Minimum Level Nonplanar Patterns for Trees

J. Joseph Fowler* and Stephen G. Kobourov*
Department of Computer Science, University of Arizona
\{jfowler,kobourov\}@cs.arizona.edu

Technical Report 07-04
February 8, 2008

Abstract

Minimum level nonplanar (MLNP) patterns play the role for level planar graphs that the forbidden Kuratowksi subdivisions K_{5} and $K_{3,3}$ play for planar graphs. We add two MLNP patterns for trees to the previous set of tree patterns given by Healy et al. [4]. Neither of these patterns match any of the previous patterns. We show that this new set of patterns completely characterizes level planar trees.

1 Introduction

Level graphs model hierarchical relationships. A level drawing has all vertices in the same level with the same y-coordinates and has all edges strictly y-monotone. Level planar graphs have level drawings without edge crossings. Hierarchies are special cases in which every vertex is reachable via a y-monotone path from a source in the top level. Many natural hierarchies occur in the sciences including biological taxonomies, linguistic universal grammars, object-oriented design, multi-tiered social structures, and mathematical hierarchies. In general, any directed acyclic graph (DAG) yields a hierarchy by using a topological sort as a ranking mechanism. Planar graphs are characterized by forbidden subdivisions of K_{5} and $K_{3,3}$ by Kuratowksi's Theorem [8]. The counterpart of this characterization for level planar graphs proposed by Healy, Kuusik, and Liepert [4] are the minimum level nonplanar (MLNP) patterns. These are minimal obstructing subgraphs with a set of level assignments that force one or more crossings.

While Jünger et al. provide linear time recognition and embedding algorithms $[6,7]$ for level planar graphs, swapping the vertices between levels while maintaining planarity can be difficult. Heath and Rosenberg showed that deciding if a planar graph has a proper k-leveling is NP-hard [5]. Finding a matching subgraph of a MLNP pattern can provide a set of candidate vertices to reassign to different levels in order to achieve planarity. Such a method could improve existing hierarchical approaches to drawing DAGs, such as Sugiyama's algorithm [9] that greedily assigns vertices to levels. Determining the minimum number of edges to remove so that a graph becomes level planar is known as the level planarization problem. Eades and Whitesides showed that this is NP-hard even for the case of a 2-leveling in which the placement of the vertices of one of the levels is given [2].

[^0]

Fig. 1. Labelings preventing the forbidden ULP trees T_{8} and T_{9} from being level planar.
Di Battista and Nardelli [1] provided three level nonplanar patterns for hierarchies (HLNP patterns) showing they formed a necessary and sufficient condition for level nonplanarity; cf. Fig. 3. These patterns consist of three (not necessary) disjoint paths linking a pair of levels that are joined by three pairwise bridges. If none of the linking paths cross, this condition forces a crossing between one or more bridges. Showing any level nonplanar hierarchy must match one of these patterns was done by considering the cases in which their PQ-tree algorithm fails to provide an embedding if the hierarchy is level nonplanar by generating an edge crossing. They use the paths from the two edges that cross to a common ancestor in order to always construct one of the three HLNP patterns completing their characterization of level planar hierarchies.

Since these patterns are adequately general, this approach can be extended to determine when level graphs are nonplanar. Healy et al. adapted these HLNP patterns to MLNP patterns for level graphs. However, the completeness of their characterization was based on the claim that all MLNP patterns must contain a HLNP pattern, which does not hold for a counterexample we provide.

Estrella et al. [3] characterized the set of unlabeled level planar (ULP) trees on n vertices that are level planar over all possible n ! labelings of the vertices from 1 to n in terms of a pair of forbidden subtrees T_{8} and T_{9}; cf. Fig. 1. The given labelings show that these trees are level nonplanar. Each vertex is assigned

Fig. 2. Four minimum level nonplanar (MLNP) patterns for level nonplanar trees.
to its own level so that its y-coordinate is based on its level. The level nonplanar assignment for T_{9} can be shown not to match any of the three HLNP patterns forming the basis of our counterexample. For every set of three paths linking any pair of levels in T_{9}, two of the three linking paths always has a bridge that shares a vertex with the other path. This violates the condition that forces a crossing between the third linking path and the bridge. As a result, this level nonplanar tree does not match any of the MLNP patterns given by Healy et al.

