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ABSTRACT

Phase Change Memory(PCM) is an emerging technology in the storage hierarchy.

PCM is full of promises with low latencies and low energy consumption and high

scalability. Most of the research done regarding PCM focuses on using PCM as a

DRAM alternative or by using PCM as a hybrid component with DRAM as a part

of the primary storage.

Our work focuses on using PCM as a Hard Disk/Flash based SSD alterna-

tive. We focus on reducing the total energy consumption of the system, by using

the high performance PCM as a disk alternative and experiment with different

buffer cache configurations to figure out a way of reducing the memory needed by

the system. In the process we develop a new Translation Layer for PCM called

PCM Translation Layer (PTL) and develop a simulator based on PTL to conduct

our experiments. We try to develop a system with less memory and PCM based

secondary storage and strive to maintain the same performance given by a con-

ventional high performance system that uses larger memory and a Disk or Flash

based secondary storage. Thus without compromising performance, we are trying

to reduce the energy consumption of the system by using PCM as the secondary

storage media.
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CHAPTER 1

Introduction

As traditional storage devices like hard disk drives and flash based solid state drives

keep improving their performance, the inevitable result is the increase in energy con-

sumption. It is difficult to achieve energy consumption by sacrificing performance

as the demand for high performance devices keeps increasing constantly. When we

look at the total energy consumption of a system, the Random Access Memory con-

sumes a sizable portion, due to the fact that the idle energy consumption of DRAM

itself is high. We need to switch to a device that has low energy consumption and

very low latencies, which enable us to reduce the total amount of memory used and

Phase Change Memory seems to be the most promising technology that can meet

the above criteria.

Phase Change Memory has existed for quite some period of time, but re-

cently, the research and work on Phase Change Memory for usage in the storage

hierarchy has seen a sudden surge due to the recent developments in the underlying

technology of PCM (27) (30). PCM is a non volatile memory that uses chalco-

genide glass to switch between two states crystalline and amorphous by applying

heat through electrical pulses. The states are identified by figuring out the difference

in resistivity between the two states, which differs by a few orders of magnitude.

(22)

A lot of work has been done to study the use of alternate memory technology
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to either replace DRAM or augment it, inoder to reduce the energy consumption

of the main memory (15), (14), (22), (31), (18). Our study focuses on replacing

the secondary storage medium with low energy consuming and high performance

device like PCM. We then experiment with different buffer cache sizes, to analyze

how PCM with less memory configuration fares with the hard disk and flash based

SSD with high memory configuration.

PCM has many advantages over hard disk drives and flash based SSDs.

PCM has similar energy consumption and lesser read and write latency, when com-

pared to SSDs. PCM also has better endurance than SSDs and is more dense and

scalable. When compared to hard disk drives, PCM read and write latencies are

orders of magnitude lesser and so are the power consumption values of PCM. This

makes PCM the ideal candidate to replace the existing technologies at the secondary

storage level (21).

In our experimental study we focus on reducing the the total energy con-

sumption of the system, by using PCM. Since PCM has lower latencies, the total

execution time of the system reduces considerably using PCM as the secondary

storage, which results in lesser memory idle energy consumption. To measure the

performance and energy consumption of PCM, we build a simulator for PCM using

the same Flash Translation Layer as our SSD simulator. This simulator can be

considered as a drop in replacement PCM simulator which resembles a flash device

with the same controller, but the flash hardware alone being replaced by PCM.

We refer to this simulator as PCM-FAST, where FAST refers to Fully Associative

Sector Translation (16) FTL algorithm used in our SSD simulator.

In our next step, we build a new Translation Layer for PCM called PCM

Translation Layer(PTL), which takes into account the specific characteristics of the

PCM device. Using our new PTL we build a second PCM simulator PCM-PTL to
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be used in our experiments. Additionally we also run our results by wearing the

device before running the traces, to study the impact of wear leveling algorithm in

PTL.

We then run the standard system traces Postmark, TPC-C and TPC-H on

five simulators,

1. Hard Disk simulator

2. Flash based SSD simulator

3. PCM simulator based on Flash FTL algorithm

4. PCM simulator based on our new PTL algorithm‘

5. PCM-PTL simulator thats already pre-worn.

We then analyze the results based on the data obtained by comparing the

best case scenarios of HDD, SSD with worst case scenarios of PCM, to find out the

real benefits of using PCM.
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CHAPTER 2

Simulators

To study the energy consumption and performance aspects of the various devices,

we integrate a host of simulators to simulate the functioning of the buffer cache,

memory, hard disk, SSD and PCM. We integrated a buffer cache and memory

simulator with the latest version of Disksim to build our simulator for the hard

disk. To build the flash simulator we took the FTL portion of Flashsim (13) and

integrated it on top of our hard disk simulator. We build the simulator for PCM

in two ways. The first simulator is built on top of our flash simulator, by using

the same FTL algorithm as SSD, but modified to suite the device characteristics of

PCM. For the second PCM simulator, we wrote a new FTL algorithm, which we

specifically designed for PCM and integrated it on top of Flashsim.

Figure 2.1 provides an overview of the simulator framework used in our

experimental study.

