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Abstract

In this paper we consider scheduling n tasks with task times that are 
i.i.d. random variables with a common distribution function F on m 
parallel machines. Scheduling is done by an a priori assignment of 
tasks to processors. We show that if the distribution function F is a 
Pólya frequency function of order 2 then the assignment which 
attempts to place an equal number of tasks on each processor 
achieves the stochastically smallest makespan among all assign-
ments. The condition embraces many important distributions, such 
as the gamma and truncated normal distributions.

1.0  Introduction

In this paper we consider scheduling  tasks on  identical machines. The task 
processing times are non-negative, independent, identically distributed random variables. 
Scheduling is done by an a priori assignment of the tasks to the machines. Our objective is 
to find an assignment which minimizes the makespan, the latest finishing time among all 
the tasks. We seek an assignment under which the makespan is stochastically majorized by 
that of any other assignment. One might expect that the assignment which places as nearly 
as possible the same number of tasks on each machine would give the stochastically small-
est makespan. In the following example we show that this is not necessarily the case. 

Example: Let  and . The distribution function for the task processing times 
is:  for ;  ( ) for ; and  for . Assign-
ment A places two tasks on each machine and assignment B places three tasks on one 
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machine and one task on the other. Let  and  denote the makespan of assignments A 
and B, respectively. It is easy to see that  and . The 
reason is that under assignment A all four tasks must have processing time equal to 2 if all 
of the tasks are to finish by time 6. Under assignment B the processing time of the lone 
task on one of the machines can be either 2 or 5 and the remaining three tasks on the other 
machine all have to have processing time 2 in order for the makespan to be no larger than 
6. The makespan for assignment A is not stochastically smaller than the makespan under 
B. 

In what follows we show that if the distribution function of the task processing times is a 
Pólya frequency function of order 2 then the “flattest” assignment of tasks to processors 
stochastically minimizes the makespan. It is known that this assignment minimizes the 
makespan in the sense of convex ordering for any distribution function [Chang 1992].

2.0  Main Results

Before stating our results we need a few definitions. An assignment  is an m-vector of 
nonnegative integers such that the sum of its components equals n. Let  
and  denote the components of  in decreasing order. Let  and  be 
two assignments. We say  is majorized by  [MO 1979] if 

 for . 

Since  and  are assignments their component sums are both equal to n.

Let X and Y be totally ordered sets. A function  on  is totally positive of order 
2 (TP2) if 

for all  in X and  in Y. A non-negative function  on  is a 

Pólya frequency function of order 2 (PF2) if  is TP2 on  [Karlin 
1968].

MA MB
Pr MA 6≤{ } p4= Pr MB 6≤{ } p3=

π

π π1 … πm, ,( )=

π 1[ ] … π m[ ]≥ ≥ π π π′

π π′

π i[ ]
i 1=

k

∑ π′ i[ ]
i 1=

k

∑≤ k 1 … m 1−, ,=

π π′

K x y,( ) X Y×

K x1 y1,( ) K x1 y2,( )

K x2 y1,( ) K x2 y2,( )
0≥

x1 x2≤ y1 y2≤ h x( ) R ∞ ∞,−( )=

K x y,( ) h x y−( )= R R×
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Let  denote the distribution function of the task times. Throughout we assume that the 
distribution function of the task times is such that there exists a non-negative, continuous 

function  such that for all t we have .

If  is an assignment, then  denotes the makespan random variable under the assign-

ment . Let  and  be random variables with distribution functions  and , 

respectively. We say that  is stochastically less than , denoted , if  

for all . We use the symbol  to denote the stochastic ordering relation between ran-
dom variables and the usual numerical ordering relation. In what follows it will be clear 
from the context which ordering is intended. An alternative and useful characterization of 
stochastic dominance is the following:  is stochastically less than  if and only if for all 
increasing functions  we have , whenever the expectations exist 
[Stoyan 1983].

The next section proves the following result.

Theorem A. If  is PF2 then  whenever  is majorized by .

It follows from Theorem A that an assignment  which distributes the tasks as evenly as 
possible among the processors (the maximum difference between the number of tasks on 
any two processors is at most one) is majorized by all other assignments. Accordingly,  

is stochastically less than the makespan of any other assignment.

In the following Theorem we assume there are  tasks and compare the makespan 

of the best assignment on  machines with that of the best assignment on k machines.