Healy et al. provide two of the MLNP patterns, P_{1} and P_{2}, for trees that are also HLNP patterns; cf. Fig. 2(a) and (b). Both have three disjoint paths linking the top and bottom levels with the three pairwise bridges that form a subdivided $K_{1,3}$. We provide two more MLNP patterns, P_{3} and P_{4} for level nonplanar trees; cf. Fig. 2(c) and (d) using our counterexample. Both of these patterns consist of two paths that have a common vertex x or subpath $x \rightsquigarrow y$ that lies between two intermediate levels. A crossing is forced between the two paths since x or $x \rightsquigarrow y$ must lie between two different sections of path that they are on in order to avoid a self-crossing of that path.

2 Preliminaries

A k-level graph $G(V, E, \phi)$ on n vertices has leveling $\phi: V \rightarrow[1 . . k]$ where every $(u, v) \in E$ either has $\phi(u)<\phi(v)$ if G is directed or $\phi(u) \neq \phi(v)$ if G is undirected. This leveling partitions V into $V_{1} \cup V_{2} \cup \cdots \cup V_{k}$ where the level $V_{j}=\phi^{-1}(j)$ and $V_{i} \cap V_{j}=\varnothing$ if $i \neq j$. A proper level graph only has short edges in which $\phi(v)=\phi(u)+1$ for every $(u, v) \in E$. Edges spanning multiple levels are long. A hierarchy is a proper level graph in which every vertex $v \in V_{j}$ for $j>1$ has at least one incident edge $(u, v) \in E$ to a vertex $u \in V_{i}$ for some $i<j$.

A path p is a non-repeating ordered sequence of vertices $\left(v_{1}, v_{2}, \ldots, v_{t}\right)$ for $t \geq 1$. Let $\min (p)=\min \{\phi(v): v \in p\}, \max (p)=\max \{\phi(v): v \in p\}$, and $\mathcal{P}(i, j)=\{p: p$ is a path where $i \leq \min (p)<\max (p) \leq j\}$ are the paths between levels V_{i} and V_{j}. A linking path, or link, $L \in \mathcal{L}(i, j)$ is a path $x \rightsquigarrow y$ in which $i=\min (L)=\phi(x)$ and $\operatorname{mAx}(L)=\phi(y)=j$, and $\mathcal{L}(i, j) \subseteq \mathcal{P}(i, j)$ are all paths linking the extreme levels V_{i} and V_{j}. A bridge b is a path $x \rightsquigarrow y$ in $\mathcal{P}(i, j)$ connecting links $L_{1}, L_{2} \in \mathcal{L}(i, j)$ in which $b \cap L_{1}=x$ and $b \cap L_{2}=y$.

Any improper level graph can be made proper by subdividing all long edges into short edges. A level drawing of G has all of its level- j vertices in the $j^{\text {th }}$ level V_{j} placed along the track $\ell_{j}=\{(x, k-j) \mid x \in \mathbb{R}\}$, and each edge $(u, v) \in E$ is drawn as a continuous strictly y-monotone sequence of line segments downwards. A level drawing drawn without edge crossings shows that G is level planar. Any level graph can be made into hierarchy by adding a new source with paths to all vertices unreachable via a y-monotone path to a source. A pattern is a set of level nonplanar graphs sharing structural similarities. Removing any edge from the underlying graph matching a minimum level nonplanar (MLNP) pattern gives a level planar graph. A hierarchy level nonplanar (HLNP) pattern is a level nonplanar pattern in which every matching graph is a hierarchy. The next theorem gives the set of the three distinct HLNP patterns.

Fig. 3. The three patterns characterizing hierarchies. Patterns P_{B} and P_{C} are special cases of P_{A}. The dashed curves in (b) and (c) are extraneous paths highlighting the relationship P_{B} and P_{C} have with P_{A} if one or more bridges have no edges.