We use trace driven simulations as inputs to our simulator for all the three

devices. The traces used in our study, PostMark, TPC-C, Viewperf and TPC-H (28)

are obtained from the previous work done by Bi et al. (1). PostMark is a standard

file system benchmark that operates on a large number of small files. TPC-C is an

On-line Transaction Processing benchmark that is heavily read oriented and issues a

majority of random I/Os. TPC-H benchmark is based on decision support systems

that examines large volume of data in a random fashion.
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Figure 2.1: Simulator Framework

2.1 Buffer Cache and Memory Simulator

The buffer cache simulator we use is taken from the earlier work done by Butt

et al. (3). The simulator implements eight different buffer caching algorithms

of which we use only the LRU algorithm for our experiments. We also disable the

kernel prefetching mechanism implemented in the simulator. The memory simulator

which is taken from the work done by Bi et al. (1) includes a memory controller and

configurable DDR2-800 ranks. We vary the number of ranks and the devices per

rank, to simulate memory of different capacities. The entire memory is used for the

buffer cache, which suites our purpose of study. We disable all the energy saving

mechanisms implemented by the memory simulator to try to make the simulator
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behave as close to the real world memory devices. In our study whenever we refer

to memory, we refer to the memory allocated for the buffer cache.

2.2 Disksim

Our simulation of the disk is based on Disksim 4.0 (2) which is a highly efficient,

accurate and configurable disk simulator. Disksim includes simulation of different

storage components including device drivers, buses, controllers, and disk drives. The

main advantage of disksim is that, it includes hooks for use in a large level system

simulator such as the one we develop. Even though the memory and buffer cache

simulators are already interfaced with Disksim 3.0, we integrated those simulators

with Disksim 4.0, as some of the latest hard drive simulations are supported only

in the 4.0 version.

We chose the parameters for the Seagate Cheetah 15k.5 disk with model

number ST3146855FC (25), which has a capacity of 146 GB and is a 15000 RPM

drive. This is a high performance drive which is relatively new and representative of

other competitive hard drives of this generation. The drawback of choosing a high

performance hard disk, is the increase in energy consumption. We take advantage

of the bus functionality supported by Disksim, to include the latency delay of the

transfer of data to and from the device. Based on the Seagate specification for this

model, we use the maximum bandwidth value of 125 MB/s for data transfers. The

parameters for latency values for the drive are derived by using DIXtrac (29), a

program for disk parameter extraction. These parameters provide sufficient char-

acterization to allow extremely accurate simulation of disk performance. From the

Seagate specification for Cheetah 15k.5 drive, we use the read and write power as

12 W and idle power as 10.56 W, for energy calculations.
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SSD Parameters Values
Read Latency .0325 ms
Write Latency .0425 ms
Read Power 0.150 W
Write Power 0.150 W
Idle Power 0.06 W

Table 2.1: SSD Parameters and Values

2.3 Flashsim

Our simulation of the SSD, is based on the Flashsim developed at PSU which

implements the FAST FTL algorithm. Flashsim was written and integrated on

top of Disksim 3.0. We made necessary modifications to the Flashsim, to support

Disksim 4.0. The parameter values used in the simulator were also changed to

reflect specifications from Numonyx and Intel X 25 M (10) SSD device which is an

enterprise class high performance SSD device.

The following are the delay and power values we use in our simulator based

on Intel X 25 M specification.

The Flashsim supports many FTLs, including Page mapping FTL, DFTL

(8) and FAST hybrid FTL (16). Since Page mapping FTL and DFTL are both page

mapping based, we have used FAST which is a hybrid FTL for our experimentation

purposes.

2.4 FAST based FTL for PCM

Our first simulator for PCM is directly based on the FAST based Flashsim. Since an

erase operation is not needed for PCM, we mask the effects of an erase operation in
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PCM Parameters Values
Read Latency .0032 ms
Write Latency .0320 ms
Read Power 0.150 W
Write Power 0.150 W
Idle Power 0.06 W

Table 2.2: PCM Parameters and Values

the simulator, to reflect the behavior change. Also the latency and power values are

changed to reflect the values for the PCM. This simulator serves two purposes in our

study. Even if the performance of SSD increases dramatically in the coming years

and comes closer to the latencies of PCM , the values simulated by this simulator

reflect the upper limit, such an hypothetical SSD can achieve. Along similar lines,

the simulator gives us the lower limit of PCM devices, if when scaled, they are

subjected to the same restrictions of SSD.

We derive our performance and power values from Numonyx (21) and Mi-

cron specifications for PCM (19) and the values are as follows

2.5 PTL - Design of new FTL for PCM

2.5.1 Design

To take advantages of the characteristics of the PCM, we design a new FTL for

PCM devices called PTL which is a PCM Translation Layer. The main design

characteristics are

a) Low write amplification All writes to a PCM device are in place. There

is no need for an erase operation before a write operation. This is a huge difference
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between FTLs written for SSDs, which include a lot of complex merge and log block

and erase operations for writes.

b) Low overhead of memory, by using Block level mapping We chose to

proceed with the Block level metadata management scheme, by dividing the whole

device into blocks. Each block has a fixed number of pages, which contain a fixed

set of sectors.

c) Wear Leveling Even though PCM has a better lifetime than SSD, it

becomes imperative to employ an efficient wear leveling scheme to distribute the

writes across the whole device and prevent premature wearing out of blocks that

are heavily written.

2.5.2 Implementation

Figure 2.2 provides an overview of the simulator framework used in this study.

i) Address Translation Layer :

The basic unit of addressing in the device is a page. A page is configured

to be of size 2kB and contains four sectors of 512 bytes each. The whole device is

divided into blocks. Each block is made up of 256 pages.

LPMAP is a table that stores the logical block to physical block mapping.

PBT is a physical block table that contains statistics information on each block.

