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9ABSTRACTEmbedded systems have needs that are not adequately met by onventional operat-ing systems. Skidoo is a new operating system espeially tailored to support embed-ded systems. Independently sheduled threads are provided that synhronize usingsemaphores and ondition variables. Threads share a ommon address spae andommuniate using shared variables. Fully preemptive sheduling meets the needs ofhard real{time appliations.
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Chapter 1INTRODUCTIONEmbedded systems play an inreasingly important role in modern soiety. They ourwithin automobiles, applianes, disk{drives, internet routers, weapons systems, andmyriad other appliations. Two things haraterize embedded systems. First, theirsoftware is stati and tailored to a spei� mission. Apart from bug �xes and �eldupgrades, the software in an embedded system never hanges. Seond, the hardwarein an embedded system is likely to be very restritive. Many embedded systemsare omponents in high{volume, ost{sensitive appliations. Considerations of spae,reliability, and power onsumption often prelude the use of rotating disk drives.Many embedded systems ontain software in whih strit time deadlines must bemet in order to ensure proper operation; suh systems are alled real{time systems.A distintion is sometimes made between \soft" and \hard" real{time systems. Asoft real{time system runs orretly if some statistial portion of time deadlines aremet. A hard real{time system runs orretly only if every time deadline is met.Skidoo1 is a new operating system that an be used to build embedded systems.Skidoo provides threads, semaphores, and fully preemptive sheduling. At any time,the highest priority runnable thread is running, or a low lateny transfer is in progressto set it running. Additionally, Skidoo o�ers timer failities, onvenient interrupthandling failities, and a library of support routines and devie drivers. Skidoo runsin proteted mode on the x86 arhiteture and has very small memory requirements.It is adequate for building many real{time embedded appliations.Skidoo is intended to be a toolkit that is to be used to build a ustom operatingsystem. Eah deployment of Skidoo is in fat an operating system that is tailored tothe task at hand. By ontrast, onventional operating systems suh as Unix [3, 14℄ aredesigned to support general purpose omputing. They support timesharing omput-ing and provide failities suh as �lesystems, virtual memory, and memory protetionthat are unneessary in an embedded appliation. While it is possible to adapt a gen-eral purpose operating system suh as Unix for use in real{time appliations, a systemthat spei�ally addresses the requirements of real{time embedded appliations anbe smaller, simpler, and faster.1The name \Skidoo" omes from a ghost town [15℄ on the west side of Death Valley NationalPark, in California.



121.1 Related workRT-Linux [4℄ is an example of a onventional general{purpose operating system thathas been enhaned to support real{time requirements. It does this by reating areal{time sheduling regime within Linux. The regular Linux kernel is then run asa low priority task under ontrol of the real{time sheduler. This arrangement isadequate to support hard real{time requirements, but for some embedded systems,the software would be too large in terms of hardware requirements. It does have theadvantage that software may be developed on the same system on whih it will run.Both Linux [21℄ and Solaris [22℄ o�er POSIX 4 [7℄ real{time sheduling extensions.This makes it possible to implement real{time appliations within the usual Unixtimesharing environment. These are both still full{sale Unix systems however, sothey would be inappropriate for hardware{restrited embedded appliations.It is worth noting that work is being done on the traditional Linux kernel to makeit more suitable for some lasses of real{time programming. In partiular, preemptionpoints are being provided within the kernel to limit the length of the ode path withinthe kernel before an opportunity exists to swith ontext [2℄.VxWorks [19℄ is a proprietary system without a Unix heritage. It provides aproprietary interfae, but o�ers a large set of POSIX library failities to aid portingUnix software. VxWorks expets that a Unix host system is used to develop softwarethat then runs on a target system with distint hardware and software. This requiresa dediated development system but allows the target system to be very spartan interms of both hardware and software.VxWorks has been a signi�ant soure of inspiration for Skidoo. Like VxWorks,Skidoo supports a set of threads running in a single address spae and avoids utilizingaddress mapping and protetion hardware. In ontrast Skidoo is muh simpler, yet itprovides additional failities suh as ontinuations and rae{free ondition variables.1.2 Outline of the ThesisSkidoo was developed mainly as an exellent learning exerise. However, it is usefulfor getting real work done, as will be shown. It an be used as the basis for furtherresearh in embedded systems, as well as for the onstrution of spei� appliations.Chapter 2 presents Skidoo and outlines the servies that Skidoo makes available.Chapter 3 desribes the implementation of Skidoo, disussing the steps taken andthe deisions that were made. Chapter 4 disusses a test suite that was developedto exerise Skidoo, as well as experiments and appliations that demonstrate its util-ity. Chapter 5 gives a summary of what was aomplished, what ould have beendone di�erently, and what has been left undone. The Appendix gives details of theprogramming interfae to Skidoo.



13Chapter 2SERVICESThis hapter gives a survey of the servies provided by Skidoo. The two entralfeatures of the Skidoo kernel are threads and binary semaphores. The most importantfeature of threads is the ability to blok and thus to be independently sheduled.Semaphores provide an entity that an be used for synhronization. An inredibleamount of work an be aomplished given just threads and semaphores. The rest ofthe Skidoo kernel provides ondition variables, ontinuations, and aess to essentialhardware via timers, interrupts, and basi devie drivers. The atual kernel routinesare desribed in Appendix A.2.1 ThreadsA thread is an independently sheduled ow of exeution. Eah thread has a privatestak, and a small amount of state, whih onsists of a set of ags and register valuesneeded to resume the thread after it has bloked. Notably, a thread does not havea private address spae (other than a stak). All threads share a ommon globaladdress spae and ommuniate using shared variables.A thread in the Skidoo kernel is either ready or bloked. A thread only beomesbloked when it bloks itself. One bloked, a thread is not eligible to be run untilit is unbloked. A thread may be unbloked diretly by another thread, or moreommonly via a semaphore. With the exeption of interrupt handlers, all ode runson behalf of some thread. Eah thread is assigned a unique priority. For larity, theterms \more urgent" and \less urgent" are used rather than \higher" and \lower"priority. In fat, priorities with larger numerial values are less urgent.1 At all times,the urrent thread is always the ready thread with the most urgent priority.Speial are was taken to handle the ase where a thread is unbloked from in-terrupt ode. The diÆulty arises in the ase where a thread more urgent than theone urrently running is marked ready to run. When this happens, the thread thatwas running when the interrupt ourred is left suspended, and the kernel resumesthe more urgent thread when interrupt proessing is �nished.2.2 Preemptive sheduling and prioritiesIn the Skidoo kernel, eah thread must be assigned a unique priority when it isreated. At all times, the thread with the most urgent priority that is ready to run is1This hoie is entirely arbitrary and mimis the ordering used in VxWorks.



