) goes to infinity.
Any information contained in these statistics is equivalent to using X (n) for large samples, and it is well known
that X (n) is sensitive only to the behavior of the upper tail of F.

The result concerning EPMn quantifies the influence on Xn of the outlier term n−1X (n) . The relative
influence is EPMn /n ∼ EX (n) /(nµ). This is a decreasing function of n; see Table 1 below for estimates on its
rate of decay. For distributions with finite variance, this influence decays like o(n−1⁄2 ); and for distributions with
upper tails that decay exponentially, the decay is O( ln n /n). This allows quantification of the effect of elimina-
ton of sample outliers upon estimates of Xn.
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1.4.2 Multiprocessor Makespan Scheduling
Let X = (X 1, . . . , Xn) be a sequence of non-negative real numbers denoting the service times of n tasks.

Suppose there are m ≥ 2 processors that serve these tasks in parallel. Service of a task is non-preemptive: a task
that is started must be run to completion. A schedule [Cof76] is an assignment of tasks to processors. A
schedule is conservative if no processor is allowed to be idle while some task remains unassigned. One large
class of conservative schedules are the list schedules, defined as follows. A list is a permutation L of
{1, . . . , n}. Given a list L, the list schedule (also denoted L) assigns tasks to processors in the list order
XL(1) , . . . , XL(n) . With n > m, the m processors begin by serving XL(1) ,..., XL(m) . Whenever a processor com-
pletes a task, a new task is assigned to it from the head of the remaining list XL(m+1), . . . , XL(n) of unassigned
tasks. After n + 1−m task completions, some processors must be idle. The makespan of schedule L is the time
from the beginning of service until all tasks have completed. The makespan is a function of the task times, the
schedule L, and the number of processors m, and will be denoted M(L, m, X).

Ideally we would like to construct a list schedule that will minimize M(L, m, X) over all possible permuta-
tions L. This optimal list schedule is denoted OPT. Calculating OPT is the makespan scheduling problem
[Gra76]. Given explicit values for X and m, it is an NP-hard problem to compute OPT [Gar79]. The difficulty
of computing the exact optimum OPT motivates the analysis of simple suboptimal list scheduling rules: how far
away from optimum are they?

The performance ratio M(L, m, X)/M(OPT, m, X) measures the penalty paid for using list schedule L. Gra-
ham [Gra69] showed that for any list schedule L and any X

M(OPT, m, X)
M(L, m, X)

≤ 2 −
m
1 .

Let LPT be the largest processing time first permuation that orders the tasks in decreasing order of their times:
XL (1) ≥ XL (2) ≥ . . . ≥ XL (n) . Then Graham [Gra69] also showed

M(OPT, m, X)
M(LPT, m, X)

≤
3
4

−
3m
1 .

The above results and others [Law93] are combinatorial and deterministic, assuming full knowledge of the
set of task times X 1, . . . , Xn. More recent work [Cof91] has focussed upon the following stochastic problem.
Assume the task times Xi are independent and identically distributed with distribution F. How does the perfor-
mance ratio variate M(L, m, X)/M(OPT, m, X) behave, especially for large n? Coffman and Gilbert [Cof85]
gave a bound, valid for any list schedule L, for the expected performance ratio in the case when F is a uniform
or exponential law. For both these distributions, E[M(L, m, X)/M(OPT, m, X)] = 1 + O(1/n) for large n and any
list schedule L. Other stochastic bounds for the LPT schedule are reviewed in [Cof91].

Using Theorem (6.1), we can give asymptotic bounds on the expected performance ratio for a large class of
distribution functions for task times.

Before proceeding to derive these general bounds, we present a useful combinatorial identity that bounds the
makespan.
THEOREM [Gra76, Theorem 5.3]. Let n tasks have processing times X = (X 1, . . . , Xn), and let X (n) denote
their maximum and Sn their sum. Then for any list schedule L assigning the tasks to m processors,

max
m
Sn , X (n) ≤ M(L, m, X) ≤

m
Sn

+
m

m − 1 X (n) . (1.4.2.1)

Now OPT is a list schedule, so that the lower bound above applies to it, and M(OPT, m, X) ≥ Sn /m. Dividing
this into (1.4.2.1) yields:

1 ≤
M(OPT, m, X)
M(L, m, X)

≤ 1 + (m − 1)Rn . (1.4.2.2)

Suppose now that the task times X are chosen i.i.d =d F with mean µ. The quantities M, OPT, and Rn
become random variables. From (1.4.2.2) and O’Brien’s result that Rn → 0 almost surely, we have that
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M(OPT, m, X)
M(L, m, X)

= 1 + o (1) a.s. (n → ∞) . (1.4.2.3)

Taking expectations in (1.4.2.2) and using Theorem (6.1) allows us to quantify the expected rate of convergence
to unity as:

1 ≤ E
M(OPT, m, X)
M(L, m, X)

≤ 1 + (m − 1)
µn
EX (n) 1+ o (1) (n → ∞) . (1.4.2.4)

It is known [Dow94] that EX (n) /n is a completely monotone function (decreasing to zero and convex) of n.
Since EX (n) /n = o (1) from Theorem (2.2.1) below, this result complements (1.4.2.3), and allows us to state that
under hypotheses (i) or (ii) the relative performance of any list schedule approaches optimal, almost surely and
in expectation, as n gets large.
More can be said, however. Better bounds on the growth of EX (n) with n allow us to use (1.4.2.4) to quantify
the approach of the performance ratio to 1. If hypothesis (i) holds and X ∈ R−α, then
EX (n) /n ∼Γ(1 −α−1).n 1/α− 1. If hypothesis (ii) holds and EX 2 is finite, then it is o(n−1⁄2 ). These and other
bounds on EX (n) /n are summarized in Table 1 below.

2. Preliminaries
In this section are collected most of the supporting lemmas used in the main arguments beginning in Section 3.
Material in this section can be referred back to as needed in the sequel.