Theorem B. The makespan of the assignment which places k tasks on each of  
machines is stochastically less than the makespan of the assignment which places  
tasks on each of k machines.

Proof: The following appears in [BP 1975]. Every distribution function F such that 

 for  has the property that  is decreasing in , where 

 denotes the k-fold convolution of  with itself. Using this result it follows that 

 for all positive integers k.

F t( )

f t( ) F t( ) f x( ) xd
∞−

t

∫=

π Mπ
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t ≤

X Y
g E g X( )[ ] E g Y( )[ ]≤

F t( ) Mπ Mπ′≤ π π′

π
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k k 1+( )

k 1+
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1 k⁄

k 1 2 …, ,=
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F k( ) t( )[ ]
k 1+

F k 1+( ) t( )[ ]
k
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3.0  Proof of Theorem A

Suppose  is majorized by . Then there exits a sequence of assignments  such 
that , ,  majorizes  for , and consecutive assign-
ments differ in exactly two components. In particular, we can restrict ourselves to the fol-
lowing operation in going from one assignment to the next: subtract one from one 
component and add one to some other component where the first component is greater 
than the second component prior to the operation.

Let  and  denote the makespans under assignments  and , respectively, corre-
sponding to the two machines whose assignments are changed in going from assignment 

 to . Let  be the makespan of the tasks on the remaining  machines. Then

and 

.

Lemma 1. If  then .

Proof: This follows since .

Lemma 2. Let  and  be independent random variables and  be a nonnegative real. 
Then  if and only if .

Proof: Immediate.

Lemma 3. Suppose  is distributed according to  and  
for all . Then .

Proof: Show that  for all increasing func-
tions  by conditioning on X.

Let  denote the k-fold convolution of  with itself for , where  

and  for . The limits of integration are taken from 

 to  unless stated otherwise.

Theorem 1. If  is PF2 then  is TP2 in  and .

π π′ π1 … πk, ,

π′ π1= π πk= πi πi 1+ i 1 … k 1−, ,=

Ai Bi πi πi 1+

πi πi 1+ R m 2−

M
πi 1+ max Bi R,( )=

M
πi max Ai R,( )=

Bi Ai≤ M
πi 1+ M

πi≤

FBi
FR FAi

FR≥

Y Z x
max Y x Z,+( ) max Y Z x+,( )≤ FY t x−( )FZ t( ) FZ t x−( )FY t( )≥

X F t( ) max Y x Z,+( ) max Y Z x+,( )≤

x 0≥ max Y X Z,+( ) max Y Z X+,( )≤

E g max Y X Z,+( )( )[ ] E g max Y Z X+,( )( )[ ]≤

g

F k( ) t( ) F t( ) k 0≥ F 0( ) t( ) 1≡

F k( ) t( ) F k 1−( ) t x−( )f x( ) xd∫= k 1≥

∞− ∞+

F t( ) F k( ) t( ) k t
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Proof: We give a proof of this result in the Appendices. This theorem appears as problem 5 
on page 98 in [BP 1975].

Lemma 4. If  and  are distributed according to  and , respectively, 

where  and  is distributed according to  then .

Proof: The lemma follows from Theorem 1 and Lemmas 2 and 3.

Theorem A follows from Lemmas 1 and 4.

4.0  Conclusions

In this paper we show that even with independent and identically distributed task times the 
a priori assignment which places as nearly as possible an equal number of tasks on each 
machine does not necessarily yield the stochastically minimum makespan over all assign-
ments. We have provided a sufficient condition on the distribution function of the task 
time random variable which guarantees that “flatter” assignments are stochastically better 
assignments and, in particular, that the “flattest” assignment is stochastically minimum 
over all assignments.

We also show that for any distribution function and  that assigning k tasks to 
each of  machines yields a makespan which is stochastically smaller than the 
makespan achieved by assigning  tasks to each of k machines.

It would be interesting to characterize the class of distribution functions for which 
 if and only if  is majorized by . It is known that for any distribution function 

 is less than  in the sense of convex ordering of random variables whenever  is 
majorized by  [Chang 1992][MN 1993].
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Appendix A: PF2 Distributions are Closed Under Convolution

It is shown in [BP 1965] that if  and  are PF2 then , where H is the convolution of 
 and , is PF2. In this appendix we give a proof of the assertion that if  and  are 

PF2 then H is also PF2. Our proof is patterned after the proof in [BP 1965] of the former 
assertion. While the closure property of PF2 distributions is often cited in the literature, we 
have not been able to find a direct proof of this result. See [BP 1965] Theorem 5.3.