14running, or is in the proess of being made to run. This sheduling poliy is expliitlyunfair: if the urrently running thread never bloks, no thread of lower priority willever run. This poliy is alled stritly preemptive sheduling. It is an error for twothreads to be assigned the same priority. The system ould have been designed tohave some speial de�ned behavior in this ase (suh as time sliing), but this hasnot been done. Providing fairness in this speial ase is not neessary in embeddedsystems and would only serve to ompliate the kernel.2.3 SemaphoresThreads together with some synhronization faility [18℄ provide a suÆient basis tobuild signi�ant appliations. Skidoo provides simple binary semaphores [1℄ as itsfundamental synhronization primitive.Semaphores may be reated with an initial value of zero or one. Typially,semaphores with an initial value of zero are used for signaling, and semaphores with aninitial value of one are used for mutual exlusion. The P operation is herein denoted\bloking" on a semaphore. When the value of a semaphore is zero, the \bloking"operation in fat bloks and plaes the urrent thread on a list assoiated with thesemaphore. When the value of a semaphore is one, the \bloking" operation hangesthe value to zero and keeps running. The V operation is herein denoted \unbloking"a semaphore. When the value of a semaphore is one, the \unbloking" operation doesnothing.2 When the value is zero and the list of waiting threads is non{empty, oneof the waiting threads is unbloked; otherwise the value of the semaphore is hangedto one.Signaling semaphores are ommonly assoiated with a single thread as a privatesemaphore. Under this onvention, only one thread uses the semaphore to await asignal. A mutual exlusion semaphore is not assoiated with any thread in partiular,but rather with some resoure that requires loking.2.4 Condition variablesCondition variables an be viewed as a toolkit for building monitors [9℄. In Ski-doo they are provided as a higher level synhronization faility than semaphores. Inessene a ondition variable is a mutex semaphore and a signaling semaphore han-dled together as a unit as in POSIX 4 [7℄. To allow synhronization in devie driversbetween interrupt handlers and thread ontext running the driver, a speial form ofondition variable is provided that disables proessor interrupts as a form of mutualexlusion. To use a ondition variable, a thread will aquire the mutex semaphore,hek the resoure loked by the mutex, and upon �nding that it must wait for the2An alternative would be for the unbloking operation to delay if a semaphore is set to one, butthis would produe grave diÆulties if the unblok was being done from within an interrupt routine.



15ondition of the resoure to hange will perform a \wait" on the ondition variable.The \wait" operation will blok the thread and release the mutex in an atomi oper-ation, preventing rae onditions. To unblok the thread when the ondition of theresoure hanges, another thread aquires the mutex and uses the \signal" opera-tion. In the ase of an interrupt routine, aquisition of the mutex is impliit in thatinterrupts are bloked while in the interrupt handler.2.5 ContinuationsContinuations are provided as a more eÆient alternative to the usual bloking se-mantis. The idea of a ontinuation is taken from the Mah Operating System [6℄. Aontinuation provides a streamlined way for a thread to blok and speify a point ofresumption. When a thread bloks with a ontinuation, it abandons its ontext andproessor state (inluding register values, and the stak). When the thread unbloks,it omes alive in the ontinuation funtion, as if it were starting up anew. MostSkidoo failities whih may blok provide the option to blok with a ontinuation, aswell as the onventional return from the bloking all.When a thread bloks with a ontinuation, it spei�es a funtion to begin exeutingin when it is unbloked. When the thread does unblok, rather than returning in theusual way from the blok all, it resumes by alling the spei�ed funtion.Using ontinuations requires some reorganization of ode. A funtion that wasdesigned to use a traditional bloking all will need to be partitioned into a funtionwhih performs some setup and then bloks, and a funtion whih handles the eventas a ontinuation. In many ases the event handling funtion will end by making abloking all and again speifying itself as a ontinuation. This sort of tail reursionis a natural way to ode funtions that should be ativated periodially after a �xeddelay.Figure 2.1 ontains an example of a funtion using tail reursion to ahieve periodiativation. A new thread is reated using the thr_new() all. This thread prints amessage, then spei�es itself as a ontinuation after a delay of 25 lok tiks. Thethread is bloked until the number of tiks elapses, and then runs again printing themessage. This goes on forever, or until the thread is destroyed.The advantage of ontinuations is that they are very lightweight. When a threadbloks speifying a ontinuation, its ontext an be abandoned|no registers need tobe saved. The mehanism used to resume using a ontinuation is the same one that isused to launh new threads. In essene a thread is being launhed anew eah time itresumes with a ontinuation. It would be possible to abandon the stak and alloatea new one (as is done in Mah), but it is atually more eÆient, although less frugalwith memory, to retain the stak.



16voidtiker_init ( void ){ (void) thr_new ( "tik", tik_fn, (void *)25, PRI_TICK, 0 );}voidtik_fn ( int delay ){ printf ( "Kilroy was here!\n" );thr_delay_ ( delay, tik_fn, delay );} Figure 2.1. Tail reursion using a ontinuation2.6 Timer failitiesA timer is a hardware devie that provides interrupts at a programmer{de�ned inter-val. A set of timer failities provides onvenient aess to the available timing signals.At this time, the timer tiks at a nominal rate of 100 Hz.A routine to handle timer interrupts is a standard part of Skidoo. This defaultroutine keeps trak of time and supports a delay servie. The delay servie allowsthe urrent thread be bloked until a spei�ed number of timer \tiks" have passed.The default routine may be augmented by a user supplied C funtion that will alsobe alled eah time the timer \tiks". This routine is alled at interrupt level andshould be short and arefully oded.A ommon use of the ability to onnet a user supplied routine to the timer in-terrupt is to produe periodi thread ativations. By subdividing the basi lok andusing semaphores to unblok waiting threads from interrupt level, aurate periodiativations may be aomplished. Appliations that require extremely aurate tim-ing (suh as waveform generation), may perform ruial proessing in suh a lokfuntion.2.7 Interrupt failitiesIt is very useful to be able to onnet arbitrary C funtions to interrupt soures.Providing a onvenient faility for doing this relieves individual devie drivers fromthe mahine dependent omplexities of manipulating interrupt hardware. This is areal bene�t for embedded systems whih typially inlude unique hardware deviesthat require simple devie drivers. If this faility is abstrated appropriately, it is also



