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Abstract. Minimum level nonplanar (MLNP) patterns play the role for
level planar graphs that the forbidden Kuratowksi subdivisions K5 and
K3,3 play for planar graphs. We add two MLNP patterns for trees to the
previous set of tree patterns given by Healy et al. [4]. Neither of these
patterns match any of the previous patterns. We show that this new set
of patterns completely characterizes level planar trees.

1 Introduction

Level graphs model hierarchical relationships. A level drawing has all vertices in
the same level with the same y-coordinates and has all edges strictly y-monotone.
Level planar graphs have level drawings without edge crossings. Hierarchies are
special cases in which every vertex is reachable via a y-monotone path from a
source in the top level. Many natural hierarchies occur in the sciences includ-
ing biological taxonomies, linguistic universal grammars, object-oriented design,
multi-tiered social structures, and mathematical hierarchies. In general, any di-
rected acyclic graph (DAG) yields a hierarchy by using a topological sort as a
ranking mechanism. Planar graphs are characterized by forbidden subdivisions
of K5 and K3,3 by Kuratowksi’s Theorem [8]. The counterpart of this character-
ization for level planar graphs proposed by Healy, Kuusik, and Liepert [4] are
the minimum level nonplanar (MLNP) patterns. These are minimal obstructing
subgraphs with a set of level assignments that force one or more crossings.

While Jünger et al. provide linear time recognition and embedding algo-
rithms [6, 7] for level planar graphs, swapping the vertices between levels while
maintaining planarity can be difficult. Heath and Rosenberg showed that decid-
ing if a planar graph has a proper k-leveling is NP-hard [5]. Finding a matching
subgraph of a MLNP pattern can provide a set of candidate vertices to reassign to
different levels in order to achieve planarity. Such a method could improve exist-
ing hierarchical approaches to drawing DAGs, such as Sugiyama’s algorithm [9]
that greedily assigns vertices to levels. Determining the minimum number of
edges to remove so that a graph becomes level planar is known as the level pla-
narization problem. Eades and Whitesides showed that this is NP-hard even for
the case of a 2-leveling in which the placement of the vertices of one of the levels
is given [2].
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Fig. 1. Labelings preventing the forbidden ULP trees T8 and T9 from being level planar.

Di Battista and Nardelli [1] provided three level nonplanar patterns for hi-
erarchies (HLNP patterns) showing they formed a necessary and sufficient con-
dition for level nonplanarity; cf. Fig. 3. These patterns consist of three (not
necessary) disjoint paths linking a pair of levels that are joined by three pairwise
bridges. If none of the linking paths cross, this condition forces a crossing be-
tween one or more bridges. Showing any level nonplanar hierarchy must match
one of these patterns was done by considering the cases in which their PQ-tree
algorithm fails to provide an embedding if the hierarchy is level nonplanar by
generating an edge crossing. They use the paths from the two edges that cross to
a common ancestor in order to always construct one of the three HLNP patterns
completing their characterization of level planar hierarchies.

Since these patterns are adequately general, this approach can be extended
to determine when level graphs are nonplanar. Healy et al. adapted these HLNP

patterns to MLNP patterns for level graphs. However, the completeness of their
characterization was based on the claim that all MLNP patterns must contain a
HLNP pattern, which does not hold for a counterexample we provide.

Estrella et al. [3] characterized the set of unlabeled level planar (ULP) trees
on n vertices that are level planar over all possible n! labelings of the vertices
from 1 to n in terms of a pair of forbidden subtrees T8 and T9; cf. Fig. 1. The
given labelings show that these trees are level nonplanar. Each vertex is assigned
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Fig. 2. Four minimum level nonplanar (MLNP) patterns for level nonplanar trees.
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to its own level so that its y-coordinate is based on its level. The level nonplanar
assignment for T9 can be shown not to match any of the three HLNP patterns
forming the basis of our counterexample. For every set of three paths linking
any pair of levels in T9, two of the three linking paths always has a bridge that
shares a vertex with the other path. This violates the condition that forces a
crossing between the third linking path and the bridge. As a result, this level
nonplanar tree does not match any of the MLNP patterns given by Healy et al.