2.1 Regular Variation
Regularly varying functions are those that scale homogeneously for large argument. In this paper we are

interested in distribution functions F (t) for which the complementary d.f. 1 − F (t) is a regularly varying func-
tion with negative index. However, we will begin with the general definition of a regularly varying function,
and cite the general properties of such functions that are needed later.
DEFINITION. A positive measurable function f : (0, ∞) → (0, ∞) is regularly varying at infinity if for all λ > 1,
the limit

x → ∞
lim

f(x)
f(λx) (2.1.1)

exists and is in (0, ∞). f is rapidly varying if the limit exists and is 0 or ∞.
The fundamental result about regular variation [Bin87, Theorem 1.4.1] is that if the (finite or infinite) limit

(2.1.1) exists for all λ > 1, then there is an extended real number ρ, −∞ ≤ ρ ≤ ∞ such that

∀λ > 0
x → ∞
lim

f(x)
f(λx)

= λρ . (2.1.2)

This ρ is called the exponent or index of variation. If (2.1.2) holds, so that f is regularly varying with index ρ,
we write f ∈ Rρ . Thus with the understanding λ−∞ = 0 and λ∞ =∞, R−∞ and R∞ are the rapidly varying func-
tions.

Functions like xa + sin x where a > 0 are in Ra. Functions like exp( −x k), k > 0 belong to R−∞ and their
reciprocals belong to R∞ . Functions that fail to have a well-defined limit (finite or infinite) in (2.1.2) are neither
regularly varying nor rapidly varying. Examples are sin x and e− x . By historical convention, the class R 0 is
called the slowly varying functions. It includes, for example functions like ( ln x)α for any α ≥ 0, and their
reciprocals.

From the results above, it is evident that f ∈ Rρ if and only if there is some slowly varying function l such
that f(x) = x ρ .l(x). It is easy to see that if f ∈ Rρ and g ∼ f then g ∈ Rρ . Thus asymptotic equality ∼ is the
natural equivalence relation on the class of regularly varying functions.

In applications to random variables, we say that X =d F is a regularly varying random variable of index −α,
for some α ≥ 0, provided F(t) ∈ R−α. In this case we write X ∈ R−α. For example, if X =d F(t) where
F(t) = 1 − ( ln t)−1 for t ∈ [e, ∞), then X ∈ R 0.
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Asymptotic Bounds for n → ∞
d.f. hypotheses EX (n) bound EX (n) /n bound Note

EX < ∞ o(n) o(1) 1
EXp < ∞ (p > 1) o(n 1/p), µ+ || X−µ || p.n 1/p o(n 1/p − 1) 2
X ∈ R−α (α> 1) ∼ Γ(1 −α−1)cX(n) (cX(n) ∈ R 1/α) ∼ Γ(1 −α−1)cX(n)/n 3
X ∈ R−∞ ∼ cX(n) (cX(n) ∈ R 0) ∼ cX(n)/n 4
X ∈ E1 O( ln n) O( ln n /n) 5
X ∈ Eβ O( ln n)β O(( ln n)β /n) 6

Notes:
(1). See Theorem 2.2.1 below. An example d.f. in this class is F(t) = t−1( ln t)−2 for t ≥ ε.

(2). See [Arn85] and [Dow90a]. The o bound assumes a fixed parent d.f. F that is independent
of n, while the (weaker) bound allows F to depend on n, but has the advantage of explicit
coefficients. Here || Y || p := (E[Yp])1/p is the Lp norm.

(3). The characteristic maximum function cX(n) is (roughly) the solution to F(x) = n−1; see
below at (2.2.7). An example is the empirical distribution of Unix process times [Lel86], found
to be F(t) = 0.241t−1.122. This yields cX(n) = 0.281n 0.891 and so EX (n) /n ∼ 2.452n−0.109. For the
Unix workload, this is a rather slowly decaying bound, owing to the fat tail of this d.f. As anoth-
er example, if F(t) = t−2( ln t)−1 for t ≥ e, then EX (n) ∼ √πn / ln n .

(4). Genedenko [Gne43] showed X (n) ∼ cX(n) almost surely in this case; for the expectation see
[Pic68]. Any d.f. in the domain of attraction D(Λ) of the double exponential extreme value dis-
tribution belongs to R−∞ [Res87]. For example, the exponential d.f. F(t) = e−λt yields
EX (n) /n ∼ ln n /(λn).

(5). See [Dow90b]. E1 is the class of random variables dominated in convex ordering [Ros83,
Sto83] by some exponentially distributed variate. E1 is a very large class of random variables,
including all those [Dow90b] that are Coxian or of Phase (PH) type, those with bounded mean
residual life, those that are New Better Than Used in Expectation (NBUE), and all subclasses
[Ros83] of the latter, such as Increasing Failure Rate (IFR) and Increasing Likelihood Ratio
(ILR) variates.

(6). Eβ is the class of variates Xβ for some X in E1. An example is the Weibull
F(t) = exp(−λt 1/β).

Table 1. Summary of EX (n) /n Bounds
Often one needs to know the asymptotic behavior of integrals of regularly varying functions; for example,

when estimating the moments of regularly varying r.v.s. This integral behavior is given by the celebrated
Karamata’s Theorem, only one direction of which will be cited here.
THEOREM (Karamata’s Theorem; direct half) [Kar30, Bin87]. If f ∈ Rρ and f is locally bounded in [a, ∞), then
(i) For any σ ≥ −(ρ+ 1),

a
∫
x

tσ f (t) dt

xσ + 1 f (x)
→ σ + ρ + 1 (x → ∞) . (2.1.3)

If ρ=∞, the limit on the right is interpreted as ∞.

(ii) For any σ < −(ρ+ 1), (and for σ = −(ρ+ 1) if
a
∫
∞

t−(ρ + 1) f (t) dt < ∞) then

x
∫
∞

tσ f (t) dt
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converges for x ∈ [a, ∞) and

x
∫
∞

tσ f (t) dt

xσ + 1 f (x)
→ −(σ + ρ + 1) (x → ∞) .