Theorem 1 [Di Battista and Nardelli [1]] A hierarchy $G(V, E, \phi)$ on k levels is level planar if and only if there does not exist three paths $L_{1}, L_{2}, L_{3} \in \mathcal{L}(i, j)$ linking levels V_{i} and V_{j} for $1 \leq i<j \leq k$ where one of the following hold:
$\left(P_{A}\right)$ Links L_{1}, L_{2}, and L_{3} are completely disjoint, $L_{1} \cap L_{2}=L_{1} \cap L_{3}=L_{2} \cap L_{3}=$ \varnothing, and pairwise connected by bridges b_{1} from L_{1} to L_{3}, b_{2} from L_{2} to L_{3}, and b_{3} from L_{2} to L_{3} such that $b_{1}, b_{2}, b_{3} \in \mathcal{P}(i, j)$ where $b_{1} \cap L_{2}=b_{2} \cap L_{1}=$ $b_{3} \cap L_{1}=\varnothing$; cf. Fig. 3(a).
$\left(P_{B}\right)$ Links L_{1} and L_{2} share a path $C=L_{1} \cap L_{2} \in \mathcal{P}(i, j)$ starting from endpoint $p \in V_{i} \cup V_{j}$ that is disjoint from L_{3}, where $L_{1} \cap L_{3}=L_{2} \cap L_{3}=\varnothing$ are connected by bridges b_{1} from L_{1} to L_{3} and b_{2} from L_{1} to L_{3} such that $b_{1}, b_{2} \in \mathcal{P}(i, j)$ and such that $b_{1} \cap L_{2}=b_{2} \cap L_{1}=\varnothing$; cf. Fig. 3(b).
$\left(P_{C}\right)$ Links L_{1} and L_{2} share a path $C_{1}=L_{1} \cap L_{2} \in \mathcal{P}(i, j)$ starting from endpoint $p \in V_{i}$ and links L_{2} and L_{3} share a path $C_{2}=L_{2} \cap L_{3} \in \mathcal{P}(i, j)$ starting fromendpoint $q \in V_{j}$ such that $C_{1} \cap C_{2}=\varnothing$. Bridge $b \in \mathcal{P}(i, j)$ connects L_{1} and L_{3} where $b \cap L_{2}=b \cap C_{1}=b \cap C_{2}=\varnothing$; cf. Fig. 3(c).
A HLNP pattern P of Theorem 1 is not necessarily minimal in that it does not minimize the number of levels required to force level nonplanarity. However, P becomes minimal if both of the extreme levels V_{i} and V_{j} each contain a vertex from one of the bridges or the point at which two links merge. If this were the case, the removal of any further edge from the subgraph of a level graph matching P would then violate one of the structural requirements of the Theorem 1. This is because each extreme level plays an essential role in that the next closest level to the opposite extreme level cannot be substituted for it in the description in the pattern. Generalizing this notion gives the following observation regarding minimality.
Observation 2 A LNP pattern P between extreme levels V_{i} and V_{j} for some $1 \leq i<j \leq k$ is minimal only if the adjacent levels V_{i+1} or V_{j-1} cannot be substituted for V_{i} or V_{j}, respectively, in the description of the pattern.

Observation 2 implies the extreme levels of a MLNP pattern are defined in terms of the roles of their vertices, which we will see in the following descriptions of the four MLNP patterns for trees in the next section.

Fig. 4. P_{1} of (a) and P_{2} of (b) are MLNP patterns $T 1$ and $T 2$ given by Healy et al. [4], respectively. P_{3} matches T_{9} in [3]. P_{4} splits the degree 4 vertex x of P_{3} into path $x \rightsquigarrow y$.