Healy et al. provide two of the MLNP patterns, P1 and P2, for trees that are
also HLNP patterns; cf. Fig. 2(a) and (b). Both have three disjoint paths linking
the top and bottom levels with the three pairwise bridges that form a subdivided
K1,3. We provide two more MLNP patterns, P3 and P4 for level nonplanar trees;
cf. Fig. 2(c) and (d) using our counterexample. Both of these patterns consist
of two paths that have a common vertex x or subpath x  y that lies between
two intermediate levels. A crossing is forced between the two paths since x or
x y must lie between two different sections of path that they are on in order
to avoid a self-crossing of that path.

2 Preliminaries

A k-level graph G(V, E, φ) on n vertices has leveling φ : V → [1..k] where every
(u, v) ∈ E either has φ(u) < φ(v) if G is directed or φ(u) 6= φ(v) if G is
undirected. This leveling partitions V into V1 ∪ V2 ∪ · · · ∪ Vk where the level
Vj = φ−1(j) and Vi ∩ Vj = ∅ if i 6= j. A proper level graph only has short edges
in which φ(v) = φ(u) + 1 for every (u, v) ∈ E. Edges spanning multiple levels
are long. A hierarchy is a proper level graph in which every vertex v ∈ Vj for
j > 1 has at least one incident edge (u, v) ∈ E to a vertex u ∈ Vi for some i < j.

A path p is a non-repeating ordered sequence of vertices (v1, v2, . . . , vt) for
t ≥ 1. Let min(p) = min{φ(v) : v ∈ p}, max(p) = max{φ(v) : v ∈ p}, and
P(i, j) =

{

p : p is a path where i ≤ min(p) < max(p) ≤ j
}

are the paths
between levels Vi and Vj . A linking path, or link, L ∈ L(i, j) is a path x y in
which i = min(L) = φ(x) and max(L) = φ(y) = j, and L(i, j) ⊆ P(i, j) are all
paths linking the extreme levels Vi and Vj . A bridge b is a path x y in P(i, j)
connecting links L1, L2 ∈ L(i, j) in which b ∩ L1 = x and b ∩ L2 = y.

Any improper level graph can be made proper by subdividing all long edges
into short edges. A level drawing of G has all of its level-j vertices in the jth level
Vj placed along the track ℓj = {(x, k − j) |x ∈ R}, and each edge (u, v) ∈ E is
drawn as a continuous strictly y-monotone sequence of line segments downwards.
A level drawing drawn without edge crossings shows that G is level planar. Any
level graph can be made into hierarchy by adding a new source with paths
to all vertices unreachable via a y-monotone path to a source. A pattern is
a set of level nonplanar graphs sharing structural similarities. Removing any
edge from the underlying graph matching a minimum level nonplanar (MLNP)
pattern gives a level planar graph. A hierarchy level nonplanar (HLNP) pattern
is a level nonplanar pattern in which every matching graph is a hierarchy. The
next theorem gives the set of the three distinct HLNP patterns.
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Fig. 3. The three patterns characterizing hierarchies. Patterns PB and PC are special cases
of PA. The dashed curves in (b) and (c) are extraneous paths highlighting the relationship
PB and PC have with PA if one or more bridges have no edges.

Theorem 1 [Di Battista and Nardelli [1]] A hierarchy G(V, E, φ) on k levels
is level planar if and only if there does not exist three paths L1, L2, L3 ∈ L(i, j)
linking levels Vi and Vj for 1 ≤ i < j ≤ k where one of the following hold:

(PA) Links L1, L2, and L3 are completely disjoint, L1∩L2 = L1∩L3 = L2∩L3 =
∅, and pairwise connected by bridges b1 from L1 to L3, b2 from L2 to L3,
and b3 from L2 to L3 such that b1, b2, b3 ∈ P(i, j) where b1∩L2 = b2∩L1 =
b3 ∩ L1 = ∅; cf. Fig. 3(a).