If ρ = −∞, the limit on the right is interpreted as ∞.
Karamata’s Theorem finds application in probability theory by describing the behavior of moments of ran-

dom variables with well-behaved tails. The first result says that any regularly varying r.v. of index −α has finite
moments of all orders in [0, α):
THEOREM. Suppose that X is an r.v. with X ∈ R−α for some α > 0. Then

∀β < α E[Xβ] < ∞ . (2.1.4)

Proof: Apply Karamata’s Theorem (2.1.3) with f set to F, a set to 0, ρ set to −α and σ set to β− 1. Since
β < α ⇒ σ < −(ρ+ 1), part (ii) applies and yields

x
∫
∞

tβ− 1F(t)dt < ∞

for all x ≥ 0. By (1.3), this implies E[Xβ] < ∞.
Another useful consequence of this theorem in probability theory describes the behavior of the mean residual

life of a regularly varying r.v. Let X =d F. The residual life at time t is the random variable
Xt := X − t | X > t having d.f. 1 − F(x + t)/F(t). If we assume that EX < ∞, then the expectation of the mean
residual life at t

EXt =
F(t)

t
∫
∞

F(u) du

is called the mean residual life function of X.
THEOREM. Suppose X ∈ R−α for some α > 1 (so that EX < ∞). Then

EXt ∼ α− 1
t (t → ∞) . (2.1.5)

If α = ∞, this is interpreted as saying EXt = o (t).
Proof: Apply Karamata’s Theorem (2.1.3), part (ii), with a set to 0, f set to F, ρ set to −α and σ set to 0.
We see from the above that for distributions with regularly decaying tails, the mean residual life grows linearly
with time. In the case of rapidly decaying tails (F ∈R−∞), the mean residual life grows more slowly than
linearly.

2.2 Results about Extremes
Note that if X 1, . . . , Xn are i.i.d., =d F(t), then X (n) =d Fn(t). It is an easy consequence [Dow90a] that for

all p, EXp < ∞ ⇔ EX(n)p < ∞.
THEOREM [Dow90a]. Suppose Xi are i.i.d. =d F. Then

EX 1 < ∞ ⇒
n

EX (n)
→ 0 (n → ∞) (2.2.1)

Proof:

EX (n) =
0
∫
∞

t dFn(t) = n
0
∫
∞

tFn−1(t) dF(t)

It is enough to show

- 8 -



In :=
0
∫
∞

tFn−1(t) dF(t) = o (1) (n → ∞)

Break up the integral into two parts by decomposing the range of integration:

In = Hn + Tn
where

Hn :=
0
∫
ln n

tFn−1(t) dF(t) , Tn :=
ln n
∫
∞

tFn−1(t) dF(t) .

First, the head integral tends to zero since

Hn ≤ ln n.
0
∫
ln n

Fn−1(t) dF(t) = ln n.
0
∫

F( ln n)

un−1du = ln n.
n

Fn( ln n)
→ 0 .

Finally, for the tail integral we have

Tn ≤
ln n
∫
∞

t dF(t) → 0

since

0
∫
∞

t dF(t) = EX 1 < ∞

COROLLARY. Suppose Xi are i.i.d. =d F. Then for all p ≥ 1

E[X1p ] < ∞ ⇒ E[X (n)p] = o (n) (n → ∞) (2.2.2)

Proof: Define Yi := Xip. Then Y 1, . . . , Yn are i.i.d. with EY 1 < ∞. So by Theorem 2.2.1, EY (n) = o(n). How-
ever

Y (n) = max(Y 1, . . . , Yn) = max(X1p, . . . , Xnp) = max(X 1, . . . , Xn)p = X(n)p

and so E[X(n)p ] = o (n).
COROLLARY. Suppose Xi are i.i.d. =d F. Then

EX12 < ∞ ⇒
n 2
EX(n)2

= o
n

EX (n) (n → ∞) . (2.2.3)

Proof: By the previous result, EX(n)2 /n = o (1) as n → ∞. Since EX (n) ≥ EX = Θ(1), it follows that
EX(n)2 /n = o (EX (n)) and division by n completes the argument.

The next result has an Abelian flavor.
THEOREM. Suppose Xi are i.i.d. =d F. Suppose that F has infinite support, so that EX (n) → ∞. If
(i) EX 1 < ∞

(ii) f(t) ≤ t
(iii) f(t) = o(t) (t → ∞)
then

E[fX (n)] = o(EX (n)) (n → ∞) (2.2.4)

Proof: Write µ := EX 1. By hypothesis (iii),
∀ε > 0 ∃N(ε) ∀t > N(ε) f (t) ≤ εt

Without loss of generality we may assume N(ε) > εµ. Define

N′(ε) := max N(ε/2),
| lnF(N(ε/2)) |

| ln
N(ε/2)
µε/2

|
.
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Then for all n > N′(ε) we have

n >
lnF(N(ε/2))

ln [1⁄2µε/N(ε/2)]
⇒ lnF(N(ε/2))n < ln [1⁄2µε/N(ε/2)]

which implies

N(ε/2).F(N(ε/2))n <
2
εµ

≤
2
ε EX (n) . (2.2.5)

Also

∀t ≥ N(ε/2) f (t) ≤
2
ε t . (2.2.6)

We can express the expectation as a sum of two integrals:

E[fX (n)] =
0
∫
∞

f (t) dFn(t) =
0
∫

N(ε/2)

f (t) dFn(t) +
N(ε/2)
∫
∞

f (t) dFn(t)

Using hypotheses (ii) in the first integral and equation (2.2.6) in the second, we get

E[fX (n)] ≤
0
∫

N(ε/2)

t dFn(t) +
2
ε

N(ε/2)
∫
∞

t dFn(t) ≤ N(ε/2)
0
∫

N(ε/2)

dFn(t) +
2
ε EX (n)

≤ N(ε/2).Fn(N(ε/2)) +
2
ε EX (n)

Using equation (2.2.5) we have that for all n > N′(ε)

E[fX (n)] ≤ 2
ε EX (n) +

2
ε EX (n) = εEX (n) .