When pcm read() or pcm write() functions are called using logical sector number,

the address translation layer decodes the logical sector number into logical block,

and retrieves the corresponding physical block. Also it calculates the number of

pages to be written based on the input size which is in sectors.

ii) Wear Level Layer :
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We use a two level hash table WLT, to store the wear level information.

The granularity of wear leveling is in terms of blocks. Each block maintains a

variable curr wear which gets incremented when ever a page gets written. There

is also a variable called max wear which defines the maximum wear the block can

reach, before it needs to be switched with another block. The hash table is indexed

based on the current wear.

Each block exists in the WLT based on its current wear. The physical block

table and the Logical mapping table point to the appropriate block in the wear level

table. As the pages get written, based on the setting of WEAR JUMP, the block

gets re positioned in the second level hash table. Once a block reaches its maximum

allowed wear, the block’s data is copied to a free block or a block with minimum

current wear. The block’s max wear is incremented by MAX WEAR and the block

moves on to the next level in the first level hash table.

Block switching happens when a block has reached its max wear level. If

a free block exists, then the current block is switched with the free block and the

current block returns to unused state with no logical mapping associated with it.

When no free block exists, because all the blocks have been written at least once,

then the victim block selected is the one that has the minimum wear level. The two

level hash table comes handy in this case, as we need not search for the block with

minimum hash individually, since any block that belongs to the lowest non empty

first and second level hash will satisfy the purpose. We use a doubly linked list to

store the blocks in each bucket of the hash. All operations on the wear level table

are performed in constant O(1) time.

iii) Wear Leveling Algorithm :

The following steps describes the wear leveling algorithm in detail.
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if block current wear + pages to write ¡ block max wear then

update the block’s current wear

if block needs to be reposition in the second level hash then

reposition block in second level hash table

return;

end-if

end-if

replacement block = find free block

if free block exists then

copy the block contents to replacement block

update the wear level of replacement block

update the logical mapping table to point to the replacement block

mark the block as used

insert the replacement block first time in the wear level table

increment the block’s current wear

move the block to the next first level hash

update the block’s max wear to the current hash’s max wear

mark the block as unused

update the block’s logical mapping to -1

return

end-if
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if free block does not exist then

replacement block = find minimum wear block in the wear level table

if replacement block is not in use then

copy the block contents to replacement block

update the wear level of replacement block

update the logical mapping table for the replacement block

mark the block as used

reinsert the block in the wear level table

increment the block’s current wear

move the block to the next first level hash

update the block’s max wear to the current hash’s max wear

mark the block as unused

update the block’s logical mapping to -1

return

end-if

if replacement block is already in use then

switch the contents in both the blocks

update the wear level information appropriately

update the logical mapping table to reflect the switch

reinsert both the blocks in the wear table using the new values

return

end-if

endif

iv) Write Algorithm :
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logical blocks to be written = logical blocks calculated using ATL

foreach block to be written do

if logical mapping for block already exists then

physical block = retrieve from the mapping table

else

physical block = get new block from free list

make an entry for this new block in the logical table

end-else

pages to be written = determine offset of pages to write in block

increment the current wear of the block by number of pages written

calculate and update the write delay in the total write delay

do wear leveling for the block

update the wear level delay in the total wear delay

end-foreach

v) Read Algorithm :

logical blocks to be read = calculate the logical blocks using Address Transla-

tion Layer

foreach each block to be read do

physical block = retrieve physical block from the mapping table

pages to be read = determine offset of pages to read in this block

calculate and update the read delay in the total write delay

end-foreach
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The read and the write algorithms use the address translation layer and

the wear leveling algorithm to read or write the appropriate number of pages as per

the request.

vi) Delay and Energy Measurements :

Similar to our FAST based PCM simulator, we derive our performance and

power values from Numonyx and Micron documents and specifications for PCM as

listed in the table 2.4



24

Figure 2.2: PCM Translation Layer
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CHAPTER 3

Performance and Energy characteristics of Devices

3.1 Hard Disk Drives

Hard disk drives are random access, non volatile mechanical devices, that has rotat-

ing platters mounted on a spindle and read/write heads between the platters. Due

to the mechanical nature of the device, the access time and energy consumptions

of hard disks are high when compared to other non volatile recording media like

SSDs. The biggest advantage of hard disks is the fact that the cost-per-byte for a

hard disk remains an order of magnitude lower than for flash memory.

Performance: The access time of HDD is the measure of latency, seek time and

data transfer rate. Latency is directly proportional to the revolutions per minute

- RPM of the device. The higher the RPM, the lower the value of the latency.

On an average a 5400 RPM device incurs a latency of 5.58 ms, whereas a 15000

RPM device has a latency of just 2 ms. Seek time refers to the time taken by the

head assembly to travel to the specific track to satisfy a I/O request. Average seek

time ranges from 3 ms to 15 ms. Data transfer rate is a measure of how much

information can be transferred from the disk to buffer and is a function of the

number of blocks transferred. Average data transfer rate is around 128 MB/s. The

biggest advantage of hard disks is, they are not limited by the number of writes.

There are no limitations on the number of cycles a block can be written before it

becomes unusable.
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Energy Consumption: Energy consumption of hard disks is a very important

factor that affects the total energy consumption of the whole system. In general

the active power consumption varies from 4 W to 17 W, and this value is high for

high performance drives. So when high performance is needed from hard disks, the

increase in power consumption becomes inevitable. The much more hurting factor is

the fact that the idle state power consumption of hard disk is also high ranging from

3 W to 14.5 W (9). This implies that not only from a performance perspective, but

also from energy consumption perspective, we need to move to other alternatives

for hard disks.