3 MLNP Patterns for Trees

We begin by providing an extended set of MLNP patterns for trees.
Theorem 3 A level tree $T(V, E, \phi)$ on k levels is minimum level nonplanar if
(1) there are three disjoint paths $L_{1}, L_{2}, L_{3} \in \mathcal{L}(i, j)$ linking levels V_{i} and V_{j} for $1 \leq i<j \leq k$ where P_{A} of Theorem 1 applies and the union of the three bridges $b_{1} \cup b_{2} \cup b_{3}$ forms a subdivided $K_{1,3}$ subtree S with vertex c of degree 3 where either
$\left(P_{1}\right) c \in V_{i}$ (or V_{j}) and there is a leaf of S in V_{j} (or V_{i}) as in Fig. 4(a) or $\left(P_{2}\right)$ one leaf of S is in V_{i} and another leaf of S is in V_{j} as in Fig. $4(b)$, or
(2) there are four paths $L_{1}, L_{2}, L_{3}, L_{4} \in \mathcal{L}(i, j)$ linking levels V_{i} and V_{j} for $1 \leq i<j \leq k$ where $L_{1} \cap L_{4}=\varnothing, L_{1} \cap L_{2} \in V_{j}$ (or V_{i}) and $L_{3} \cap L_{4} \in V_{i}$ (or V_{j}) where $L_{1} \cup L_{2}$ and $L_{3} \cup L_{4}$ form paths with both endpoints in V_{i} and $V_{j}\left(o r V_{j}\right.$ and $\left.V_{i}\right)$, respectively, and there exist levels V_{l} and V_{m} for some $i<l<m<j$ in which either L_{2} or L_{3} consists of threee subpaths C_{1}, C_{2}, and C_{3} such that $C_{1} \in \mathcal{L}(i, m)$ links V_{i} to $V_{m}(d \rightsquigarrow e$ as in Fig. $4(c))$, $C_{2} \in \mathcal{L}(l, m)$ links V_{l} to $V_{m}(e \rightsquigarrow f$ as in Fig. $4(c))$, and $C_{3} \in \mathcal{L}(l, j)$ links V_{l} to $V_{j}(f \rightsquigarrow g$ as in Fig. $4(c))$ where either
(P_{3}) $L_{2} \cap L_{3}=x$ where $l \leq \phi(x) \leq m$ as in Fig. 4(c), or
$\left(P_{4}\right) L_{2} \cap L_{3}$ is path $x \rightsquigarrow y$ where $l \leq\{\phi(x), \phi(y)\} \leq m$ and $L_{2}=c \rightsquigarrow x \rightsquigarrow$ $y \rightsquigarrow b$ where $c \in V_{i}$ (or V_{j}) and $b \in V_{j}$ (or V_{i}) as in Fig. 4(d).
Proof. The description of patterns P_{1} and P_{2} are more succinctly stated and more closely match notation used in Theorem 1 from [1] than the Healy et al. characterization of MLNP T1 and T2 tree patterns given in Section 3.1 of [4]; see the appendix for the original descriptions of T 1 and T 2 . Patterns P_{1} and P_{2} are MLNP given they match the patterns of T1 and T2 of Healy et al since they meet the four conditions given for T1 and T2 in [4]. Hence, we can conclude that P_{1} and P_{2} are MLNP. The argument in [3] used by Estrella et al. to show T_{9} is level nonplanar easily generalizes for P_{3} and P_{4}. To see that P_{3} is minimal (the argument for P_{4} is similar), we try the seven clearly distinct ways of removing

Fig. 5. The seven cases of deleting an edge from pattern P_{3} in (a). The dashed curves represent the removed edges.
an edge; cf. Fig. 5. In each case crossings can be avoided by rearranging vertices on the tracks. Given that both MLNP trees patterns T1 and T2 in [4] have one vertex of degree 3 , neither can match P_{3} with a vertex of degree 4 or P_{4} has two vertices of degree 3. Hence, all four MLNP patterns are distinct.

The proof of Theorem 15 of Healy et al. [4] argues that every MLNP pattern must match some HLNP pattern. We show why this argument fails for P_{3}.
Lemma $4 P_{3}$ augmented to form a hierarchy has a subtree matching P_{2}.
Proof. Fig. 6 shows the highlighted subtrees that match P_{2} when P_{3} is augmented either above or below to form a hierarchy. In each case, the additional path being added from the source is an essential part of the pattern P_{2}. Since

Fig. 6. P_{3} in (a) is augmented from above in (b) and from below in (c) to form hierarchies with subtrees matching P_{2} in both (b) and (c).

Fig. 7. The three minimal patterns (a)-(c) that must be part of any MLNP pattern for trees and a pattern (d) with at most two disjoint linking paths.
P_{2} does not match P_{3} by Theorem $3, P_{2}$ is clearly being introduced by the augmentation in which it was not previously being present.