This last assertion shows that

∀ε > 0 ∃N′(ε) ∀n > N′(ε) E[fX (n)] ≤ εEX (n) ,
that is, E[fX (n)] = o(EX (n)).

The characteristic value, given n, is the value of the random variable that will be exceeded with probability
at most 1/n:
DEFINITION. For a random variable X =d F, the characteristic maximum function cX(n) is defined as the 1− n−1

quantile point of the d.f.:

cX(n) := inf {x | F(x) ≤ n−1} . (2.2.7)

We now cite a result that connects the behavior of the expected extreme with that of the characteristic max-
imum and the mean residual life:
THEOREM [Dow91, Dow93]. Let X be any r.v. with finite first moment. Then if cX(n) is the characteristic max-
imum function and EXt is the mean residual life function, then for all n ≥ 1

(1 − e−1) cX(n) + EXcX(n) < EX (n) ≤ cX(n) + EXcX(n) , (2.2.8)

that is,

EX (n) = Θ cX(n) + EXcX(n) (n → ∞) .

The above upper/lower bound on EX (n) can be immediately applied to characterize the order of growth of
moments of X (n) , provided X is regularly varying. Although the expectation of the extreme is not in general
equal to the characteristic maximum, it is close:
THEOREM. Assume X ∈ R−α for some α > 1. Then for all β < α:

E[X(n)β ] = Θ(cX(n)β) . (2.2.9)
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Proof: It is easy to see that

Xβ =d F(t 1/β) .

From this d.f., and since since X ∈ R−α, it follows from (2.1.2) that Xβ ∈ R−α/β . Also from this d.f. it follows
that

cXβ (n) = cX(n)β .

Since Xβ is regularly varying, Theorem (2.1.5) yields

EXtβ ∼ α/β − 1
t .

Using the two foregoing facts, Theorem (2.2.8) now applies to Xβ to yield

E[X(n)β ] = Θ cX(n)β + (α/β− 1)−1cX(n)β = Θ(cX(n)β) (n → ∞) .

A consequence of the above is that for regularly varying r.v.’s, the βth moment of X (n) is approximately the
βth power of its first moment: E[X(n)β ] = Θ((EX (n))β). The following consequence is needed in the sequel. It
complements Corollary (2.2.3) in the case of regularly varying F.
COROLLARY. If X ∈ R−α, for some α > 1, then

∀β∈ (1, α)
nβ

E[X(n)β ]
= o

n
EX (n) (n → ∞) . (2.2.10)

Proof: From Theorem (2.2.9), we have two equations:

nβ

E[X(n)β ]
= Θ

n
cX(n)

β

and

n
E[X (n)]

= Θ
n

cX(n) .

By Theorem (2.2.1) and the second equation, cX(n)/n = o (1). This observation and the fact that β > 1 yield

n
cX(n)

β

= o
n

cX(n) .

Since the right side of the first equation is o of the right side of the second equation, the result follows.

2.3 Laplace Transform Bounds
For a non-negative random variable X =d F (t), its Laplace-Stieltjes Transform F̃(x) is defined as

F̃(x) := E[e−xX] =
0
∫
∞

e−xt dF(t) . (2.3.1)

The moment EXp is finite ⇔ a finite limit F̃
(p)
(0+) exists [Fel66, XIII.2].

Various upper and lower bounds on F̃(x) will be of use in the sequel. All moments EXp exist and are either
finite or infinite; in the infinite case the results below have the obvious degenerate (and trivial) meanings.
THEOREM. For any d.f. F of a non-negative variate, and for all x ≥ 0

F̃(x) ≥ e−xEX . (2.3.2)

Proof: F̃(x) = E[e−xX] ≥ e−xEX by Jensen’s inequality [Chu74].
COROLLARY. For any d.f. F of a non-negative variate, and for all x ≥ 0

F̃(
m
x )m ≥ e−xEX . (2.3.3)
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THEOREM. Let X =d F have finite first moment. Then for all x in [0, 1/EX]:

F̃(x) ≤ e−xEX /2 . (2.3.4)

Proof: The function F̃(x) is convex decreasing on [0, ∞) with F̃(0) = 1 and F̃(∞) = 0 [Wid71]. At x = 0 it has
tangent line 1 − xEX. Therefore the line 1 − 1⁄2xEX passes through this tangent point with larger (negative)
slope and so is a secant line, intersecting the curve F̃(x) at points x = 0 and x = θ > 0. For every x in [0, θ],
we therefore have

F̃(x) ≤ 1 − 1⁄2xEX ≤ e−1⁄2xEX . (†)

Since the tangent line 1 − xEX intercepts the x-axis at 1/EX, it must be the case that 1/EX < θ, so for all x to
the left of 1/EX, (†) holds.
COROLLARY. Let X =d F have finite first moment. Then for all x with 0 ≤ x /m ≤ 1/EX:

F̃(
m
x )m ≤ e−xEX /2 . (2.3.5)

LEMMA. If EX < ∞ then for all x ≥ 0

F̃(x) = 1 − xEX + x
0
∫
∞

F(t)(1 − e−xt) dt . (2.3.6)

Proof: Integration of (2.3.1) by parts yields

F̃(x) = 1 − x
0
∫
∞

F(t)e−xt dt ,

and using the fact that

EX =
0
∫
∞

F(t) dt

in the previous equation yields (2.3.6).
THEOREM. Let X =d F have finite first moment. Then for all x ≥ 0

F̃(x) ≤ exp[−xEX].exp[x
0
∫
∞

F(t)(1 − e−xt) dt] . (2.3.7)

Proof: One easily checks that for all non-negative x

xEX ≥ x
0
∫
∞

F(t)(1 − e−xt) dt

Thus Lemma (2.3.6) and the fact that 1 − w ≤ e−w for non-negative w imply the result.
COROLLARY. Let X =d F have finite first moment. Then for all x ≥ 0

F̃(
m
x )m ≤ exp[−xEX].exp[x

0
∫
∞

F(t)(1 − e−xt /m) dt] . (2.3.8)

REMARK. Taken together, Corollary (2.3.3) and (2.3.8) imply the following pointwise limit for each fixed x,
assuming a finite first moment:

m → ∞
lim F̃(

m
x )m = e−xEX .