3.2 Solid State Drives

Solid State Drives are non volatile block I/O devices like hard drives, but they are

made of electronic parts without incurring the disadvantages of a electromechanical

device. They retain data in non volatile memory chips. The most prevalently used

SSDs are DRAM and NAND-flash based devices.

NOR and NAND Flash: Flash memory is based on the technology of storing the

bits in an array of memory cells made of floating-gate tansistors.There are two main

types of flash memory, NOR flash and NAND flash. NOR flash is byte accessible,

faster but expensive. It’s density is also lower compared to NAND flash. NOR

flash has a high erase latency due to the restriction that a block has to be filled

with zeros before it can be erased. NOR flash has a fast random access and is more

suited for executing program code. As discussed in the article (26) NAND flash is

suited for mass storage devices and is a better replacement for hard disk drives for

the following reasons

1. NAND writes significantly faster than NOR.
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2. NAND erases much faster than NOR–4 ms vs. 5 s, respectively.

3. NAND has smaller erase units, so fewer erases are needed.

4. NOR flash has an SRAM interface, whereas NAND uses a block device inter-

face‘

5. Due to significantly lesser cell size, NAND is more affordable in price

6. Life span of NAND is 10 times greater than the cell life span of NOR

SLC and MLC: Single Level Cell devices store only one bit per cell whereas Multi

Level Cell devices can store more than one bit per cell. SLC devices have more

endurance than MLC devices, but MLC devices have higher capacity. SLC NAND

offers high performance and reliability, lower power consumption than MLC NAND

devices.

Erasure and Write Amplification in NAND Flash: The biggest limitation of

NAND devices is due to the restriction that a page has to be first erased before it

can be written again. And erasure is not supported for a single page, but erasures

are to be done for the whole block. There is no in place update without an erase

operation first. Erasure just sets all the bits to 1, after which the cells can be

written again. In a device without any efficient controller, a naive write algorithm

will work as follows

if page A in block B has to be re-written then

block C = new unwritten block or fully erased block

foreach page in block B that precedes page A do

copy the page to the same offset in block C
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end-foreach

rewrite page A in the correct location in block C

erase page A and make it available

update the logical to physical mapping for block C

end-if

If we assume a block has 16 pages and block B was partially full, then to do

one re write of a page A in a block we ideally have to perform one erase operation

and 9 page write operations. This operation is called as a merge operation and it

leads to the write amplification problem associated with flash devices and is usually

defined as the ratio of the size of data requested to the size of the data that was

actually written.

Endurance: The other major factor to consider is the expected lifetime of a flash

device. The endurance of a flash device is affected by the number of times a flash

cell can be programmed and erased. This value is typically 1000,000 program/erase

cycles. So the important factor is, if a particular file gets re-written repeatedly,

then the physical pages holding the file gets worn out sooner than the rest, thereby

creating unusable blocks. So some kind of wear leveling is needed, to distribute

the writes evenly among the physical blocks to ensure the integrity and proper

functioning of the device.

FTL - Flash Translation Layer: In simple terms a FTL makes a flash drive

appear to the operating system like a disk drive, so that the OS can issue reads and

writes in sectors and the FTL handles them through flash specific algorithms. The

conversion from virtual address to physical address happens at the FTL. The major

difference in the addressing scheme between disk drives and flash drives is that, a

flash drive is usually divided into blocks, which is further divided into pages. This

is illustrated in the following figure Figure 3.1 taken from (11)
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Figure 3.1: Flash Translation Layer

Apart from handling the address translation, the FTL also has two main

responsibilities.

1. To reduce write amplification

2. To maintain wear leveling

FTL Classification: The three borad classifiactions of FTL are

1. Page level mapping FTL

2. Block level mapping FTL

3. Hybrid mapping FTL

Page-level FTL scheme : In a page-level FTL scheme, the logical page number

of the virtual address from the operating system can be mapped into any physical
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page number within the flash. The physical page number is then used to calculate

the physical block number and the offset of the requested page within the block.

Despite the most efficient FTL algorithm possible, this scheme suffers from the

obvious issue of maintaining the page table in the cache. For a flash drive with a

capacity of 150 GB, which is common today, the amount of SRAM cache needed is

approximately 320 MB (8). It becomes infeasible to increase the size of the cache

as the capacity increases. The figure 3.2 provides an overview of the page level

mapping scheme.

Figure 3.2: Page Level mapping FTL

Block-level FTL scheme : In the block level FTL scheme(8), a virtual address

is first translated into a logical block number and offset. The logical block number

is then used to retrieve a physical block number from the block level mapping table

and the offset calculated in the first step is used to retrieve the requested page.

The advantage of this scheme is that the block level mapping table contains only

one entry per block and hence the size of the block level mapping table reduces

drastically. But the disadvantage of this scheme is that, a given logical page, can

exist only in a specific offset within a block. Let us assume a write request of one
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page was issued and the page has an offset that corresponds to the first page of

a block. Now if a rewrite request is issued to the same virtual address, then even

though the rest of the pages of this block are unwritten, to overwrite the requested

page, a new or erased block has to be selected and its first page has to be written for

the given request. The old block that had the page previously, now has to be erased

before it can be used again. This leads to extreme write amplification, because if

the writes are not sequential then an erase has to be performed in every step. The

figure 3.3 taken from (8) provides an overview of the block level mapping scheme.