17an aid to portability. This faility|dubbed interrupt hanneling|is used by existingdrivers for the keyboard, serial port, and timer. It is also used to onnet handlersto hardware traps suh as divide by zero.A related faility, already alluded to, is the ability to unblok a thread from withinan interrupt routine. Interrupts are handled on the stak of whatever thread happensto be running when the interrupt arrives. During proessing of the interrupt (whihmay be entirely unrelated to the thread urrently running), a previously blokedthread may need to be unbloked. The thread state is marked ready to run, and thenthe thread priority is ompared with the priority of the urrent thread. If the priorityis less urgent than the urrent thread, nothing more needs to be done. If the priorityis more urgent than the urrent thread, a ag is set so that when the return frominterrupt is about to happen, a ontext swith to the new thread takes plae.The ase also should be mentioned where there is no ready thread and an interruptours. In this ase, a tight loop is being run in the ontext of whatever thread lastbloked itself. This loop is wathing to see if that thread again beomes ready. Ifthis thread does get marked ready, the loop will terminate and the thread will returnfrom the bloking funtion. If some other thread gets marked ready, a swith mustbe made immediately to run that thread in the manner desribed above.2.8 Memory alloationThe Skidoo kernel has an extremely simple memory alloation sheme. A table ofavailable memory regions is maintained, and bloks are alloated from the �rst regionthat ontains suÆient spae. A all to free a memory blok is provided, but it isignored at present in this simple alloator. This sheme is entirely adequate for mostembedded appliations that will alloate all resoures that are required at boot time.Failities that may want to reuse alloated objets (suh as semaphores) should keepthem on a private free list.As an alternative to this simple sheme, the Solaris slab alloator [22, p. 392℄has been made to work with the Skidoo kernel. However, the slab alloator requiresnearly as muh ode memory as Skidoo itself (see Figure 3.3).2.9 Devie driversDrivers for the keyboard and onsole were essential to develop and debug the kernel.The serial port driver was as muh a demonstration as an essential part of the kernel.In retrospet, the serial port ould have been used in lieu of the onsole for develop-ment. The onsole driver has the advantage of being independent of interrupts, andthus is useful in ases where the serial driver would have failed. The keyboard drivertypially uses interrupts, but an be on�gured to work without them.



182.10 Boot serviesBootstrapping is a low{level hardware{dependent issue. This is partiularly so onthe x86, where the mahine starts running in a bakward ompatibility mode (x86\real mode"). The goal of bootstrapping is to be able to run C ode in x86 protetedmode.At this time, Skidoo is able to boot from oppy disk, as well as over the networkusing BOOTP and TFTP . It would be fairly straightforward to allow booting froma hard drive or CDROM.One Skidoo has been initialized, it reates one initial thread at priority 0, whihexeutes the C funtion user_init(). Typially this funtion will launh the set ofuser threads and then exit.



19Chapter 3IMPLEMENTATIONThis hapter desribes the implementation of Skidoo. The desription is given as astep by step hronology. As eah major subsystem is presented the algorithms used toimplement it are disussed. In almost every ase the simplest possible algorithm hasbeen hosen. Corretness has been plaed ahead of eÆieny, yet with the expetationthat more omplex and sophistiated algorithms will be introdued as the projetmatures. In some ases (notably memory alloation) this has already ourred.3.1 Hardware PlatformThe deision to make Skidoo run on the Intel x86 [10℄ proessor was an easy one.X86 hardware is heap, ubiquitous, and amazingly e�etive. This hoie made itstraightforward to use the Gnu C ompiler hosted on a Linux system for development.Other potential targets were the Spar and the Motorola 680x0 proessors. Althoughthese arhitetures are in many ways more attrative, the hardware is less ommon,more expensive, and slower. A desktop personal omputer was obtained for use as atarget mahine. The mahine used had a 200 Mhz Pentium MMX proessor, 64 MBof memory, video ard, and network ard.3.2 Diskless BootingPart of the hallenge of the projet was that Skidoo had to boot and run on barehardware. It was expeted (and rightly so) that development would involve manyyles of experimental rebooting and that a sheme that made this as eÆient aspossible would be the best hoie. It is possible to write images onto oppy disks onthe development mahine and boot them by transferring them to the target mahine.However, this rapidly beomes tedious, and oppy disks are remarkably unreliable.This was, however, a useful method when a pair of laptop omputers were being usedduring a mobile development session.Network booting is far superior to using removable media. A new image an bebuilt on the development mahine, and when the target mahine reboots, this imageis transferred into target memory and exeuted. Network booting uses the BOOTPand TFTP protools and is failitated by a publi domain pakage alled netboot[11℄. Some time was lost disovering that some features of this pakage were brokenor mis{doumented. In partiular, netboot exhibited aberrant behavior for an image



20ontaining 512 or fewer bytes. Ultimately netboot suessfully loaded and ran asmall assembly language program that used BIOS1 routines to print a short message.3.3 Proessor InitializationAfter reset, the Intel x86 proessor is running in \real mode," whih is a ompatibilitymode that runs software written for the oldest members of the x86 proessor family.The netboot pakage expets the proessor to be running in \real mode," as does theBIOS software. The Gnu C ompiler generates ode for an x86 proessor running inproteted mode. Proteted mode supports 32 bit registers and a simple linear addressspae. The purposes of proessor initialization are to reloate the Skidoo image intolow memory and to perform the transition from real to proteted mode. One this isdone, the proessor an run ode generated by the Gnu C ompiler.Debugging the proessor initialization ode was diÆult and frustrating. Most ofthe proessor initialization ode had to be written in assembly language. In addition,it was not possible to use the real mode BIOS onsole routines for debugging while theinitialization was in progress. A useful debugging tool was a able with a single LED2that was onneted to the parallel printer port. A simple routine that looped whileblinking this LED was useful as a sentinel to mark progress through the initializationode. One the proessor was properly initialized, a newly oded LED loop, writtenin C and ompiled by the Gnu C ompiler, was suessful in making the LED blink.3.4 Console OutputOne it was possible to write ode in C and run it in proteted mode, progress beamemuh faster. The next thing to do was to print messages on the onsole. Beause thePC arhiteture supports simple memory mapped onsole output, it was easy andatually fairly enjoyable to write routines to output messages. No interrupts wereinvolved and there were no ompliated timing or synhronization issues.One the onsole output was working, and a simple printf() funtion was avail-able, a keyboard driver beame almost essential. Although the keyboard an generateinterrupts, the driver was initially written to use polling loops to monitor the key-board status register. One both keyboard and onsole were working, some diagnostiroutines were written, inluding routines to display regions of memory.An alternative to developing drivers for the onsole and keyboard would havebeen to develop a driver for the serial port. This would have had some advantages inthat a serial onnetion via a able to the development system ould have been usedfor debugging. Having suh a faility at the earliest stages of development would1The BIOS refers to the software in read{only memory. On a typial personal omputer itontains bootstrap software, along with a rudimentary set of devie drivers.2LED: light emitting diode