The next lemma gives the minimal conditions for a MLNP tree pattern.
Lemma 5 A level nonplanar tree $T(V, E, \phi)$ on k levels contains three disjoint paths $L_{1}, L_{2}, L_{3} \in \mathcal{L}(i, j)$ linking levels V_{i} and V_{j} for $1 \leq i<j \leq k$ with bridges b_{1} from L_{1} to L_{2} and b_{2} from L_{2} to L_{3} with $x=b_{1} \cap L_{2}$ and $y=b_{2} \cap L_{2}$ so that either $\left(P_{\alpha}\right) x=y,\left(P_{\beta}\right) L_{2}=c \rightsquigarrow y \rightsquigarrow x \rightsquigarrow d$, or $\left(P_{\gamma}\right) L_{2}=c \rightsquigarrow x \rightsquigarrow y \rightsquigarrow d$ hold where $c \in V_{i}$ and $d \in V_{j}$ as in Fig. 7(a), (b), (c).
Proof. We observe that these conditions match P_{A} of Theorem 1 except for one bridge. By Lemma 5 of [4], P_{A} is the only HLNP pattern that can match a tree. Assume that P is an MLNP pattern between levels V_{i} and V_{j} in which $|i-j|$ is minimum and there are at most two disjoint paths $L_{1}, L_{2} \in \mathcal{L}(i, j)$. There could be at most one bridge b joining L_{1} and L_{2} without forming a cycle. Let w be the endpoint of b in L_{2}.

Let P^{\prime} be $P-(u, v)$ where (u, v) is the short edge connecting L_{1} to V_{j} in which $v \in V_{j}$. In order for P to be MLNP, there must exist two linking paths $p_{1}, p_{2} \in \mathcal{L}(i, j)$ in P^{\prime} with endpoints $x, z \in V_{i}$ and common endpoint $y \in V_{j}$ such that for any level planar embedding of P^{\prime}, u is contained in the region bounded by p_{1}, p_{2} and the track ℓ_{i}; cf. Fig. 7(d).

Assume w.l.o.g. that L_{2} is p_{2}. In order for p_{1} not to be embeddable on the other side of p_{2} (allowing edge (u, v) to be drawn in P without crossing), there must be a path p_{3} from s in L_{2} to $t \in V_{j}$ in which s lies between z and w blocking this direction. Then there are at least three disjoint paths in P in $\mathcal{L}(i, j): p_{1}, L_{1}$ and the path $z \rightsquigarrow s \rightsquigarrow t$, contradicting our assumption of there only being two.

Let $L_{1}, L_{2}, L_{3} \in \mathcal{L}(i, j)$ be three disjoint paths. At least one of the three paths, say it is L_{2}, must be joined by bridges b_{1} and b_{2} to the other two paths L_{1} or L_{3}, respectively, or P would be disconnected contradicting the minimality of P. If $b_{1} \cap b_{2}$ form a nonempty path, then $b_{1} \cup b_{2}$ would form a subtree homeomorphic to $K_{1,3}$, yielding pattern P_{1} or P_{2} of Theorem 3. Thus, b_{1} and b_{2} can share at most one vertex as in P_{α} of Fig. 7(a). Otherwise there must have been endpoints $x=b_{1} \cup L_{2}$ and $y=b_{2} \cup L_{2}$ along the path $c \rightsquigarrow d$ forming L_{2} where either y proceeds x as in P_{β} of Fig. 7(b) or x proceeds y as in P_{γ} of Fig. 7(c). We observe that P_{α} matches P_{3} and P_{γ} matches P_{4}.

Fig. 8. The three ways of splitting the degree-4 vertex of P_{3} into two vertices of degree 3 , the last of which yields P_{4}. The other two match P_{2}.

We next show that P_{4} is easily derived from P_{3} by considering the ways in which the degree-4 vertex of P_{3} can be split.
Lemma $6 P_{4}$ is the only distinct MLNP pattern for trees that can be formed from P_{3} (by splitting the degree-4 vertex) not containing a subtree matching P_{2}.
Proof. Fig. 8 shows the three ways the degree- 4 vertex of P_{3} can be split into two degree-3 vertices. Two contain subtrees that match P_{2}.

Finally we complete our characterization for level nonplanar trees.
Theorem 7 A level tree T is level nonplanar if and only if T has a subtree matching one of the minimum level nonplanar patterns P_{1}, P_{2}, P_{3}, or P_{4}.
Proof. Once a MLNP pattern P is augmented to form a hierarchy, one of the HLNP patterns must apply. Since this augmentation does not introduce a cycle between levels V_{i} and V_{j}, either pattern P_{1} or P_{2} must match a subtree of the augmented pattern by Lemma 5 of [4].