Figure 3.3: Block Level mapping FTL

Hybrid FTL scheme : In the hybrid FTL scheme (8), log buffers are used to

address the issues with block level and page level FTL schemes. There are two type

of blocks used.

1. Data Blocks : Data blocks are mapped using block level mapping and form

the majority of the total number of blocks

2. Log Blocks : A small percentage of the total blocks are designated as log

blocks and they are mapped using page level mapping scheme. The logs store
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the pages temporarily and each log block can store pages from different data

blocks. When an overwrite of a page in the data block occurs, the page is

written in the log block and the old page in the data block is invalidated.

So each data block is associated a specific log block. So the overwrites are

handled this way until the log block spaces are completely used. Then one of

the log blocks is chosen as a victim and is merged with all the data blocks for

which the log block contains valid pages.

The figure 3.4 taken from taken from (8) provides an overview of the hybrid

level mapping scheme.

Figure 3.4: Hybrid mapping FTL

The most recent and efficient FTL schemes are all some variant of the

Hybrid FTL scheme. The following pages will give a brief overview of the core idea

used in these schemes

BAST : Block Associative Sector Translation (12) scheme dedicates a log block to

a single data block. Whenever a collision is detected BAST writes the new data to

the log block, thereby reducing the number of merge operations totally performed.

The algorithm works as follows,
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if collision exists in trying to write a page to a data block then

if log block already avaliable for data block in sector level mapping table then

write the page to the first empty sector in the log block

update the sector level mapping table

else

if free list of log blocks is not empty then

allocate a log block from free list

wirte the page to the first sector in the log block

update the sector level mapping table

else

select a victim log block to make it free

merge the victim log block and its associated data block

return the erased blocks in merge to free list

use one of the blocks in the free list as the required log block

end-if

end-if

end-if

The merge operation that occurs in log block schemes consists of three steps

1. from the log block and the corresponding data block, select the latest sectors

and copy them to a free block

2. update the mapping information

3. erase the data block and the log block and return them to the free list
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The major disadvantage of BAST scheme is the log block thrashing, which

happens if when an application runs, a large number of collisions occur and the log

block cache is not provisioned enough to handle all the collisions. Log block victims

have to be selected periodically and each victim replacement will cost an expensive

merge operation.

FAST :Fully Associative Sector Translation (16) is a scheme that uses log block

FTL scheme to reduce write amplification by associating a log block with multiple

data blocks thereby making it fully associative in contrast to the BAST scheme.

It reduces the log block thrashing problem of BAST by using sequential write log

blocks and random write log blocks.

The algorithm is as follows as given by (16) :

logical block numberlbn = calculate from the input sector number

page offset, pb n= calculate from the input sector number

physical block number pbn = gete from physical block table

if no overwrite at the offset in the block then

write the data at the offset of the pbn

return;

end-if

if offset == 0 then

if there are no empty sectors in the SW log block then

perform a switch operation between the SW log block and

its corresponding data block;

else

merge the SW log block with its corresponding data block;

end-if
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get a block from the free block list and use it as a SW log block;

append data to the SW log block;

update the SW log block part of the sector mapping table;

else

if the current owner of the SW log block is the same with lbn then

last˙lsn := getLastlsnFromSMT(lbn);

if lsn is equivalent with (last˙lsn+1) then

append data to the SW log block;

else

merge the SW log block with its corresponding data block;

get a block from the free block list and use it as a SW log block;

end-if

update the SW log block part of the sector mapping table;

else

if there are no rooms in the RW log blocks to write data then

select the first block of the RW log block list as a victim;

merge the victim with its corresponding data block;

get a block from the free block list and add it to the end of

the RW log block list;

update the RW log block part of the sector mapping table;

end-if

append data to the RW log blocks;

end-if

end-if
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LAST:

Locality-Aware Sector Translation FTL scheme (17) employs multiple mul-

tiple sequential log blocks to exploit the spatial locality in workloads. It maintains

separate hot and cold regions for random log blocks to reduce full merge cost. The

problem is that it depends on external locality detection mechanism to maintain

the hot and cold regions and the accuracy of the detection mechanism affects the

efficiency of the algorithm.

3.3 Phase Change Memory

Phase Change Memory is a new and progressing technology that has many attractive

features making it suitable to be used as either primary memory or as secondary

storage. PCM uses the crystalline and amorphous states of chalcogenide glass to

store the bits. Two more additional distinct states, are also possible which enables

PCM to have double the capacity with the same size. Even though the technology

dates back to 1960s, recent advancements from Intel and Micron has paved way for

PCM to enter into the mainstream storage arena (4).

In a PCM, the amorphous, high resistance state is used to represent a

binary 1, and the crystalline, low resistance state represents a binary 0. They

can be switched rapidly back and forth between amorphous and crystalline phases

by applying appropriate heat pulses. Also reading the values is fairly simple by

measuring the resistance of the cell, as there is a huge difference in the resistance

value between the two states (4).
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PCM vs other technologies : The figure 3.5 taken from (4) provides a compar-

ison of PCM with DRAM and flash based SSD.

Figure 3.5: PCM Comparison

PCM vs DRAM : When compared to DRAM, PCM is byte-addressable simi-

lar to DRAM, but the idle power consumption of PCM is significantly lower than

DRAM. The read energy consumption of PCM is almost similar to DRAM, but the

write energy consumption is 6x higher than DRAM. Similarly PCM read latency

is comparable to DRAM, whereas the write delay is 20x slower than DRAM. Also

the life cycle endurance of PCM is in the order of 106 - 108 (4) , whereas a DRAM

has theoretically infinite endurance. PCM used as a main memory can last only

for around 100 days running a typical SPEC CPU program (26). Because of the

delay, energy consumption and restricted endurance of performing writes in PCM,

it becomes increasingly difficult to replace DRAM with PCM, unless special algo-

rithms are used in PCM and the memory management to overcome the limitations.