21have been very useful and this should be onsidered if Skidoo is ported to otherarhitetures.3.5 ThreadsThe most important aspet of Skidoo was the ability to do onurrent programmingusing threads along with semaphores for synhronization. In Skidoo, a thread onsistsof a ontrol struture and a stak. The ontrol struture ontains a pointer to thestak, spae to store saved registers, a small amount of status information, and apointer to the funtion where that thread should start exeuting. A thread statevariable indiates whether the thread is ready to run or bloked for some reason.All threads are kept on a single linked list. Initially there is only a single threadwhih starts in the funtion user_init(). Swithing between threads is aomplishedby saving registers, swithing staks, and restoring registers so that exeution resumesin a di�erent thread. Although it is obsurely doumented, the Gnu C ompilerexpets 6 registers to be preserved between funtion invoations (ebx, edx, esp, ebp,esi, and edi), and 2 registers (eax and ex) may be freely destroyed. Assemblylanguage ode was written to perform ontext swithing.The pair of routines thr_blok() and thr_unblok() are the heart of the threadsystem. A thread alls thr_blok to mark itself not ready; another thread is thenseleted to be run. Calling thr_unblok allows a bloked thread to be marked readyone again. At this early stage of the system there were no interrupts (in partiular nolok interrupt) and no preemptive sheduling. When a thread performed a blokingall, it would save its registers and swith to an idle thread, whih ran a sheduler.The sheduler would searh the thread list for some other thread to run. If there wasno ready thread, the system ould do nothing but halt.It turns out that there is no reason to have a separate idle thread. (In fat havingone introdues a needless thread swith.) This ode was revised so that eah threadruns the sheduling loop when it needs to �nd another thread to pass ontrol to. Aall thr_yield() was needed in the early system; it ran the sheduling loop, evenwhen a thread did not wish to blok. It has been eliminated in the �nal system, but itwas neessary before preemptive sheduling and priorities were operational. Withoutit, new threads were reated but never ran.3.6 PrioritiesA poliy was needed to deide whih thread to run in the event that more than onethread was in the ready state. By assigning eah thread a priority and insisting thatall priorities be unique, it is easy to de�ne a simple, unambiguous poliy: the threadin the ready state with the most urgent priority should run. It is ertainly possibleto de�ne other poliies, espeially if there are multiple threads with idential priority.



22Adding priorities involved adding the priority to the thread ontrol struture andadding poliy ode to the sheduling loop. At �rst, the entire linked list of threadswas searhed and the most urgent ready thread seleted and run. It soon beameobvious that a good optimization is to keep the list in order, with the most urgentthreads �rst, and searh the list only from the urrent thread to the end. Currently, athread is reated with a spei�ed priority and that priority remains �xed. It would beeasy to allow a thread to hange priority (or to have its priority hanged). One thisis done, it will be neessary to onsider the need to immediately shedule a threadwhose priority has been elevated.3.7 SemaphoresThe bloking and unbloking alls provide a lumsy form of synhronization. Theutility of semaphores is well known [1, 5℄. Given the thread bloking and unblokingfaility, they are simple to implement using a state variable and a list of blokedthreads. Skidoo implements binary semaphores with an initial value of one for mu-tual exlusion. Binary semaphores with an initial value of zero are used for privatesignaling semaphores.3.8 Timers and InterruptsThe ability to perform aurate time delays is essential to embedded real time pro-gramming. The desire for timing signals was the impetus to provide failities inSkidoo for dealing with interrupts. A substantial amount of assembly language odewas written to save registers and all a spei�ed C language interrupt handler. Afuntion was provided to allow an arbitrary interrupt soure to be routed to a spei-�ed C funtion and this faility was used to implement a handler for timer interrupts.The default timer handler keeps time by ounting tiks, performs a allbak to a usertimer funtion (if one has been registered), and handles a list of threads with pendingdelays. This list is kept in order of inreasing delay with the shortest delay at thefront of this list. As entries are added, they are plaed in proper order and the delayount adjusted so that it is relative to the entry preeding it. One this is done, onlythe front entry needs to be deremented at eah tik [13℄.3.9 PreemptionWhen an interrupt ours, some thread is suspended while the interrupt handler runs.Normally, when the handler is �nished, the same thread is again resumed. One aninterrupt had the potential to modify the state of a thread, it was neessary to onsiderthe possibility of resuming a di�erent thread upon ompletion of the interrupt. Inpartiular, it is desirable to resume a di�erent thread when that thread is moreurgent than the urrently running thread, and has been marked ready by the interrupt



23handler. As a spei� example, expiration of a delay interval ould ause a new threadto be marked ready within an interrupt routine. If this thread was of more urgentpriority than the urrent thread, it would be neessary to resume it immediately ratherthan resume the thread that was running when the interrupt ourred. In this ase,the urrently running thread is marked as \suspended during interrupt" and the moreurgent thread is resumed instead when the interrupt is �nished. This results in therebeing two possible ways that a thread an be suspended. One is the synhronous asewhere the thread itself performed a all to thr_blok. The seond is the asynhronousase where the thread was left suspended after an interrupt routine handed ontrolto some other thread. In retrospet it would be possible to make these two statesidential by simply saving some additional registers in the synhronous ase, but thishas not been done.The situations that may result in a hange in the urrently running thread areenumerated in Figure 3.1. Notie that thr_yield() is not listed, as it has beeneliminated in the �nal system.Thread is reated.Thread exits.Thread bloks.Thread is unbloked.Thread hanges priority.Figure 3.1. Thread preemption pointsThe ability to unblok threads and transfer to them immediately from interruptode is vital in real{time systems. In Figure 3.1 the bloking and unbloking pointsinlude semaphores, timer delays, and other synhronization primitives yet to bedesribed. Whenever a thread enters or leaves the system (or is bloked or unbloked),it is neessary to reevaluate whih thread should be running. The ability for a threadto hange priority was originally not part of the design, but it is neessary to provideorret behavior in ertain situations. Notable among these is priority inversion,where a less urgent thread holds a mutex that a more urgent thread is bloked waitingto aquire.3.10 ContinuationsNormally a thread alls thr_blok() to blok, and returns again from this funtionwhen it unbloks. Continuations [6℄ were implemented as an experimental alternative.A thread whih bloks with a ontinuation spei�es the funtion it should exeutewhen it unbloks. It never returns from the bloking all but instead exeutes the