The right hand side is the transform of the d.f. concentrated at EX, and the left hand side is the transform of
(X 1 + . . . + Xm)/m. Therefore, using the fact that Laplace transforms are unique, we have derived the weak
law of large numbers for non-negative random variables, due to Khinchine in this form [Fel66, XIII.3].

- 12 -



COROLLARY. Let X =d F be a random variable with E[X 1+ ν] < ∞ for some 1 ≥ ν > 0. Then for all x ≥ 0

F̃(
m
x )m ≤ e−xEXex

1+ νm−νE[X1+ν]/(1+ν) . (2.3.9)

Proof: We make use of the inequality

∀w ≥ 0 ∀ν∈ [0, 1] 1 − e−w ≤ wν . (2.3.10)

Using this inside the integral in (2.3.8) results in

x
0
∫
∞

F(t)(1 − e−xt /m) dt ≤
m ν

x 1+ν

0
∫
∞

F(t)t ν dt .

The latter integral is (1+ν)−1E[X 1+ν] by (1.3).

2.4 The Truncated Random Variable
Given a variate X =d F we can define for each z ≥ 0 that is in the support of F a new truncated variate Y(z)

that represents the random variate X conditioned on the event [X ≤ z]:

Y(z) = X | X≤ z (2.4.1)

Let Y(z) =d Gz(t). Then

Gz(t) = 1
F (t)/F (z)

t ≥ z
0 ≤ t ≤ z

(2.4.2)

The pth moment of the truncated variate is given by

EYp(z) =
F (z)

0
∫
z

t p dF(t)
=

F (z)
µp(z) , (2.4.3)

and in particular

EY(z) = µ(z)/F (z) .

Notice that since Y(z) has bounded support, all moments of Y(z) are finite for finite z. The random variable
Y(z) has the Laplace-Stieltjes transform

G̃z(x) = E[e−xY(z)] =
0
∫
z

e−xt
F (z)
dF(t) (2.4.4)

The following are general properties of the moments EYp(z) valid for any d.f. F.
THEOREM. For any d.f. F of a non-negative variate, let Y(z) be the truncated variate. Then for any z in the sup-
port of F and for any p > 0

EY(z)p =
F (z)
µp(z)

↑ z (2.4.5)

Proof: By parts we derive

EY(z)p = z p −
F (z)

0
∫
z

F (t)dtp

. (2.4.6)

Two facts are needed for the sequel. By monotonicity of d.f. F

∀z, ε ≥ 0 F(z) ≤ F(z + ε) . (2.4.7)

Also by monotone properties of integration

- 13 -



∀z, ε ≥ 0
z
∫
z+ε

F (t)dtp ≤ [(z + ε)p − z p].F(z+ε) . (2.4.8)

Let z and ε be arbitrary and non-negative, with both z and z+ε in the support of F. From (2.4.7) we obtain

0 ≥
F(z+ε)
0
∫
z

F (t) dtp

−
F(z)

0
∫
z

F(t) dtp

(2.4.9)

From (2.4.8) we obtain

(z + ε)p − z p ≥
F(z+ε)
z
∫
z+ε

F(t) dtp

,

and adding this to (2.4.9) yields

(z + ε)p − z p ≥
F(z+ε)
0
∫
z+ε

F(t) dtp

−
F(z)

0
∫
z

F(t) dtp

(2.4.10)

Rearranging (2.4.10) results in:

(z + ε)p −
F(z+ε)
0
∫
z+ε

F(t) dtp

≥ z p −
F(z)

0
∫
z

F(t) dtp

or using identity (2.4.6)

EY(z + ε)p ≥ EY(z)p .

This last result is the desired monotonicity.
REMARK. It is also possible to show using the mean value theorem [Wid61] that EYp(0+) = 0, that
EYp(z) = o(z p) as z → 0+ , and that EYp(z) ≤ z p for all z > 0.
Obviously as z → ∞, EY(z)p → EXp.

3. Integral Representation for ERn
THEOREM. Assume X 1, . . . , Xn are i.i.d. =d F. Then

ERn =
0
∫
∞

z
0
∫
∞

e−zx[G̃z(x)]n−1 dx dFn(z) (3.1)

where G̃z is the Laplace-Stieltjes transform of the truncated variate Y(z) := X | X ≤ z:

G̃z(x) = F (z)
0
∫
z

e−xt dF(t)
.

Proof: Let X 1, X 2, . . . , Xn be a sample of n independent random variables with distribution F, and let their
ordered values be the order statistics

X (1) ≤ X (2) ≤ . . . ≤ X (n−1) ≤ X (n) .

Conditioned on X (n) = z, the remaining n − 1 variates of the sample are independent and identically distributed
random variables, each having the d.f. Gz of Y (z), defined in (2.4.2). Call these n − 1 i.i.d. variates

Y (z)1, Y (z)2, . . . , Y (z)n−1 .

Define their sum as
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Zn−1(z) := Y (z)1 + Y (z)2 + . . . + Y (z)n−1 .

Then we have the following conditional expectation

E[Rn | X (n) = z] = E
z + Zn−1(z)

z .

Removing the conditioning, using the fact that X (n) =d Fn(z), results in

ERn = E
0
∫
∞

z + Zn−1(z)
z dFn(z)

In the above integral, use the fact that

w
1
=
0
∫
∞

e−wx dx

to obtain

ERn = E
0
∫
∞

z
0
∫
∞

e−x[z + Zn−1(z)] dx dFn(z) .

Since all the iterated integrals in the above expression are convergent for all parameter values, and since all
integrands are non-negative, we may employ Fubini’s Theorem [Fel66, IV.2] to reorder the integrals, resulting in

ERn =
0
∫
∞

z
0
∫
∞

e−xzE[e−xZn−1(z)] dx dFn(z) . (3.2)

Now because Zn−1(z) is a sum of i.i.d. variates, the convolution theorem holds for Laplace transforms and

E[e−xZn−1(z)] = E[e−xY (z)]n−1 = [G̃z(x)]n−1 .