Assume there is a MLNP tree pattern P containing P_{α} or $P_{\gamma}\left(P_{\beta}\right.$ is equivalent to P_{γ} under vertical reflection) of Lemma 5 that does not match P_{1} or P_{2}. For P_{α} there are two cases: (i) $x \in V_{i}$ or $x \in V_{j}$ or (ii) $x \notin V_{i}$ and $x \notin V_{j}$. Assume w.l.o.g. that $b_{1} \cap L_{1} \in V_{j}$ for both (otherwise P is not minimal since the portion of L_{1} to $L_{1} \cup b_{1}$ is extraneous) that $x \in V_{i}$ for (i), and that $b_{2} \cap L_{2} \in V_{i}$ for (ii). Similarly, for P_{γ} there are three cases: (i) $x \in V_{i}$ and $y \in V_{j}$, (ii) $x \in V_{i}$ and $y \notin V_{j}$, and (iii) $x \notin V_{i}$ and $y \in V_{j}$, Assume w.l.o.g. that $b_{1} \cap L_{1} \in V_{j}$ for (ii) and and that $b_{2} \cap L_{3} \in V_{i}$ for (iii). We augment P to form a hierarchy to illustrate how either P must match P_{1} or P_{2} or contain a cycle preventing it from matching a tree.

Suppose that a bridge of P_{α} or P_{γ} in P is not strictly y-monotone. Then P could either have a bend at e in level V_{l} in one bridge or a bend at f in level V_{m} in the other as in Fig. 9(a) for some $i<l<m<j$. Each bend would require augmentation to a path from the source when forming a hierarchy from above or below as was the case with P_{3} in Fig. 6.

We augment P with a path $p \rightsquigarrow e$ from V_{i} to V_{l} to form P^{\prime}, a hierarchy, that must match P_{1} or P_{2}. We observe that between levels V_{i} and V_{m}, we have four linking paths. A third bridge $u \rightsquigarrow v$ must be present in P^{\prime} that is part of a subtree S homeomorphic to $K_{1,3}$. Fig. 9(b) gives one such example. While P^{\prime}

Fig. 9. Examples of pattern P_{α} in (a) being augmented to form a hierarchy in (b) and (c).
matches P_{2} between levels V_{i} and V_{m}, we see that between levels V_{i} and V_{j}, P must have had the cycle $u \rightsquigarrow v \rightsquigarrow e \rightsquigarrow b \rightsquigarrow u$, contradicting P being a tree pattern. By inspection, any other placement of $u \rightsquigarrow v$ to connect three of the four linking paths to form P_{1} or P_{2} similarly implies a cycle in P.

Hence, P cannot contain any more edges than those of P_{α} without matching P_{1} or P_{2}. We observe that P_{α} consists of two paths sharing a common vertex x. Given the minimality of P in minimizing $|i-j|$, one path has both endpoints in V_{i} with one vertex in V_{j} that can be split into linking paths $L_{1}, L_{2} \in \mathcal{L}(i, j)$. Similarly, the other has both endpoints in V_{j} with one vertex in V_{i} that can also be split into the linking paths $L_{3}, L_{4} \in \mathcal{L}(i, j)$. In P_{3} of Fig. 9(a), L_{1} is $a \rightsquigarrow b$, L_{2} is $b \rightsquigarrow e \rightsquigarrow x \rightsquigarrow c, L_{3}$ is $d \rightsquigarrow x \rightsquigarrow f \rightsquigarrow g$, and L_{4} is $g \rightsquigarrow h$.

For P to be level nonplanar, a crossing must be forced between these two paths. This is done by having L_{2} or L_{3} meet the condition of P_{3} of three subpaths $C_{1} \in \mathcal{L}(i, m)$ linking V_{i} to $V_{m}, C_{2} \in \mathcal{L}(l, m)$ linking V_{l} to V_{m}, and $C_{3} \in \mathcal{L}(l, j)$ linking V_{l} to V_{j}. This is not the case for P_{α} in Fig. 9(a) since the $x \rightsquigarrow c$ portion of L_{2} does not reach level V_{m}, and the $x \rightsquigarrow d$ portion of L_{3} does not reach level V_{l}. So for P not to match P_{3}, at least one subpath of both L_{2} and L_{3} from x to V_{i} or V_{j} must strictly monotonic as was the case in Fig. 9(a). However, in this case P can be drawn without crossings. This leaves P_{3} as the only possibility of a MLNP pattern matching P_{α} that does not match P_{1} or P_{2}.

4 Conclusion and Future Work

The sufficiency argument of the MLNP patterns used by Healy et al. is flawed in its contention that all MLNP patterns contain a HLNP pattern. Given this flaw, there remains the very likely possibility of the characterization of Healy et al. omitting some MLNP patterns with cycles.