24spei�ed funtion. This makes it possible to save only the funtion pointer and anargument rather than the full set of registers. Continuations were easy to implementby adding additional thread state to support a new resumption mehanism. It turnsout that this mehanism is entirely appropriate for launhing a new thread: speifya ontinuation funtion and add the new thread to the thread list.Continuations suggest an additional optimization that has not yet been exploited.When the sheduling loop �nds no thread ready, and the urrent thread expets toresume with a ontinuation, the system ould set a ag indiating that no state needsto be saved when departing from this thread. It would remain in this state until aninterrupt ours, and no registers would need to be saved to transition from this stateinto the interrupt routine and from there to whatever thread should be resumed. Ithas been pointed out [5℄ that most operating systems have a \homing position" wherethe system resides when it is at rest. Threads \aept a task" and leave the homingposition, returning again when the task has been performed. By designing a systemto onsist of threads that eah handle a spei� task using a ontinuation, very fastresponse times ould be ahieved.3.11 Condition VariablesOne a lean interrupt system was developed and tested, the keyboard driver wasredesigned to use interrupts. An interrupt{driven keyboard ould support \hot keys"that would display debug information, and even reboot the system in ases where thesystem had hung. (This did in fat prove immensely useful.) The keyboard interrupthandler would, with interrupts bloked, add haraters to a queue. It is neessaryboth to lok the queue during aess by a thread onsuming the haraters, and tosignal suh a thread one it had bloked upon �nding the queue empty. Loking wasdone by disabling interrupts, but the business of bloking while releasing the lokneeded to be handled arefully to avoid rae onditions. This is exatly the sort ofproblem that monitors and ondition variables were intended to solve [1, 9℄.A ondition variable faility was developed to ouple together a mutex lok with asignaling semaphore. Two forms of ondition variables are provided. The �rst ouplestogether a mutex semaphore with a signaling semaphore and is intended for signalingbetween threads. The seond ouples together the interrupt lok with a signalingsemaphore and is intended for signaling between threads and interrupt routines. Thelatter form has been used in both the keyboard and serial drivers.3.12 DriversA driver for the serial ports was developed next. It was gratifying that Skidoo wasmature enough that this driver ould be developed in a straightforward way, entirelyin C, using existing failities. Interrupt routines were onneted to hardware usinginterrupt hanneling. Condition variables were used for signaling between interrupt



25routines and waiting threads|both to indiate available haraters on reeption andadditional bu�er spae on transmission. The harater queue library designed for thekeyboard driver was used for both transmitted and reeived haraters in the serialport driver. Although this driver did not require new mehanisms in Skidoo, it didgive the system a good workout. With the serial port ative, interrupts from thekeyboard, timer, and serial port were all ative and some new bugs were exposed and�xed.A driver for an ISA{bus data aquisition ard was also developed (the \DAS-16"marketed by Keithley{Metrabyte and others). The driver uses interrupts, was odedentirely in C, and required no new methodology in Skidoo. Writing a driver likethis is an exellent test, sine every embedded system seems to involve developingdrivers for new hardware, and a good test of the system is how easy it makes thisproess. Having immediate aess to the address spae ontaining the hardware andnot needing to install assembly language interrupt routines made the proess easy.
desription linesheader �les 713assembly language 1307onsole. 1108delay. 166main. 107prf. 644random. 112serial. 523sklib. 390thread. 1550trap. 958version. 7das16. 407user. 140tests. 2096server. 125total 10353Figure 3.2. Soure ode summary



263.13 Code sizeThe soure ode for Skidoo is freely available from http://kofa.mmto.org/skidoo.(This thesis desribes version 0.4.1 of Skidoo.) Skidoo onsists of about 10000 linesof C soure ode, as shown in Figure 3.2. Considering that about 2000 lines ofthis are test ases, the ore of Skidoo is approximately 8000 lines of ode. About1300 lines of this are assembly language ode. The proessor initialization, threadswithing, and basi interrupt handling ould only be expressed in assembly language.On a proessor other than the x86, the proessor initialization ode would be muhsmaller, sine other proessors do not have multiple modes like the x86. Figure 3.2does not inlude the slab alloator or any of the network ode.Figure 3.3 shows the ompiled size of the Skidoo kernel in various on�gurations.The basi kernel is ompat enough to �t into read{only memory as part of a ompatappliation. basi kernel 22kkernel and tests 36kkernel and slab alloator 55kkernel and network 320kFigure 3.3. Exeutable ode size
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Chapter 4APPLICATIONS AND TESTSThis hapter disusses what has been done to test and exerise Skidoo. An extensivetest suite was developed ase by ase as features were added to Skidoo. An interative\shell" was developed to invoke the tests and to inspet the internal state of Skidoo.Two appliations { a serial terminal and a data aquisition faility { were developedto demonstrate the utility of Skidoo.4.1 Test suiteEah time a new feature was added to Skidoo, a test ase was written to exerisethat feature. All of the test ases have been retained, even old, seemingly historialand trivial ones. This test suite has grown to over 2000 lines of ode. Assemblingthis set has proved to be a prudent ourse of ation. After the spei� test ase for anew feature has run suessfully, the entire suite of previous ases is run. One thatis suessful, the entire suite is plaed in a loop and run multiple times, sometimesthrough the night. Both of these last proedures have turned up unexpeted bugs.Figure 4.1 shows the set of tests.1 Start a thread2 Setjmp and longjmp3 Timer hookup4 Thread delay5 Create multiple threads6 Create reentrant threads7 Signal with semaphores8 Pass arguments to thread funtions9 Many threads blok on single semaphore10 Unblok semaphore from an interrupt routine11 Signal thread using ondition variable12 Thread join and exit13 Mutex semaphore14 Keyboard diagnosti15 Serial port diagnostisFigure 4.1. Test suite



284.2 Debugging toolsIn addition to the test suite, a set of diagnosti tools were developed to exeriseSkidoo. A simple ommand line interfae allows individual tests to be run one orany number of times. Additionally the entire suite may be run as many times asdesired. Retaining every test, and repeating them as new features were added hasproved invaluable. Often the addition of a new feature introdues bugs in an old one.When hanges are made to basi algorithms, it is essential to be able to verify thatall features still work properly.In addition to running the tests, the \shell" allows dumping of memory, inspetingthe stak, and inspeting important data strutures. An example of the display ofthe thread list is shown in Figure 4.2.This display shows a typial thread status during testing. The asterisk next tothe thread at priority 55 indiates the urrently running thread. The state olumnshows that the two threads with more urgent priorities are bloked on a semaphoreand a timer delay. A single harater shows the resumption mode of eah thread: Jfor the usual \jump" mode, C for a ontinuation, I for a postponed interrupt.
Thread: name ( &tp ) state esp priThread: sserv (0000C4EC) SEM J 00072E8C 50Thread: tf2 (0000C3F4) DELAY C 00074FF4 52* Thread: tf1 (0000C470) READY I 00073FF4 55Thread: user (0000C568) READY J 00071F80 899Thread: sys (0000C5E4) READY J 00070FAC 950Thread Cur : (0000C470) (INT)Figure 4.2. Typial thread display4.3 TimingA number of experiments were performed to measure the time neessary to respondto interrupts, and to transfer ontrol to a previously bloked thread. In all ases thetimer was used to generate interrupts to supply the triggering event. The Pentiumtimestamp ounter was used to measure intervals.1 The system is running a threadat a non-urgent priority that is looping reading the timestamp ounter and writing1The Pentium timestamp ounter is a onstantly inrementing 64 bit timer that ounts at thesystem lok rate, in this ase 200 Mhz. It an be read using a speial proessor instrution into apair of 32 bit registers.