Putting this into (3.2) yields the result (3.1).

For specific d.f.s, direct asymptotic expansion of the integral form (3.1) is often possible.
EXAMPLE. Consider the uniform distribution on [0, 1], where F (t) = t. Then

G̃z(x) = xz
1 − e−xz ,

and (3.1) becomes

ERn =
0
∫
1

z
0
∫
∞

e−xz
xz

1 − e−xz
n−1

dx dzn =
0
∫
∞

e−w
w

1− e−w
n−1

dw ,

after a change of variable. A further integration by parts yields a simpler looking form:

ERn = n
n−1

0
∫
∞

wn
(1 − e−w)n dw .

The function (1 − e−w)/w decreases in w from its maximum at w = 0. This integral is a classic Laplace integral
[Olv74], and asymptotic expansion for large n proceeds as follows. First, we may replace the upper limit of
integration by 1, as the contribution to the integral over the range [1, ∞) is easily seen to be subdominant. So:

ERn = n
n−1

0
∫
1

wn
(1 − e−w)n dw + oo (n) ,

where oo (n) represents a subdominant term. Use the first few terms in the Taylor expansion of (1 − e−w)/w to
force the integrand to be of the form e−un; this dictates a choice of u such that

e−u = 1 −
2
w

+
6
w 2 .
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This amounts to the change (ignoring any higher terms) given by

u ∼
2
w

−
24
w 2 .

Now solve for w in terms of u (w = 6+ 6√1− 2⁄3u ) and make this change of variable in the integral to get

ERn = n
n−1

0
∫
b

e−un
√1− 2⁄3u

2 du + oo (n)

where b = 11/24.
Apply the standard series expansion to the square root to get

ERn = n
2(n−1)

0
∫
b

e−un 1 +
3
u
+ O(u 2) du + oo (n) =

n 2
2(n−1)

0
∫
bn

e−z 1 +
3n
z

+ O(z 2 /n 2) dz + oo (n) .

Setting b =∞ does not affect the approximation except in exponentially small terms [Olv74], and so the integrals
are all elementary. Evaluating them yields

ERn = n 2
2(n−1) 1 +

3n
1

+ O(n−2) (n → ∞) .

This agrees in first term with the estimate first derived in [Cof85], but provides higher order terms.

4. Lower Bound
To find an asymptotic lower bound for the integral (3.1), we will bound from below the Laplace transform

G̃z(y /n)n, using the weak law lower bound from Section 2.3. This is essentially application of Jensen’s equality
followed by expansion in terms of moments.
THEOREM. Assume X 1, . . . , Xn are i.i.d. =d F. Suppose either that
(i) F ∈ R−α for some α > 1; or else
(ii) F has finite second moment.
Then

ERn ≥ ESn
EX (n) 1 + o(1) (n → ∞) (4.1)

Proof: Make the change x := y /n in (3.1) to get

ERn =
n
1
0
∫
∞

z
0
∫
∞

e−yz /n[G̃z(y /n)]n−1 dy dFn(z) .

Let µ be EX 1. By Corollary (2.3.3), the fact (2.4.5) that EY(z) ↑ z, and the observation EY(∞) = µ, we have

G̃z(y /n)n−1 ≥ G̃z(y /n)n ≥ e−yEY(z) ≥ e−yµ

Using this lower bound in the above integral gives

ERn ≥
n
1
0
∫
∞

z
0
∫
∞

e−yz /ne−yµ dy dFn(z) =
nµ
1

0
∫
∞

1 + z /(nµ)
z dFn(z) .

Since (1 + w)−1 ≥ e−w, we have the lower bound

ERn ≥
nµ
1

0
∫
∞

ze−z /(nµ) dFn(z) . (4.2)

The proof now divides into two parts, depending on whether hypothesis (i) or (ii) obtains.
(i). Assume F ∈ R−α for α > 1. Pick a ν ∈ (0, 1) such that 1 + ν < α. Then by Theorem (2.1.4),
EX11+ ν < ∞. Now
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∀w ≥ 0 e−w ≥ 1 − wν ,

and applying this to (4.2) yields

ERn ≥
nµ
1

0
∫
∞

z 1 −
n νµν
z ν dFn(z) =

nµ
EX (n)

−
n 1+νµ1+ν
E[X(n)1+ν ] . (4.3)

By Corollary (2.2.10), since F ∈ R−α with 1+ ν∈ (1, α), we have

n 1+ν
E[X(n)1+ν ]

= o
n

EX (n) (n → ∞) .

Using this in (4.3) shows that the second term is asymptotically smaller than the first, so that we conclude

ERn ≥
µn
EX (n) 1 + o (1) (n → ∞) . (4.4)

Since ESn = µn, we have the desired result.
(ii). Assume X 1 has a finite second moment. Use the inequality

∀w ≥ 0 e−w ≥ 1 − w

in equation (4.2) to obtain

ERn ≥
nµ
EX (n)

−
n 2µ2
E[X(n)2 ] . (4.5)

Now by applying Corollary (2.2.3), we conclude that the second term is asymptotically smaller than the first, and
so (4.4) follows once again.