The biggest advantage that PCM has over DRAM as mentioned earlier is the low

idle power consumption of PCM, which can be effectively used to reduce the overall

energy consumption of the system. The technology of PCM also offers the following

advantages when compared to DRAM (14)
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1. High Scalability and density, at least 4x times more than DRAM

2. Zero Leakage power due to non-volatile storage

3. Low burst read latencies - due to the peripheral logic of PCM

4. Immune to cross talk, whereas DRAM cross talk is high when scaled ¡ 65 nm

5. No need for periodic refresh

PCM vs SSD :

PCM seems to fare well when compared to SSDs in almost every aspect.

The read latency of PCM is 12x lesser than SSD, the write latency of PCM is 1.5x

times lesser than SSD. The read, write and energy consumption of PCM is similar

and comparable to SSD. But the endurance and lifetime of PCM is 103x better than

SSD, which makes PCM an excellent choice as a secondary storage device. Also

the other big advantage of PCM is the fact that no erase is needed before a write,

making writes faster and this obviates the need for complex algorithms used in

FTL for SSD. There is no erase operation in PCM and also the write amplification

of PCM is very less as the only factor contributing to write amplification is the

wear leveling algorithm whose impact is significantly less as we will see later in our

simulator results.
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CHAPTER 4

Related Work

A lot of work has been done recently in trying to use Phase Change Memory at dif-

ferent levels of the storage hierarchy. Most of the work done focuses on overcoming

the following three main disadvantages of using PCM

1. high write latency

2. high write energy

3. finite endurance

4.1 PCM as DRAM

Lee et al. have proposed schemes to use PCM as a DRAM alternative. They propose

buffer re-organization and partial write methodologies and focus on addressing the

three main issues that limit PCM in using it as a scalable DRAM alternative (15)

Krishnaswami et al. try to make architectural changes in PCM to over-

come its limitations. They try to eliminate redundant Writes, use row shifting and

Segment Swapping and do Partial writes to overcome the limitations of PCM in

using it as a DRAM alternative. (14)

Alexandre P. Ferreira et al. use similar techniques to overcomes the limi-

tations of PCM by using new cache replacement policies, reducing writes and using
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novel endurance management techniques.(7)

Dong et al. developed a simulator based PCRAM model called PCRAMsim

to study PCM-based main memory and cache. Their simulator is based on CACTI

(24) to provide a system-level tool beyond the device-level research of PCM by

automating the process of finding an optimal PCM array organization. Their focus

is on evaluating PCM as a main memory and cache system.(6)

4.2 PCM DRAM Hybrid Memory

Qureshi et al. propose a hybrid memory technology where they use a PCM based

main memory coupled with a small DRAM buffer. They use Lazy Write Technique

, line-level writes, page level bypass and fine-grained wear leveling to address the

issues with PCM.(22)

Ramos et al. propose a new DRAM+PCM memory system design that is

robust across a wide range of workloads by using a sophisticated memory controller

that implements a page placement policy called Rank-based Page Placement. The

policy efficiently ranks pages according to popularity (access frequency) and write

intensity, migrating top-ranked pages to DRAM. (23)

Mangalagiri et al. propose a hybrid-cache architecture, that address chal-

lenges associated with the write behavior of PCM and develop a PCM based cache

simulator to evaluate their results.(18)

Mogul et al. have investigated operating system support for placing either

flash or PCM on the memory bus alongside DRAM. They focus on FLAM a hybrid

of Flash and DRAM and investigate the consequences of PCM replacing flash in

FLAM. (20)
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4.3 PCM Related

Ping Zhou et.al mainly concentrate on improving the endurance of the Phase Change

Memory technology by using row shifting and Segment Swapping and try to increase

the lifetime of all PCM cell type to 1322 years.(31)

Chen et al. analyze the unique characteristics of PCM, and their potential

impact on database system design. They illustrate that current approaches for

common database algorithms such as B+ -trees and Hash Joins are suboptimal for

PCM and present improved algorithms that reduce both execution time and energy

on PCM while increasing write endurance.(4)

Condit et al. present a file system and a hardware architecture that are

designed around the properties of persistent, byte addressable memory like PCM.

They have designed the PCM system to be used on the memory bus directly and

focus on the file system aspects of the design.(5)

From all the related work done on PCM, we can deduct that most of the

work is focused on using PCM as memory or cache in the storage hierarchy. None

of the work treats PCM as a replacement for hard disk and SSDs as secondary

storage and ours is the first attempt in evaluating PCM as a secondary storage

device to reduce the total memory used and achieve significant reduction in energy

consumption.
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CHAPTER 5

Experiments and Results

5.1 Methodology

We have compared the results of running the following traces Postmark, TPC-C and

TPC-H on the following devices : Hard Disk simulator, Flash based SSD simulator,

PCM simulator based on Flash FTL algorithm, PCM simulator based on our new

PTL algorithm and PCM-PTL simulator thats already pre-worn with the following

Memory configurations 512 MB, 1 GB, 2 GB, 4 GB

Our goal is to compare the best case performance and energy consumption

of HDD and SSD with the worst case performance and energy consumption of

PCM and try to minimize energy consumption by reducing the size of the memory.