29it into a memory loation. When the timer interrupt happens, the last timestampvalue remains in the designated memory loation. One the more urgent threadis ativated, it reads the timestamp ounter again and an alulate the transfertime. These experiments were performed on a proessor running at 200 Mhz so thatresolution of 5 nanoseonds was obtained. Figure 4.3 shows the results obtained.experiment latenythread to thread, normal 2.32 miroseondsthread to thread, ontinuation 2.05 miroseondsthread to interrupt 0.855 miroseondsFigure 4.3. Control transfer timings4.4 Serial terminalGiven the onsole, keyboard, and serial port driver, a very simple appliation is aserial terminal. A pair of threads are reated. One bloks waiting for keyboard input;the other bloks waiting for serial port input. When haraters arrive from the serialport, they are output to the onsole. When they arrive from the keyboard, they areoutput to the serial port.Even though this is a trivial appliation, it serves as a good diagnosti for multipleinterrupt soures (keyboard, timer, and serial port). This test has no real{time re-quirements apart from the need to move input haraters before the small (128 byte)input bu�ers overow.The ode for this appliation is shown in Figure 4.4. The funtion user_init runsas a high priority thread, initializes serial port parameters, starts two new threads,and is done. The �rst thread runs in the funtion t_in and is usually bloked waitingfor haraters to arrive on the serial port, whih it then opies to the onsole. Theseond thread runs in the funtion t_out and is usually bloked waiting for haratersto be typed at the keyboard. When haraters are typed, they are opied to the serialport. Although both threads run at the same priority, neither is CPU bound and willyield the proessor to the other when it bloks.



30
voiduser_init ( void ) /* initialize port & reate 2 threads */{ sio_baud ( PORT, 9600 );sio_rmod ( PORT, 0 );(void) thr_new ( "te_i", t_in, (void *)PORT, PRI_TERM, 0 );(void) thr_new ( "te_o", t_out, (void *)PORT, PRI_TERM, 0 );}stati voidt_in ( int port ) /* opy from serial port to onsole */{ int ;for ( ;; ) { = sio_get ( port );if (  == '\r' ) = '\n';vga_put (  );}}stati voidt_out ( int port ) /* opy from keyboard to serial port */{ int ;for ( ;; ) { = kb_read ();sio_put ( port,  );if (  == '\r' )sio_put ( port, '\n' );}} Figure 4.4. Serial terminal appliation



314.5 Data Aquisition ServerA data aquisition server was written as a demonstration appliation. This serverallows an analog data aquisition devie to be ontrolled remotely using a serial port.Single samples, periodi data, and burst data may be olleted from any of 16 inputs.This appliation makes use of a speial piee of omputer hardware. A \DAS-16"analog data aquisition board was installed in the target system and a devie driverwritten to aess this devie under Skidoo. The \DAS-16" board is typial of thesort of hardware used in embedded ontrol projets. It has a 12{bit analog to digitalonverter and an input multiplexer that selets one of 16 hannels for onversion.It also has a pair of 12{bit digital to analog onverters and a programmable timer.Analog to digital onversions may be triggered by software or by the timer. When aonversion is omplete, an interrupt is generated.Most of the work developing this appliation onsisted of writing the devie driverfor the \DAS-16." The driver for this devie onsists of about 400 lines of C, andwas straightforward to develop. One the driver was written, a simple protool wasdesigned to make the drivers apabilities aessible from the serial port.The server provides aess to the hardware in three di�erent modes. A singlesample may be obtained from any hannel at any time. A burst aptures a preiselytimed sequene of 1000 points at 1000 Hz. Periodi sampling may be sheduled ata more leisurely rate. The server uses two threads. One thread waits for ommandsfrom the serial port and handles them as they arrive. The seond thread handlesperiodi sampling and waits for timer events. A mutual exlusion semaphore is usedto arbitrate aess to the onversion hardware by the two threads. The lok is heldfor the duration of a burst (an entire seond). A sample of the ode to support theburst mode is shown in Figure 4.5.The interrupt routine that supports the burst mode follows in Figure 4.6. Itaumulates the required number of samples into a bu�er, then unbloks the waitingthread using a semaphore. The thread that supports periodi sampling is ativatedby passing a semaphore from a lok interrupt routine, as shown in Figure 4.7.This is a simple appliation, but it illustrates many of the features of Skidoo. Thiskind of appliation is used for monitoring temperatures and fores in a remote loationwith telemetry being obtained over a serial onnetion, perhaps using optial �bers.The set of failities provided by Skidoo are adequate to allow it to replae ommerialoperating systems in many appliations now in servie at large telesopes in SouthernArizona.
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/* reate semaphores */das_sem = sem_signal_new ( SEM_FIFO );das_mutex = sem_mutex_new ( SEM_PRIO );short *das_burst ( int han, int num ){ /* enter ritial region to aess hardware */sem_blok ( das_mutex );das_san ( han, han );das_rate ( 100, 100 );outb ( CTL_IRQ_5, base + CTL );outb ( CTL_IE | CTL_IRQ_5 | CTL_TT, base + CTL );/* onnet handler to interrupt */irq_5_hookup ( das_int );/* lear the interrupt flag and enable the lok. */outb ( 0x00, base + STATUS );outb ( CLK_GATE, base + CLOCK );ount = 0;want = num;next = buffer;state = RUN;/* wait for signal that data has aumulated */sem_blok ( das_sem );/* exit ritial region */sem_unblok ( das_mutex );return buffer;} Figure 4.5. Example: routine implementing burst mode
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stati voiddas_int ( void ){ int san, data;unsigned long tiks;/* lear interrupt request. */outb ( 0xff, base + STATUS );/* let this request be a no-op */if ( state != RUN )return;/* read sampled value from hardware */san = inb ( base + DATA_LO );data = inb ( base + DATA_HI ) << 4;*next++ = data | (san & 0xf0) >> 4;/* signal when requisite number is obtained */if ( ++ount >= want ) {state = HOLD;sem_unblok ( das_sem );}} Figure 4.6. Example: interrupt routine