(PB) Links L1 and L2 share a path C = L1∩L2 ∈ P(i, j) starting from endpoint
p ∈ Vi ∪ Vj that is disjoint from L3, where L1 ∩ L3 = L2 ∩ L3 = ∅ are
connected by bridges b1 from L1 to L3 and b2 from L1 to L3 such that
b1, b2 ∈ P(i, j) and such that b1 ∩ L2 = b2 ∩ L1 = ∅; cf. Fig. 3(b).

(PC) Links L1 and L2 share a path C1 = L1∩L2 ∈ P(i, j) starting from endpoint
p ∈ Vi and links L2 and L3 share a path C2 = L2 ∩ L3 ∈ P(i, j) starting
fromendpoint q ∈ Vj such that C1 ∩ C2 = ∅. Bridge b ∈ P(i, j) connects
L1 and L3 where b ∩ L2 = b ∩ C1 = b ∩ C2 = ∅; cf. Fig. 3(c).

A HLNP pattern P of Theorem 1 is not necessarily minimal in that it does
not minimize the number of levels required to force level nonplanarity. However,
P becomes minimal if both of the extreme levels Vi and Vj each contain a vertex
from one of the bridges or the point at which two links merge. If this were the
case, the removal of any further edge from the subgraph of a level graph matching
P would then violate one of the structural requirements of the Theorem 1. This
is because each extreme level plays an essential role in that the next closest level
to the opposite extreme level cannot be substituted for it in the description in
the pattern. Generalizing this notion gives the following observation regarding
minimality.

Observation 2 A LNP pattern P between extreme levels Vi and Vj for some
1 ≤ i < j ≤ k is minimal only if the adjacent levels Vi+1 or Vj−1 cannot be
substituted for Vi or Vj, respectively, in the description of the pattern.

Observation 2 implies the extreme levels of a MLNP pattern are defined in
terms of the roles of their vertices, which we will see in the following descriptions
of the four MLNP patterns for trees in the next section.

4



Vi

Vj

Vl

Vm

e
x

f

a c g

b d h

Vi

Vj

Vl
e

x

f

a c g

b d h

Vmx

y

Vi
a fc

eg

Vi

Vj

c

x

a f d

egb
Vj

d

b

L2 L2

L1

L3 L3

L1

L2

L4

L1L1 L2S

S

C3C3

C2

L3 L3

C2

C1C1

y

P4
P2 P3

P1

(d)(a) (b) (c)

Fig. 4. P1 of (a) and P2 of (b) are MLNP patterns T1 and T2 given by Healy et al. [4],
respectively. P3 matches T9 in [3]. P4 splits the degree 4 vertex x of P3 into path x y.

3 MLNP Patterns for Trees

We begin by providing an extended set of MLNP patterns for trees.

Theorem 3 A level tree T (V, E, φ) on k levels is minimum level nonplanar if

(1) there are three disjoint paths L1, L2, L3 ∈ L(i, j) linking levels Vi and Vj for
1 ≤ i < j ≤ k where PA of Theorem 1 applies and the union of the three
bridges b1∪b2∪b3 forms a subdivided K1,3 subtree S with vertex c of degree 3
where either

(P1) c ∈ Vi (or Vj) and there is a leaf of S in Vj (or Vi) as in Fig. 4(a) or

(P2) one leaf of S is in Vi and another leaf of S is in Vj as in Fig. 4(b),

or

(2) there are four paths L1, L2, L3, L4 ∈ L(i, j) linking levels Vi and Vj for
1 ≤ i < j ≤ k where L1 ∩ L4 = ∅, L1 ∩ L2 ∈ Vj (or Vi) and L3 ∩ L4 ∈ Vi

(or Vj) where L1 ∪L2 and L3∪L4 form paths with both endpoints in Vi and
Vj (or Vj and Vi), respectively, and there exist levels Vl and Vm for some
i < l < m < j in which either L2 or L3 consists of threee subpaths C1,
C2, and C3 such that C1 ∈L(i, m) links Vi to Vm

(

d  e as in Fig. 4(c)
)

,

C2∈L(l, m) links Vl to Vm

(

e f as in Fig. 4(c)
)

, and C3∈L(l, j) links Vl

to Vj

(

f  g as in Fig. 4(c)
)

where either

(P3) L2 ∩ L3 = x where l ≤ φ(x) ≤ m as in Fig. 4(c), or

(P4) L2 ∩ L3 is path x y where l ≤ {φ(x), φ(y)} ≤ m and L2 = c x 
y  b where c ∈ Vi (or Vj) and b ∈ Vj (or Vi) as in Fig. 4(d).