The following definitions are repeated here to keep the appendix self-contained. Let X and 
Y be totally ordered sets. A function  on  is totally positive of order 2 (TP2) if 

for all  in X and  in Y. 

A non-negative function  on  is a Pólya frequency function of order 2 

(PF2) if  is TP2 on .

INK

F1 F2 H
F1 F2 F1 F2

K x y,( ) X Y×

K x1 y1,( ) K x1 y2,( )

K x2 y1,( ) K x2 y2,( )
0≥

x1 x2≤ y1 y2≤

h x( ) R ∞ ∞,−( )=

K x y,( ) h x y−( )= R R×
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 has a continuous density function  and . The k-fold convolution 

of  can be written in terms of  as follows:

,

where . This form for the convolution will be useful later on.

Lemma A1. A non-negative function  is PF2 if and only if 

for all  satisfying  and .

Proof: Using the equations , , and  to relate the vari-
ables  and , the lemma follows.  

Let . 

Lemma A2. A non-negative function  is PF2 if and only if the set  is an interval 

and the ratio  is decreasing in  for each  whenever  belongs to .

Define  for  on the interval  where

.

Lemma A3.  is a distribution function.  is PF2 if and only if  is decreasing for 

increasing  in . 

Proof: Since  is a distribution function  is an interval. Assume  is PF2. The 
idea is to look at

for  and  in .

F t( ) f t( ) F t( ) f x( ) xd
∞−

t

∫=

F t( ) f t( )

F k( ) t( ) F k 1−( ) t x−( )f x( ) xd∫ F k 1−( ) u x−( )f x v−( ) xd∫= =

u v− t=

h x( )

h a δ+( ) h a( )
h b δ+( ) h b( )

0≥

a b δ R∈, , a b≤ δ 0≥

a x1 y2−= b x2 y2−= δ y2 y1−=

x1 x2 y1 y2, , , a b δ, ,

I h( ) t h t( ) 0>{ }=

h t( ) I h( )

h t x+( )
h t( ) t x 0≥ t I h( )

u t( ) t I F( )

u t( ) 1
x

F t x+( ) F t( )−
F t( )x 0→

lim
f t( )
F t( )= =

F t( ) F t( ) u t( )

t I F( )

F t( ) I F( ) F t( )

u t( ) u t ε+( )−
1
x

F t x+( )
F t( )

F t ε x+ +( )
F t ε+( )

−
x 0→
lim=

t t ε+ I F( )
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The term in the braces is non-negative for every . This follows from Lemma A2, i.e., 

 in PF2 implies that the ratio  is decreasing in  for each .

Conversely, assume that the ratio  is decreasing with increasing  in . 

Notice that

.

Therefore 

.

It is easy to see from the above expression that if  is decreasing in  then the ratio 

 is decreasing in  for each . By Lemma A2  is PF2.

Theorem A1. If the distribution functions  and  are PF2, then their convolution , 

given by

,

is also PF2.

Proof: Let  and  have continuous densities  and , respectively. Choose  

and . Form 

where . Applying the generalized Cauchy-Binet 

identity [Karlin 1968] we get

x 0>

F t( )
F t x+( )

F t( ) t x 0>

u t( )
f t( )
F t( )= t I F( )

u s( ) sd
t

t x+

∫
f s( )
F s( ) sd

t

t x+

∫ F t x+( )log F t( )log−
F t x+( )

F t( )
log= = =

F t x+( )
F t( ) exp u s( ) sd

t

t x+

∫( )=

u s( ) s

F t x+( )
F t( ) t x 0≥ F t( )

F1 F2 H

H t( ) F1 t s−( )f2 s( ) sd∞−
∞
∫=

F1 F2 f1 f2 x1 x2≤

y1 y2≤

D
H x1 y1−( ) H x1 y2−( )

H x2 y1−( ) H x2 y2−( )
=

H xi yj−( ) F1 xi s−( )f2 s yj−( ) sd∞−
∞
∫=
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.

Integrating by parts with respect to  yields

.