5. Upper Bound
We proceed now to the upper bound. The approach is to use the weak law upper bounds on G̃z(y /n)n from

Section 2.3.
First we show that contributions to ERn from the integral (3.1) for z near the origin are exponentially small

and may be ignored.
Call a function a (n) subdominant if, for every k ≥ 0 a (n) = o(n−k) as n → ∞. For convenience, we denote

the class of subdominant functions by oo (n). Any function in this class will also be denoted by oo (n). Such
functions are exponentially small and play the role of zeros in any asymptotic expansion.
THEOREM. Assume X 1, . . . , Xn are i.i.d. =d F. Let δ ≥ 0 be any point in the support of F, so that F(δ) < 1.
Then

ERn =
δ
∫
∞

z
0
∫
∞

e−zx[G̃z(x)]n−1 dx dFn(z) + oo (n) . (5.1)

Proof: Since G̃z(x) ↓ x and G̃z(0) ≤
0
∫
z

dF(t)/F (z) = 1, the part of the integral (3.1) near the origin is

0
∫
δ

z
0
∫
∞

e−zx[G̃z(x)]n−1 dx dFn(z) ≤
0
∫
δ

z
0
∫
∞

e−zx dx dFn(z) =
0
∫
δ

dFn(z) = Fn(δ) − Fn(0) = oo (n)

The next step eliminates the inner integral in (5.1) at the cost of o (1) terms.
THEOREM. Assume X 1, . . . , Xn are i.i.d. =d F, and that EX11+ν < ∞ for some ν > 0. Then for any δ with
F(δ) < 1

ERn ≤
n
1

δ
∫
∞

z
z /n + µ(z)/F (z)

1 .dFn(z) 1 + o(1) (n → ∞) (5.2)
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Proof: From Theorem (5.1), it is sufficient to show that the bound in (5.2) dominates

Jn :=
δ
∫
∞

z
0
∫
∞

e−zx[G̃z(x)]n−1 dx dFn(z) .

Make the change x := y /n to obtain

Jn := n
1

δ
∫
∞

z
0
∫
∞

e−zy /n[G̃z(y /n)]n−1 dy dFn(z) .

Break up the integral into two integrals, denoted Hn and Tn, by splitting the range of the inner integral as fol-
lows:

Jn := Hn + Tn
where

Hn := n
1

δ
∫
∞

z
0
∫

r (n)

e−zy /nG̃z(y /n)n−1 dy dFn(z) , (5.3a)

and

Tn := n
1

δ
∫
∞

z
r (n)
∫
∞

e−zy /nG̃z(y /n)n−1 dy dFn(z) , (5.3b)

and where r (n) is chosen arbitrarily subject to the following constraints

r (n) = o (n ν/(1+ν)) (n → ∞) (5.4a)

e−r (n) = oo (n) (n → ∞) . (5.4b)

For example the choice r (n) = nβ for any β such that 0 < β < ν/(1+ν) will meet the constraints.
Below we show that Tn is subdominant and Hn has the bound in (5.2), completing the proof for Jn.
Tail integral Tn. Assume y ≥ r (n). Then

n
y

≥
n

r (n) .

G̃z is a Laplace transform, so that G̃z(x)↓ x, and we have

G̃z(y /n)n−1 ≤ G̃z(r (n)/n)n−1 .

Consider the exponential factor in the integrand of Tn. We have by virtue of Theorem (2.3.2)

G̃z(y /n)n−1 ≤ G̃z(r (n)/n)n−1 =
G̃z(r (n)/n)

G̃z(r (n)/n)n

≤
e−r (n)EY(z)/n
G̃z(r (n)/n)n

≤ [G̃z( r (n)n−1⁄2 /√n )√n ]√n .er (n)EX /n .

Equation (5.4a) implies that r (n) = o(n) and hence that for sufficiently large n:

√n
r (n)n−1⁄2

≤ EX
1

≤ EY (z)
1 , (5.5)

since EY (z)↑ z. Therefore we can apply Corollary (2.3.5) to conclude that for all n sufficiently large:

G̃z(y /n)n−1 ≤ [e−1⁄2r (n)EY (z)/√n ]√n .er (n)EX /n = e−1⁄2EY (z)r (n) .er (n)EX /n .

Now for all sufficiently large n, er (n)EX /n ≤ 2 and EY (z) ≥ EY(δ), so we finally have the bound

G̃z(y /n)n−1 ≤ 2e−1⁄2EY (δ)r (n) (5.6)

which is valid for all y ≥ r (n) and all sufficiently large n. Putting this bound (5.6) into integral (5.3b) results in
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Tn ≤
n
2 e−1⁄2EY (δ)r (n)

δ
∫
∞

z
r (n)
∫
∞

e−zy /n dy dFn(z) ≤ 2e−1⁄2EY (δ)r (n)
δ
∫
∞

e−zr (n)/n dFn(z) ≤ 2e−1⁄2EY (δ).r (n) .

By (5.4b), this last bound is oo (n), proving that

Tn = oo (n) (n → ∞) . (5.7)

Head integral Hn. Assume y ≤ r (n). Then

n
y

≤
n

r (n)
= o(n−1/(1+ν)) ,

by (5.4a). Hence by Corollary (2.3.9), writing K (z) for E[Y (z)1+ν]/(1+ν)

G̃z(y /n)n−1 = [G̃z(y /n)n](1 − 1/n) ≤ [e−yEY (z) .ey
1+νn−νK (z)](1 − 1/n)

≤ e−yEY (z) .eyEY (z)/n.eK (z)y
1+ν /nν

.

Now y ≤ r (n), K (z) ≤ K (∞) = E[X 1+ν]/(1+ν), and EY (z) ≤ EX so that we have the final bound

G̃z(y /n)n−1 ≤ e−yEY (z) .er (n)EX /n.eK (∞)r (n)
1+ν /nν

. (5.8)

Putting this bound (5.8) into the integral (5.3a) results in

Hn ≤
n
1 er (n)EX /n.eK (∞)r (n)

1+ν /nν

δ
∫
∞

z
0
∫
∞

e−zy /ne−yEY (z) dy dFn(z)

=
n
1 er (n)EX /n.eK (∞)r (n)

1+ν /nν

δ
∫
∞

z /n + EY(z)
z dFn(z)

From (5.4a) it follows that

r (n)1+ν /n ν = o(1) and r (n)/n = o (n−1/(1+ν)) (n → ∞)

and this implies since K(∞) < ∞ that

er (n)EX /n.eK (∞)r (n)
1+ν /nν

= 1 + o (1) (n → ∞) .

So we obtain the sought-for bound on Hn:

Hn ≤
n
1

δ
∫
∞

z /n + EY(z)
z dFn(z) 1 + o(1) (n → ∞) . (5.9)

Putting (5.9) and (5.7) together yields

Jn ≤
n
1

δ
∫
∞

z /n + EY(z)
z dFn(z) 1 + o(1) (n → ∞) .