Proof. The description of patterns P1 and P2 are more succinctly stated and
more closely match notation used in Theorem 1 from [1] than the Healy et al.
characterization of MLNP T1 and T2 tree patterns given in Section 3.1 of [4];
see the appendix for the original descriptions of T1 and T2. Patterns P1 and P2

are MLNP given they match the patterns of T1 and T2 of Healy et al since they
meet the four conditions given for T1 and T2 in [4]. Hence, we can conclude that
P1 and P2 are MLNP. The argument in [3] used by Estrella et al. to show T9 is
level nonplanar easily generalizes for P3 and P4. To see that P3 is minimal (the
argument for P4 is similar), we try the seven clearly distinct ways of removing
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Fig. 5. The seven cases of deleting an edge from pattern P3 in (a). The dashed curves
represent the removed edges.

an edge; cf. Fig. 5. In each case crossings can be avoided by rearranging vertices
on the tracks. Given that both MLNP trees patterns T1 and T2 in [4] have one
vertex of degree 3, neither can match P3 with a vertex of degree 4 or P4 has two
vertices of degree 3. Hence, all four MLNP patterns are distinct. ⊓⊔

The proof of Theorem 15 of Healy et al. [4] argues that every MLNP pattern
must match some HLNP pattern. We show why this argument fails for P3.

Lemma 4 P3 augmented to form a hierarchy has a subtree matching P2.

Proof. Fig. 6 shows the highlighted subtrees that match P2 when P3 is aug-
mented either above or below to form a hierarchy. In each case, the additional
path being added from the source is an essential part of the pattern P2. Since
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P2 does not match P3 by Theorem 3, P2 is clearly being introduced by the aug-
mentation in which it was not previously being present. ⊓⊔

The next lemma gives the minimal conditions for a MLNP tree pattern.

Lemma 5 A level nonplanar tree T (V, E, φ) on k levels contains three disjoint
paths L1, L2, L3 ∈ L(i, j) linking levels Vi and Vj for 1 ≤ i < j ≤ k with bridges
b1 from L1 to L2 and b2 from L2 to L3 with x = b1 ∩L2 and y = b2 ∩L2 so that
either (Pα) x = y, (Pβ) L2 = c  y  x  d, or (Pγ) L2 = c  x  y  d
hold where c ∈ Vi and d ∈ Vj as in Fig. 7(a), (b), (c).

Proof. We observe that these conditions match PA of Theorem 1 except for one
bridge. By Lemma 5 of [4], PA is the only HLNP pattern that can match a tree.
Assume that P is an MLNP pattern between levels Vi and Vj in which |i − j| is
minimum and there are at most two disjoint paths L1, L2 ∈ L(i, j). There could
be at most one bridge b joining L1 and L2 without forming a cycle. Let w be
the endpoint of b in L2.

Let P ′ be P − (u, v) where (u, v) is the short edge connecting L1 to Vj in
which v ∈ Vj . In order for P to be MLNP, there must exist two linking paths
p1, p2 ∈ L(i, j) in P ′ with endpoints x, z ∈ Vi and common endpoint y ∈ Vj such
that for any level planar embedding of P ′, u is contained in the region bounded
by p1, p2 and the track ℓi; cf. Fig. 7(d).