During the run of the traces, we measure the Device Active time and the Memory

Active time, and calculate the memory and device idle times based on best and worst

case scenarios for different devices and finally compute the energy consumption. We

calculate our upper bound and lower bound idle times using the following algorithm

Memory and Device Idle Time Calculation.

Mat = Total Memory Active time

Dat = Total Device Active time
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Mie = Memory Idle Energy per unit

Die = Device Idle Energy per unit

Mae = Memory Active Energy per unit

Dae = Device Active Energy per unit

MELB = Total Memory Energy Lower Bound

DELB = Total Device Energy Lower Bound

MEUB = Total Memory Energy Upper Bound

DEUB = Total Device Energy Upper Bound

Memory Energy Calculation

Condition : When either memory or device is active

Case 1 : Mat < Dat

MELB = ((Dat - Mat ) * Mie) + Mat * Mae

MEUB = (Dat * Mie) + Mat * Mae

end-Case 1

Case 2 : Mat > Dat

MELB = Mat * Mae

MEUB = (Dat * Mie) + Mat * Mae

end-Case 2

Device Energy Calculation

Condition : When either memory or device is active

Case 1 : Mat < Dat

DELB = Dat * Dae

DEUB = (Mat * Die) + Dat * Dae
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end-Case 1

Case 2 : Mat > Dat

DELB = Dat * Dae + ((Mat - Dat ) * Die)

DEUB = (Mat * Die) + Dat * Dae

end-Case 2

We know the exact Mat and Dat from our run of the traces. The memory

and the device idle time depends on a number of factors including the processor

time. We are trying look at the factors that get affected when a Disk is replaced by

PCM. When the processor is active and both the device and the memory are idle,

the idle time will not vary much by changing the devices. So this idle time cannot

be reduced when disk is replaced by PCM. Similarly how long the Disk was idle

when memory was being accessed and how long the memory was idle when disk was

accessed will vary between different executions. Hence we concentrate on the upper

bound and lower bound of memory and device idle time. By using the lower bound

for Disk and SSD and by using the upper bound for PCM, we take the best case

scenarios for Disk and SSD and the worst case scenario for PCM as described in

our algorithm, and try to figure out the energy savings under these circumstances.

5.2 Hard Disk vs PCM

Since the values obtained for Hard disks are very large when compared to the other

devices, we include the hard disk values in 5.1 and 5.2, and discuss its impact first

and in the later graphs we discuss the results based on SSD and PCM which have

more comparable values.

When we look at the Total energy consumption of hard disks, from the
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graph we can deduce that if we replace a 4 GB memory + HDD configuration with

512 MB + PCM , PCM consumes energy many orders of magnitude lesser than

HDD for all the three traces and still incurs a delay at least 6 times lesser than

the HDD. This is on expected lines for all the three traces because the idle power

consumption of HDD is around 10 W whereas PCM consumes only 0.06 W, and the

delay incurred by HDD to satisfy individual request is in order of a few , whereas

PCM delays are in the order of nano seconds.
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Figure 5.1: Total Energy and Delay with Hard Disk results included for Postmark,
TPC-C, TPC-H



47

512MB 1GB 2GB 4GB
0

10000

20000

30000

40000

50000

60000

70000

80000
HDD
SSD
FAST-PCM
PTL-PCM
PTL-PCM-WORN

Memory Size

M
e

m
o

ry
 E

n
e

rg
y

 C
o

n
s

u
m

p
ti

o
n

 (
J

)

512MB 1GB 2GB 4GB
0

5000

10000

15000

20000

25000

30000

35000
HDD
SSD
FAST-PCM
PTL-PCM
PTL-PCM-WORN

Memory Size

M
e

m
o

ry
 E

n
e

rg
y

 C
o

n
s

u
m

p
ti

o
n

 (
J

)

512MB 1GB 2GB 4GB
0

10000

20000

30000

40000

50000

60000

HDD
SSD
FAST-PCM
PTL-PCM
PTL-PCM-WORN

Memory Size

M
e

m
o

ry
 E

n
e

rg
y

 C
o

n
s

u
m

p
ti

o
n

 (
J

)

512MB 1GB 2GB 4GB
0

100000

200000

300000

400000

500000

600000
HDD
SSD
FAST-PCM
PTL-PCM
PTL-PCM-WORN

Memory Size

D
e

v
ic

e
 E

n
e

rg
y

 C
o

n
s

u
m

p
ti

o
n

 (
J

)

512MB 1GB 2GB 4GB
0

100000

200000

300000

400000

500000

600000
HDD
SSD
FAST-PCM
PTL-PCM
PTL-PCM-WORN

Memory Size

D
e

v
ic

e
 E

n
e

rg
y

 C
o

n
s

u
m

p
ti

o
n

 (
J

)

512MB 1GB 2GB 4GB
0

100000

200000

300000

400000

500000

600000
HDD
SSD
FAST-PCM
PTL-PCM
PTL-PCM-WORN

Memory Size

D
e

v
ic

e
 E

n
e

rg
y

 C
o

n
s

u
m

p
ti

o
n

 (
J

)

Figure 5.2: Memory Energy and Device Energy with Hard Disk results included for
Postmark, TPC-C, TPC-H
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5.3 PCM vs SSD

5.3.1 Delay

When we look at the delay graph for Postmark 5.3, there is a huge performance

difference between the PCM-FAST and PCM-PTL. Postmark issues a significant

amount of writes, and the write cost of the algorithm in FAST is high. When

we use our PTL algorithm, the delay reduces a lot, as we use a simplified wear

leveling scheme and do in place writes which is suitable for PCM. Also the PCM-

PTL-WORN slightly incurs more delay, because we wear out the device completely

before executing the trace, which leads to block switching when the worn out block

needs to be exchanged with a less worn block. The difference is not huge implying

that the wear level algorithm increases the delay only by a factor of 1.8x in the worst

case. When PCM is compared with SSD, we get a delay reduction of at least 12x.