(The integration by parts is somewhat tedious. The domain of integration requires that 
. This is achieved by integrating  from  to  and then integrating  from  

to . The integration by parts with respect to  involves four terms. For example, one of 

the terms is

.

Performing the integration by parts on this term gives

.

The remaining three terms yield similar expressions. Luckily, the four integrals over  

cancel and the resulting four integrals over the domain  can be expressed in deter-

minant form. The net effect on the original expression of the integration by parts with 
respect to  is to change  to ,  to ,  

to , and  to .)

Dividing the first determinant by  (assuming the product is non-

zero) gives

.

Since  is PF2 we have by hypothesis and Lemma A3 that

D
F1 x1 s1−( ) F1 x1 s2−( )

F1 x2 s1−( ) F1 x2 s2−( )

f2 s1 y1−( ) f2 s1 y2−( )

f2 s2 y1−( ) f2 s2 y2−( )
s1d s2d∫

s1 s2<
∫=

s1

D
f1 x1 s1−( ) F1 x1 s2−( )

f1 x2 s1−( ) F1 x2 s2−( )

F2 s1 y1−( ) F2 s1 y2−( )

f2 s2 y1−( ) f2 s2 y2−( )
s1d s2d∫

s1 s2<
∫=

s1 s2< s1 ∞− s2 s2 ∞−

∞ s1

F1 x1 s1−( )F1 x2 s2−( )f2 s1 y1−( )f2 s2 y2−( ) s1d s2d∫
s1 s2<
∫

F1 x1 s2−( )F1 x2 s2−( )F2 s2 y1−( )f2 s2 y2−( ) s2d
s2

∫

f1 x1 s1−( )F1 x2 s2−( )F2 s1 y1−( )f2 s2 y2−( ) s1d s2d∫
s1 s2<
∫+

s2

s1 s2<

s1 F1 x1 s1−( ) f1 x1 s1−( ) F1 x2 s1−( ) f1 x2 s1−( ) f2 s1 y1−( )

F2 s1 y1−( ) f2 s1 y2−( ) F2 s1 y2−( )

F1 x1 s1−( )F1 x2 s1−( )

f1 x1 s1−( )

F1 x1 s1−( )

F1 x2 s2−( )

F1 x2 s1−( )

f1 x2 s1−( )

F1 x2 s1−( )

F1 x1 s2−( )

F1 x1 s1−( )
−

F1
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and by hypothesis that

.

If  then . This follows since  is a distribu-

tion function and both  and  are less than or equal to . It follows that 

the first determinant is non-negative.

Dividing the second determinant by  (assuming the product is not 

zero) gives

.

Since  is PF2 we have

and

.

If  then . Thus the second determinant is non-

negative.

From the above we have that .

Appendix B:  is TP2 in k and t

Theorem B1 [EMP 1973, Theorem 4.9] If  is PF2. Then for all 

 .

f1 x1 s1−( )

F1 x1 s1−( )

f1 x2 s1−( )

F1 x2 s1−( )
≥

F1 x2 s2−( )

F1 x2 s1−( )

F1 x1 s2−( )

F1 x1 s1−( )
≥

F1 x1 s1−( )F1 x2 s1−( ) 0= F1 x1 s2−( ) 0= F1

x1 s1− x2 s1− x1 s2−

F2 s2 y1−( )F2 s2 y2−( )

F2 s1 y1−( )

F2 s2 y1−( )

f2 s2 y2−( )

F2 s2 y2−( )

f2 s2 y1−( )

F2 s2 y1−( )

F2 s1 y2−( )

F2 s2 y2−( )
−

F2

f2 s2 y2−( )

F2 s2 y2−( )

f2 s2 y1−( )

F2 s2 y1−( )
≥

F2 s1 y1−( )

F2 s2 y1−( )

F2 s1 y2−( )

F2 s2 y2−( )
≥

F2 s2 y1−( )F2 s2 y2−( ) 0= F2 s1 y2−( ) 0=

D 0≥

F k( ) t( )

F t( ) z1 z2≤

D k z1 z2, ,( ) F k( ) z1( )F k 1+( ) z2( ) F k( ) z2( )F k 1+( ) z1( ) 0≥−=
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Proof: We can write  as follows:

.

By setting , , , and , we can apply the Theorem from the 
previous Appendix and conclude that the integrand is non-negative for all . There-
fore .