Assume w.l.o.g. that L2 is p2. In order for p1 not to be embeddable on the
other side of p2 (allowing edge (u, v) to be drawn in P without crossing), there
must be a path p3 from s in L2 to t ∈ Vj in which s lies between z and w blocking
this direction. Then there are at least three disjoint paths in P in L(i, j): p1, L1

and the path z  s t, contradicting our assumption of there only being two.
Let L1, L2, L3 ∈ L(i, j) be three disjoint paths. At least one of the three paths,

say it is L2, must be joined by bridges b1 and b2 to the other two paths L1 or L3,
respectively, or P would be disconnected contradicting the minimality of P . If
b1 ∩ b2 form a nonempty path, then b1 ∪ b2 would form a subtree homeomorphic
to K1,3, yielding pattern P1 or P2 of Theorem 3. Thus, b1 and b2 can share at
most one vertex as in Pα of Fig. 7(a). Otherwise there must have been endpoints
x = b1 ∪ L2 and y = b2 ∪ L2 along the path c  d forming L2 where either y
proceeds x as in Pβ of Fig. 7(b) or x proceeds y as in Pγ of Fig. 7(c). We observe
that Pα matches P3 and Pγ matches P4. ⊓⊔
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We next show that P4 is easily derived from P3 by considering the ways in
which the degree-4 vertex of P3 can be split.

Lemma 6 P4 is the only distinct MLNP pattern for trees that can be formed
from P3 (by splitting the degree-4 vertex) not containing a subtree matching P2.

Proof. Fig. 8 shows the three ways the degree-4 vertex of P3 can be split into
two degree-3 vertices. Two contain subtrees that match P2. ⊓⊔

Finally we complete our characterization for level nonplanar trees.

Theorem 7 A level tree T is level nonplanar if and only if T has a subtree
matching one of the minimum level nonplanar patterns P1, P2, P3, or P4.

Proof. Once a MLNP pattern P is augmented to form a hierarchy, one of the
HLNP patterns must apply. Since this augmentation does not introduce a cycle
between levels Vi and Vj , either pattern P1 or P2 must match a subtree of the
augmented pattern by Lemma 5 of [4].

Assume there is a MLNP tree pattern P containing Pα or Pγ (Pβ is equivalent
to Pγ under vertical reflection) of Lemma 5 that does not match P1 or P2. For
Pα there are two cases: (i) x ∈ Vi or x ∈ Vj or (ii) x /∈ Vi and x /∈ Vj . Assume
w.l.o.g. that b1 ∩L1 ∈ Vj for both (otherwise P is not minimal since the portion
of L1 to L1 ∪ b1 is extraneous) that x ∈ Vi for (i), and that b2 ∩ L2 ∈ Vi for
(ii). Similarly, for Pγ there are three cases: (i) x ∈ Vi and y ∈ Vj , (ii) x ∈ Vi

and y /∈ Vj , and (iii) x /∈ Vi and y ∈ Vj , Assume w.l.o.g. that b1 ∩ L1 ∈ Vj for
(ii) and and that b2 ∩ L3 ∈ Vi for (iii). We augment P to form a hierarchy to
illustrate how either P must match P1 or P2 or contain a cycle preventing it
from matching a tree.

Suppose that a bridge of Pα or Pγ in P is not strictly y-monotone. Then P
could either have a bend at e in level Vl in one bridge or a bend at f in level Vm

in the other as in Fig. 9(a) for some i < l < m < j. Each bend would require
augmentation to a path from the source when forming a hierarchy from above
or below as was the case with P3 in Fig. 6.

We augment P with a path p  e from Vi to Vl to form P ′, a hierarchy,
that must match P1 or P2. We observe that between levels Vi and Vm, we have
four linking paths. A third bridge u  v must be present in P ′ that is part of
a subtree S homeomorphic to K1,3. Fig. 9(b) gives one such example. While P ′
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matches P2 between levels Vi and Vm, we see that between levels Vi and Vj , P
must have had the cycle u  v  e  b  u, contradicting P being a tree
pattern. By inspection, any other placement of u  v to connect three of the
four linking paths to form P1 or P2 similarly implies a cycle in P .

Hence, P cannot contain any more edges than those of Pα without matching
P1 or P2. We observe that Pα consists of two paths sharing a common vertex x.
Given the minimality of P in minimizing |i − j|, one path has both endpoints
in Vi with one vertex in Vj that can be split into linking paths L1, L2 ∈ L(i, j).
Similarly, the other has both endpoints in Vj with one vertex in Vi that can also
be split into the linking paths L3, L4 ∈ L(i, j). In P3 of Fig. 9(a), L1 is a  b,
L2 is b e x c, L3 is d x f  g, and L4 is g  h.