This is a direct result of the low latency of PCM and the in place write supported

by PTL.
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Figure 5.3: Delay - Postmark
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Figure 5.4: Delay - TPC-C
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Figure 5.5: Delay - TPC-H

In the delay graph for TPC-C 5.4, shows that the difference in delay be-

tween using 2 GB and 4 GB of memory is not huge, implying that the memory

requirements of TPC-C gets satisfied with 2 GB of memory itself. The delay graph

for TPC-H 5.5 is on expected lines, and since this is a heavily read oriented work

load, all the three PCM simulators exhibit similar delays.
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5.3.2 Device Energy

The device energy consumption for all the three traces are a direct result of the

delay incurred by the devices as seen in the above graphs and they follow a similar

pattern.
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Figure 5.6: Device Energy Postmark
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Figure 5.7: Device Energy TPC-C
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Figure 5.8: Device Energy TPC-H

5.3.3 Memory Energy

The memory energy consumption for postmark looks a bit different. As we increase

the memory size from 512 MB to 1 GB to 2 GB, the memory energy consumed

increases. This is because the available memory is not good enough to satisfy the

current set of requests and a lot of calls still go to the device and so the idle memory

energy is high. But when we move to 4GB of memory, there is a sudden drop in

the delay incurred as seen in 5.3, which leads to a drastic reduction in the memory

idle time, and hence the total memory energy decreases. In the memory energy for

TPC-C for SSDs, the sudden drop in delay is seen when we move from 512 MB to

1GB and from 1 GB to 2 GB, hence we see the memory energy decreasing. But

from 2 GB to 4 GB, the extra memory added does not significantly decrease the

delay and hence the total memory energy increases. For PCM, the memory active

time is higher than the device active time, the memory energy directly depends on

the amount of memory used and is reflected in the graph 5.10. The memory energy

of TPC-H, follows similar pattern to postmark trace.
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Figure 5.9: Memory Energy Postmark
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Figure 5.10: Memory Energy TPC-C
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Figure 5.11: Memory Energy TPC-H

5.3.4 Total Energy

The total energy consumption for all the traces reflects the memory energy values,

as the memory energy incurred is high. This implies that the memory energy

consumed dominates the total energy consumption and adds strength to our goal

of reducing the memory size, to achieve the same performance.
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Figure 5.12: Total Energy Postmark
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Figure 5.13: Total Energy TPC-C
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Figure 5.14: Total Energy TPC-H

5.3.5 Energy Delay

The energy delay graphs represent the combined performance and energy values, and

gives us a platform to decide the best configuration based on the results obtained.

Looking at all the three graphs, we can deduce that using 512 MB with PCM

outperforms SSD with 4 GB and HDD with 4 GB configurations. The only exception

is in the case of TPC-C, where a 2 GB + SSD performs better than 512 MB +

PCM. This is possible, as all our results are based on the best case performance of
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SSD/HDD vs worst case performance of PCM.

512MB 1GB 2GB 4GB
0

2

4

6

8

10

12

HDD
SSD
FAST-PCM
PTL-PCM
PTL-PCM-WORN

Memory Size

lo
g

 (
E

n
e

r g
y

 x
 D

e
la

y
)

Figure 5.15: Energy Delay - Postmark
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Figure 5.16: Energy Delay - TPC-C
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Figure 5.17: Energy Delay - TPC-H
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CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

To reduce the energy consumption of a system, we have identified that the bottle-

neck is the memory energy consumption. To reduce the memory energy consump-

tion by reducing the memory idle time, we use a high performance PCM device

which incurs less delays and thus reduces the total memory idle time. We develop a

new PTL algorithm for PCM and implement it in our simulator. For different traces

we get different energy savings and performance boost. By replacing a 4 GB + SSD

with 512 MB + PCM, the performance increases by a factor of 3x and the energy

consumption reduces by a factor of 15x. For applications that resemble Postmark,

with low hit ratio in the buffer cache, and similar amount of reads and writes this

summarizes the gain of using PCM. For TPC-C, which is memory intensive, and

also at 2GB the memory requirements saturate, SSD + 2GB performs better by

a factor 4x than PCM + 512 MB, even though energy wise the PCM + 512 MB

consumes less energy. For TPC-H, PCM + 512 MB gives the same performance

as SSD + 4GB, but the energy consumption using PCM + 512MB is reduced by a

factor of 6x.

Thus we infer that using a high performing and low consuming device like

PCM, we can get away with just using 512 MB of Buffer Cache and achieve similar

or better performance than a hard disk or flash based SSD with 4Gb of buffer
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cache and reduce the total energy consumption of the system by a huge factor

which depends on the specific workload as demonstrated by our experiments with

different traces.

6.2 Future Work

The PCM simulator can be augmented with meta data management schemes and

even though the delay will be increased only by a small factor, the total delay values

can be made more accurate. A bitmap page level wear leveling algorithm should be

added with our wear leveling algorithm which is block based, so that a few extreme

scenarios like only a few pages in the block being worn out, can be handled better
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