From this Theorem it is easy to show that if  is PF2 then  is TP2 in  and .

Appendix C: PF2 Densities and Distributions

In this appendix we give examples of PF2 density and distribution functions. We provide a 
proof that if  is a PF2 density, then the corresponding distribution function is PF2. The 
converse does not necessarily hold as demonstrated by the examples given at the end of 
this appendix. In [BP 1975], Lemma 5.8, it is shown that if f is PF2, then  is PF2.

Lemma C1. If the density f is PF2 then the corresponding distribution function F is PF2.

Proof: Write . Choose  in X and form 

,

Let . It is easy to check that 

 whenever  and . This relationship estab-

lishes a 1-1 correspondence between pairs  in the region  and  

and pairs  in the region  and . Since 

 at corresponding pairs, the integral vanishes over the region con-

sisting of  and . Accordingly, 

D k z1 z2, ,( )

D k z1 z2, ,( ) F k( ) z1( )F k( ) z2 θ−( ) F k( ) z2( )F k( ) z1 θ−( )−[ ] F θ( )d
0

∞

∫=

x1 z1= x2 z2= y1 0= y2 θ=

θ 0≥

D k z1 z2, ,( ) 0≥

F t( ) F k( ) t( ) k t

f

F

F t( ) f x( ) xd
∞−

t

∫ f t x−( ) xd
0

∞

∫= = a b δ 0≥,≤

D F a δ+( ) F a( )
F b δ+( ) F b( )

=

f a δ z2−+( )f b z1−( ) f a z1−( )f b δ z2−+( )−[ ]
0

∞

∫ z1d z2d
0

∞

∫=

I z1 z2,( ) f a δ z2−+( )f b z1−( ) f a z1−( )f b δ z2−+( )−=

I z1 z2,( ) I z′1 z′2,( )−= z2 z′1 δ+= z′2 z1 δ+=

z1 z2,( ) z1 0≥ z2 z1 δ+≥

z′1 z′2,( ) z′1 0≥ δ z′2 z′1 δ+≤ ≤

I z1 z2,( ) I z′1 z′2,( )+ 0=

z1 0≥ z2 δ≥
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.

Since  for  we get 

Let , , . Since  and , it fol-

lows that  and . Since f is PF2

for all  and . Therefore .

The following densities are PF2 and consequently, the corresponding distribution func-
tions are also PF2. 

PF2 Densities

1. Gamma: , , , .

2. Weibull: , , , .

3. Exponential: Gamma with  or Weibull with .

4. Truncated normal: , , .

5. Gumbel: , , , .

6. Uniform: .

7. Hypoexponential:  , .

D I z1 z2,( )
0

∞

∫ z1d z2d
0

δ

∫=

f a z1−( ) 0= z1 a>

D I z1 z2,( )
0

a

∫ z1d z2d
0

δ

∫≥

a′ a z1−= b′ b z1−= δ′ δ z2−( ) z1+= 0 z2 δ≤ ≤ 0 z1 a≤ ≤

a′ b′≤ δ′ 0≥

I z1 z2,( ) f a′ δ′+( )f b′( ) f a′( )f b′ δ′+( ) 0≥−=

0 z≤ 2 δ≤ 0 z1 a≤ ≤ D 0≥

gλ α, t( )
λ λt( ) α 1−

Γ α( )
e λt−= t 0> λ 0> α 1≥

fβ t( ) βλ λt( ) β 1− e λt( ) β−= t 0> λ 0> β 1≥

α 1= β 1=

f t( ) e t µ−( ) 2 2σ2⁄−

a 2πσ
= t 0≥ σ 0>

gβ λ, t( ) βλexp λt β exp λt( ) 1−( )−( )= t 0≥ β 0> λ 0>

f t( ) constant=

fλ1 λ2, t( )
λ1λ2
λ2 λ1−

e λ1− t e λ2− t
−( )= λ1 0> λ2 0>
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Non-PF2 Densities

The following densities are not PF2.

1. Gamma with .

2. Weibull with .

3. Pareto: ,  and .

PF2 Distribution Functions 

1. Gamma for all .

2. Weibull for all .

3. Pareto for all .

These three cases are interesting since their densities are not PF2.

α 1<

β 1<

fa t( ) at a 1+( )−= t 1≥ a 0>

α 0>

β 0>

a 0>