The final step in the argument shows that in (5.2) we may replace µ(z)/F (z) by its value at ∞, while intro-
ducing only further o (1) terms.
THEOREM. Assume X 1, . . . , Xn are i.i.d. =d F, that F has unbounded support, and that E[X11+ν ] < ∞ for some
ν > 0. Then

nERn ≤ EX 1
EX (n) 1 + o(1) (n → ∞) (5.10)

that is,

ERn ≤ ESn
EX (n) 1 + o(1) (n → ∞)

Proof: Write µ for EX 1 in the sequel.
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Define

In :=
δ
∫
∞

z
z /n + µ(z)/F (z)

1 .dFn(z) .

By (5.2) we have that

nERn ≤ In 1 + o(1) (n → ∞) .

We therefore wish to show that

In ≤
µ

EX (n)
+ o(EX (n)) (n → ∞) (5.11)

which will imply the result. Now

In ≤
δ
∫
∞

µ(z)/F (z)
z .dFn(z) ≤

δ
∫
∞

µ(z)
z .dFn(z) (5.12)

Define

r (z) := µ − µ(z) .

Then from (5.12)

In ≤
µ
1

δ
∫
∞

1 − r (z)/µ
z .dFn(z) (5.13)

Pick a δ so that r(δ)/µ = µ(δ)/µ = 1⁄2. Then F(δ) < 1, and

∀z ≥ δ
µ
r (z)

≤
2
1

and

1 − r (z)/µ
1

≤ 1 + 2
µ
r (z) .

Using this δ in (5.13) yields

In ≤
µ
1

δ
∫
∞

z 1 + 2
µ
r (z) .dFn(z) =

µ
1

δ
∫
∞

z.dFn(z) +
µ2
2

δ
∫
∞

zr (z).dFn(z) .

Both integrals above are finite, since zr(z) = o(z) as z → ∞, and we have assumed that EX and therefore
EX (n) is finite.
We see from the above that

In ≤
µ

EX (n)
+

µ
2
0
∫
∞

z
µ
r (z) .dFn(z) (5.14)

Define f (z) := zr (z)/µ. Observe that the second integral in (5.14) is just (2/µ).E[fX (n)] where f satisfies the
hypotheses of Theorem (2.2.4). We have also assumed that F has unbounded support, so that EX (n) is
unbounded as n → ∞. Therefore by Theorem (2.2.4), E[fX (n)] = o(EX (n)), and putting this into (5.14) leads to

In ≤
µ

EX (n)
+ o(EX (n)) (n → ∞) .

This is the required (5.11).
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6. Main Theorem
The main result may now be concluded:

THEOREM. Assume X 1, . . . , Xn are i.i.d. =d F. Suppose either that
(i) F ∈ R−α for some α > 1; or else
(ii) F has finite second moment.
Then

ERn = ESn
EX (n) 1 + o(1) (n → ∞) . (6.1)

Proof: Suppose first that F has unbounded support. Then the lower bound in (6.1) follows from Theorem (4.1).
Consider the upper bound. If hypothesis (i) applies, then F ∈ R−α for some α > 1, and by Theorem (2.1.4),
E[X11+ν ] < ∞ for any ν∈ (0, α− 1). Then Theorem (5.10) provides the upper bound. If hypotheses (ii) applies,
then E[X12 ] < ∞ and again Theorem (5.10) supplies the upper bound.
It remains only to argue that the result holds when F has bounded support. Let ω < ∞ be the upper support
point of F. It is easy to see that

X (n) →as ω (n → ∞) (6.2)

Clearly µ < ∞ in the case of bounded support, and by the strong law of large numbers

Sn
n

→as
µ
1 (n → ∞) .

It follows that

nRn →as
µ
ω (n → ∞) .

For all sufficiently large n, the sequence {nRn} is almost surely bounded by a constant—say 2ω/µ. Under these
uniformity conditions, it is well known [Chu74, Theorem 4.1.4] that convergence a.s. of a sequence implies con-
vergence in moment of the same sequence, and so we conclude

E[nRn] →
µ
ω (n → ∞) . (6.3)

Since X (n) ≤ ω, the sequence in (6.2) is also uniformly bounded and hence we may similarly conclude from
(6.2) that

E[X (n)] → ω (n → ∞)

and hence that

µ

E[X (n)]
→

µ
ω (n → ∞) . (6.4)

Taken together, (6.3) and (6.4) show that

E[nRn] ∼ µ

EX (n) (n → ∞) .

This completes the proof for the bounded support case, and with it, the proof of the Theorem.
EXAMPLE. Suppose X =d F (t) obeys a Pareto law of shape p, where F (t) = 1 − t−p for t ∈ [1,∞). If p > 1,
then EX ν < ∞ for all 1 ≤ ν < p. A straightforward calculation [Dow90a] shows that

EX (n) ∼ Γ(1 − 1/p)n 1/p (n → ∞)

and it is easy to see that EX = 1/(p − 1). By Theorem (6.1), since F is in R−p,

∀ p > 1 ERn ∼ p − 1
Γ(1 − 1/p) n−(1 − 1/p) (n → ∞) .

The main result is seen to be valid for all Pareto distributions for which a finite mean is well-defined.
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EXAMPLE. Refer to the uniform d.f. discussed in detail in the Example following Theorem (3.1). For X a
U(0, 1) variate, Theorem (6.1) provides information on the first term of the asymptotic expansion calculated
there. Since EX (n) = n−1(n + 1) and ESn = n /2 we have

ERn ∼ n
2 (n → ∞) .

EXAMPLE. Let X =d F (t) where F (t) = 1 − exp[−x 1/a] is a Weibull d.f. with shape parameter a > 0. Standard
methods in the asymptotic theory of extremes [Res87] yield EX (n) = ( ln n)a + O( ln n)a − 1. In this case,
Theorem (6.1) yields, since EX =Γ(a + 1)

ERn ∼ nΓ(a + 1)
( ln n)a (n → ∞) .
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