We provided two new MLNP patterns for trees and showed that the new set of four was sufficient. We presented a new approach for showing sufficiency based upon pattern augmentation to form HLNP patterns. However, our approach heavily relied on the underlying graph of the pattern forming a tree and
avoiding cycles. For future work remains the open problem of finding the remaining set, if any, of MLNP patterns for graphs with cycles and proving they are sufficient to complete the characterization for all level planar graphs.

References

1. G. Di Battista and E. Nardelli. Hierarchies and planarity theory. IEEE Trans. Systems Man Cybernet., 18(6):1035-1046, 1988.
2. P. Eades and S. Whitesides. Drawing graphs in two layers. Theor. Comput. Sci., 131(2):361-374, 1994.
3. A. Estrella-Balderrama, J. J. Fowler, and S. G. Kobourov. Characterization of unlabeled level planar trees. In Kaufman and Wagner, editors, 14 th Symposium on Graph Drawing (GD), volume 4372 of LNCS, pages 367-369, 2006.
4. P. Healy, A. Kuusik, and S. Leipert. A characterization of level planar graphs. Discrete Math., 280(1-3):51-63, 2004.
5. L. S. Heath and A. L. Rosenberg. Laying out graphs using queues. SIAM J. Comput., 21(5):927-958, 1992.
6. M. Jünger and S. Leipert. Level planar embedding in linear time. J. Graph Algorithms Appl., 6(1):67-113, 2002.
7. M. Jünger, S. Leipert, and P. Mutzel. Level planarity testing in linear time. In 6 th Symposium on Graph Drawing (GD), pages 224-237, 1998.
8. C. Kuratowski. Sur les problèmes des courbes gauches en Topologie. Fundamenta Mathematicae, 15:271-283, 1930.
9. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchical system structures. IEEE Trans. Systems Man Cybernet., 11(2):109-125, 1981.

Appendix

Characterization of patterns T1 and T2 from Healy et al. in Section 3.1 of [4]:
"Let i and j be the extreme levels of a pattern and let x denote a root vertex with degree 3 that is located on one of the levels i, \ldots, j. From the root vertex emerge 3 subtrees that have the following common properties (cf. Fig. 2 for illustrations of two typical patterns):

- each subtree has at least one vertex on both extreme levels;
- a subtree is either a chain or it has two branches which are chains;
- all the leaf vertices of the subtrees are located on the extreme levels, and if there is a leaf vertex v of a subtree S on an extreme level $l \in\{i, j\}$ then v is the only vertex of S on the extreme level l;
- those subtrees which are chains have one or more non-leaf vertices on the extreme level opposite to the level of their leaf vertices.

The location of the root vertex distinguishes the two characterizations.
(T1) The root vertex x is on an extreme level $l \in\{i, j\}$ (cf. Fig. 2(a)):

- at least one of the subtrees is a chain starting from x, going to the opposite extreme level of x and finishing on x 's level;
(T2) The root vertex x is on one of the intermediate levels $l, i<l<j$ (cf. Fig. 2(b)):
- at least one of the subtrees is a chain that starts from the root vertex, goes to the extreme level i and finishes on the extreme level j; at least one of the subtrees is a chain that starts from the root vertex, goes to the extreme level j and finishes on the extreme level i. ."
Note that Fig. 2(a) and (b) of [4] correspond to our Figs. 4(a) and (b).
Next we state Theorem 2 and Lemmas 3, 4, and 5 of [4] with slight rewording to match our own terminology and previous theorems.

Theorem 8 (Healy et al. Theorem 2) A subgraph matching either of the two tree characterizations $T 1$ or $T 2$ is MLNP.

Lemma 9 (Healy et al. Lemma 3) If HLNP pattern P_{A} of Theorem 1(a) matches a tree then each one of the paths L_{1}, L_{2}, L_{3} contains only one vertex being the end vertex of a bridge.

Lemma 10 (Healy et al. Lemma 4) If HLNP pattern P_{A} of Theorem 1(a) matches a tree then its bridges must form a subgraph homeomorphic to $K_{1,3}$.

Lemma 11 (Healy et al. Lemma 5) The only HLNP pattern that can be matched to a tree is P_{A} of Theorem 1.

[^0]: * This work is supported in part by NSF grants CCF-0545743 and ACR-0222920.