34stati short per_buf[240℄;stati short *next_per = per_buf;stati int per_ount = 0;stati strut sem *per_sem;void my_timer ( void ){ /* subdivide lok, ativate thread every 10 seonds */if ( (per_ount++ % 1000) == 0 )sem_unblok ( per_sem );}stati voidperiodi ( int xx ){ for ( ;; ) {/* wait for timer ativation */sem_blok ( per_sem );/* plae new reading in buffer */if ( next_per < &per_buf[240℄ ) {*next_per++ = das_ad ( 3 );}}}voiduser_init ( int xx ){ /* new signaling semaphore */per_sem = sem_signal_new ( SEM_FIFO );/* initialize timer and onnet timer handler */tmr_rate_set ( 100 );tmr_hookup ( my_timer );/* launh new thread to be ativated by timer */(void) thr_new ( "das", periodi, (void *) 0, 49, 0 );} Figure 4.7. Example: timer ativated thread



35Chapter 5CONCLUSIONS AND FUTURE WORKThis thesis has desribed the design and implementation of Skidoo, a ompat real{time operating system. Skidoo o�ers a omplete set of threading servies at thekernel level, along with a versatile set of synhronization primitives. The premisethat a useful system ould be built simply from threads and semaphores has beendemonstrated to be valid. Additional servies suh as timers, interrupt hanneling,and devie drivers have been implemented to enrih the failities provided.Skidoo inorporates a number of features that are unusual and interesting, if notnew. A lean high level faility for interrupt handling makes the system espeiallyonvenient to work with. The availability of ontinuations o�ers a new and usefulway to ontrol threads.There is no question that this projet has been a worthwhile learning exerise.Indeed it has gone signi�antly beyond that to beome a useful tool for myself, andhopefully for others. It has already been used to support a number of small projets.However, more an be done to provide library routines and a more omplete set ofdevie drivers. The following setions outline some major extensions of funtionalitythat are sensible next steps to take with this projet.
5.1 NetworkingWithout question, providing a network stak would be the single thing that would addthe most utility to Skidoo. This work has been started and development is ongoing.The goal of adding a TCP/IP network stak is to have TCP and UDP soketsavailable within Skidoo. Rather than do this work from srath, the plan is to inor-porate the network ode from an existing open soure system. BSD 4.4 and Linuxare both reasonable andidates, but Linux has been hosen beause it supports thegreatest diversity of hardware. In order to use Linux soure ode with little or nohange, it will be neessary to onstrut a limited Linux emulator within Skidoo. Theadvantage of keeping the Linux ode pristine is that it should be easier to migrate tonewer versions of the Linux ode as they beome available.The network faility (and Linux emulation layer) would be optional modules thatould be omitted from Skidoo to redue the memory requirements for those applia-tions where they are not required.



365.2 Memory protetionSkidoo makes no use of the memory protetion hardware that is available on the x86proessor. It would be possible to make some bene�ial uses of the memory protetionhardware without hanging the single shared address spae that is a entral featureof Skidoo.The memory pages ontaining the Skidoo kernel ould be marked as read/exeuteor exeute only, so that proessor traps would our if appliation threads madeinvalid referenes to that part of the address spae. This ould be a great bene�t todebugging of new ode and should make the system more robust.The pages ontaining the stak for eah thread ould be mapped into �xed virtualaddresses for all threads, and a page at the end of the stak ould be set up as a \redzone" to ath stak overows. This would also be a signi�ant aid to debugging.5.3 Debug failitiesSkidoo was developed with almost no planning and forethought given to debugging.The proess would almost ertainly have been more eÆient if some sort of debugfaility had been built in as early as possible. It is possible to run the Gnu debuggerin remote mode aross a serial link, and this would have been a great help. It wouldbe a worthwhile faility to inorporate if Skidoo is developed further, and partiularlyif it is ported to new arhitetures.5.4 Inremental module loadingAt present, to add ode to Skidoo, new modules must be ompiled and linked withthe Skidoo ore. The resulting image is then loaded by rebooting the system.One a network faility is available, it would be very attrative to have a featurewhereby modules ould be inrementally loaded into a running system. Primarilythis would be of bene�t for ode development, beause many iterations of testingould be done without the neessity of rebooting the system. This would also make itpossible to boot the Skidoo ore from a read-only medium suh as CDROM, and theninrementally load modules to obtain ustomized behavior or to failitate developmentand testing.To do inremental module loading would require maintaining a symbol table toperform lookups of already loaded symbols. Existing objet �le formats providereloation information that ould be used to modify address referenes as a modulewas loaded. The software to do the reloation would have to be written. An attrativeoption would be to do the symbol table management and reloation outside of Skidooas part of a more sophistiated development system than ran on the developmenthost. This would be espeially attrative for a target host with minimal memory.



375.5 Porting to new hardwareIt would be worthwhile to port Skidoo to non{x86 arhitetures as well as to multipro-essor mahines (whether x86 or some other arhiteture). Many projets exist usingolder hardware suh as Multibus and VMEbus omputers. These projets have a sub-stantial investment in hardware other than the proessor itself and most ommonlyuse non{x86 proessors suh as the Motorola 680x0 or the Spar.Equally interesting would be the task of making Skidoo run on one of the inreas-ingly ommon and inexpensive x86 SMP mahines. The hange to the shedulingpoliy in this ase is straightforward: at any time, run the two runnable threads withmost urgent priorities! The fat that Skidoo is already fully preemptable will be atremendous aid to making it run on a multiproessor.5.6 Other suggestionsA message passing faility would be a useful addition for both synhronization andommuniation. This would be essentially a data arrying semaphore. An example ofwhere this would be useful would be an I/O operation that bloks waiting for data,but also is set up to unblok on a timeout. A message would provide a onvenientway to indiate whih event unbloked the thread.An interative shell would also be a valuable addition to Skidoo. A very usefulmode of testing has been to exploit the serial driver in Skidoo and to set up a simpleRPC faility aross the serial link. This would be substantially more useful whennetwork sokets are available. As it is, it is inredibly produtive to manipulateSkidoo using an interpreted language suh as Perl or Ruby. Sine an interative shellwould be a tool for development and debugging, it makes a lot of sense to let it run onthe development host and to ommuniate with Skidoo using an RPC stub. In anyevent, it should be arranged as an optional module so that both it and networkingould be omitted to produe a more ompat image if desired.
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Appendix AKERNEL INTERFACE SPECIFICATIONA.1 Hardware requirementsSkidoo runs on the x86 proessor. Development was done using a 200 MHz IntelPentium-MMX with 64 MB of memory. Skidoo has been tested on proessors rangingfrom the 486 through the Pentium-III. It should run on the 386 proessor as well,but this has not been tested. Certain proessor enhanements suh as the 64 bit timestamp ounter will not be available on the 386, but this is not essential to run thekernel.The most onvenient way to run Skidoo is to use the netboot pakage and arrangefor diskless booting from a server. If this is done, the only hardware required besidesthe proessor, motherboard and memory are a video and network ard. If netbootis not present in the ROM on the network ard, a oppy disk or CDROM will berequired for booting. If the motherboard supports it as a boot devie, the CDROMis the most reliable and onvenient.thr_new Create a new thread.thr_exit Terminate urrent thread.thr_self Identify urrent thread.thr_kill Terminate some thread.thr_join Await thread termination.thr_blok Blok urrent thread.thr_blok_ Blok urrent thread with ontinuation.thr_blok_q Blok urrent thread, reusing ontinuation.thr_unblok Unblok some thread.Table A.1. Thread allsA.2 Threadsstrut thread * thr_new ( har *name, tfptr fun, void *arg,int prio, int flags )