For P to be level nonplanar, a crossing must be forced between these two
paths. This is done by having L2 or L3 meet the condition of P3 of three subpaths
C1 ∈ L(i, m) linking Vi to Vm, C2 ∈ L(l, m) linking Vl to Vm, and C3 ∈ L(l, j)
linking Vl to Vj . This is not the case for Pα in Fig. 9(a) since the x c portion
of L2 does not reach level Vm, and the x d portion of L3 does not reach level
Vl. So for P not to match P3, at least one subpath of both L2 and L3 from x to
Vi or Vj must strictly monotonic as was the case in Fig. 9(a). However, in this
case P can be drawn without crossings. This leaves P3 as the only possibility of
a MLNP pattern matching Pα that does not match P1 or P2. ⊓⊔

4 Conclusion and Future Work

The sufficiency argument of the MLNP patterns used by Healy et al. is flawed in
its contention that all MLNP patterns contain a HLNP pattern. Given this flaw,
there remains the very likely possibility of the characterization of Healy et al.
omitting some MLNP patterns with cycles.

We provided two new MLNP patterns for trees and showed that the new
set of four was sufficient. We presented a new approach for showing sufficiency
based upon pattern augmentation to form HLNP patterns. However, our ap-
proach heavily relied on the underlying graph of the pattern forming a tree and
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avoiding cycles. For future work remains the open problem of finding the re-
maining set, if any, of MLNP patterns for graphs with cycles and proving they
are sufficient to complete the characterization for all level planar graphs.
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Appendix

Characterization of patterns T1 and T2 from Healy et al. in Section 3.1 of [4]:

“Let i and j be the extreme levels of a pattern and let x denote a root vertex
with degree 3 that is located on one of the levels i, . . . , j. From the root vertex
emerge 3 subtrees that have the following common properties (cf. Fig. 2 for
illustrations of two typical patterns):

• each subtree has at least one vertex on both extreme levels;
• a subtree is either a chain or it has two branches which are chains;
• all the leaf vertices of the subtrees are located on the extreme levels, and if

there is a leaf vertex v of a subtree S on an extreme level l ∈ {i, j} then v is
the only vertex of S on the extreme level l;

• those subtrees which are chains have one or more non-leaf vertices on the
extreme level opposite to the level of their leaf vertices.

The location of the root vertex distinguishes the two characterizations.

(T1) The root vertex x is on an extreme level l ∈ {i, j} (cf. Fig. 2(a)):

• at least one of the subtrees is a chain starting from x, going to the
opposite extreme level of x and finishing on x’s level;

(T2) The root vertex x is on one of the intermediate levels l, i < l < j (cf. Fig.
2(b)):

• at least one of the subtrees is a chain that starts from the root vertex,
goes to the extreme level i and finishes on the extreme level j;
at least one of the subtrees is a chain that starts from the root vertex,
goes to the extreme level j and finishes on the extreme level i.”

Note that Fig. 2(a) and (b) of [4] correspond to our Figs. 4(a) and (b).

Next we state Theorem 2 and Lemmas 3, 4, and 5 of [4] with slight rewording
to match our own terminology and previous theorems.

Theorem 8 (Healy et al. Theorem 2) A subgraph matching either of the two
tree characterizations T 1 or T 2 is MLNP.

Lemma 9 (Healy et al. Lemma 3) If HLNP pattern PA of Theorem 1(a)
matches a tree then each one of the paths L1, L2, L3 contains only one ver-
tex being the end vertex of a bridge.

Lemma 10 (Healy et al. Lemma 4) If HLNP pattern PA of Theorem 1(a)
matches a tree then its bridges must form a subgraph homeomorphic to K1,3.

Lemma 11 (Healy et al. Lemma 5) The only HLNP pattern that can be matched
to a tree is PA of Theorem 1.
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