40This is used to reate a thread. A string may be given to identify the thread onstatus listings. A funtion is spei�ed, to whih a single argument may be passed.(If it is desired to pass multiple values to a thread, they should be loaded into astruture, and a pointer to the struture should be passed to the thread funtion.) Thethread is assigned a priority, and ags are provided to speify unusual behavior. Thepresent olletion of ags are TF_FPU (the thread uses oating point) and TF_BLOCK(the thread should start up bloked). Most threads do not use oating point, andoating point registers are not saved and restored during a ontext swith unless theappropriate ag is spei�ed.Priorities are stored as 32 bit signed integers; larger positive numerial values areless urgent. Behavior for negative priorities is not de�ned and these values shouldbe avoided. Eah thread must be reated with a unique priority so that there is noambiguity about whih thread should run at any given time.void thr_exit ( void )This may be used by a thread to destroy itself. If a thread just \falls o� the end"by returning from the thread funtion, a all to thr_exit is made transparently. Inthe majority of ases, threads either run forever or fall o� the end, so this funtion israrely used diretly.strut thread * thr_self ( void )This allows a thread to get a pointer to itself. This an be more onvenient thansaving the pointer returned by thr_new.void thr_kill ( strut thread * )This terminates a running thread. If alled on the urrent thread, it is the same asalling thr_exit. If alled on another thread, it arranges for it to resume in thr_exitand marks it ready to run. The next time it is sheduled, it will exit.void thr_join ( strut thread * )This bloks the urrent thread until the spei�ed thread alls thr_exit.void thr_blok ( enum thread_state why )void thr_unblok ( strut thread * )These funtions are the most fundamental synhronization primitives in the Skidookernel. Calling thr_blok bloks the urrent thread and posts a state other thanREADY to indiate why. Calling thr_unblok unbloks the spei�ed thread. They arerarely aessed diretly; semaphores or ondition variables are used instead.



41void thr_blok_ ( enum thread_state why, tfptr fun, void *arg )This is idential to thr_blok exept that a ontinuation is spei�ed. Whenthe thread is unbloked it will resume in the ontinuation funtion, whereas withthr_blok the thread resumes by returning from the thr_blok all.void thr_blok_q ( enum thread_state why )This is a ommon optimization after a all to thr_blok_ has been previouslymade. It should be noted that at all times every thread has a ontinuation funtionset. If one has never been set expliitly, it is impliitly the funtion spei�ed tothr_new when the thread was reated. A all to thr_blok_q bloks the thread andsets a ag so that it will resume in whatever ontinuation funtion has already beenspei�ed. It is a slight optimization over alling thr_blok_ repeatedly with thesame ontinuation funtion.sem_mutex_new Create a new mutex semaphore.sem_signal_new Create a signaling semaphore.sem_destroy Destroy a semaphore.sem_blok Blok on a semaphore.sem_unblok Unblok a semaphore.sem_blok_try Test and blok on a semaphore.sem_blok_ Blok on a semaphore with ontinuation.sem_blok_q Blok on a semaphore, reusing ontinuation.Table A.2. Semaphore allsA.3 Semaphoresstrut sem * sem_mutex_new ( int flags )strut sem * sem_signal_new ( int flags )Calling sem_mutex_new reates a new mutual exlusion semaphore. A all tosem_signal_new reates a new signaling semaphore. The ags variable may be usedto indiate alternate sheduling poliies ( SEM_FIFO versus SEM_PRIO ). The defaultis FIFO sheduling.void sem_destroy ( strut sem * )



42This all destroys a semaphore so that resoures assoiated with it an be reused.This should only be done when there is no possibility of further ativity on thesemaphore.void sem_blok ( strut sem * )This is e�etively the P operation from the lassial semaphore literature. If thesemaphore is set (1), this all will lear it and keep exeuting. If the semaphore islear (0), this all will blok the urrent thread and plae it on a list assoiated withthe semaphore.void sem_unblok ( strut sem * )This is the V operation. This routine never bloks, but it may ause another threadto be unbloked. It does nothing if the semaphore is already set (1). If the semaphoreis lear (0) and the semaphore queue is empty, the semaphore is set. If the semaphoreis lear and the semaphore queue is non{empty, one thread in the queue is unblokedand the semaphore value remains leared. Whih queue entry gets unbloked dependson a poliy ag set when the semaphore was reated. In the usual ase the poliyis SEM_FIFO, and the entry at the front of the queue is unbloked. If the poliy isSEM_PRIO, the entry with the most urgent priority is removed from the queue andunbloked.int sem_blok_try ( strut sem * )This is a version of sem_blok that attempts to aquire a semaphore (typiallya mutex) but that will never blok. If the semaphore is set, it lears the semaphoreand returns 1. If the semaphore is already lear, it returns 0 rather than bloking assem_blok would do.void sem_blok_ ( strut sem *sem, tfptr fun, void *arg )This is idential to sem_blok exept that it resumes via a ontinuation.void sem_blok_q ( strut sem *sem )This is idential to sem_blok exept that it resumes using a previously establishedontinuation.



43v_new Create a new ondition variable.v_destroy Destroy a ondition variable.v_wait Blok and wait for a ondition.v_signal Signal a ondition.pu_enter Enter interrupt loked region.pu_leave Leave interrupt loked region.pu_new Create a new CPU ondition variable.pu_wait Wait for a ondition under a CPU lok.pu_signal Signal a ondition under a CPU lok.Table A.3. Condition variable allsA.4 Condition VariablesCondition variables are a oupling of a mutex semaphore and a signaling semaphore.One mutex semaphore may be involved with several signaling semaphores, eah ex-pressing a di�erent prediate. For this reason the mutex semaphore must be reated�rst, and then oupled to eah prediate in turn. One this is done, the onditionvariable is a single unit that an be used in the wait all.strut v * v_new ( strut sem *mutex )This onstruts a new ondition variable that binds together the indiated mutexand a newly generated signaling semaphore.void v_destroy ( strut v * )This destroys a ondition variable, and releases its resoures.void v_wait ( strut v * )This bloks and waits for a signal on a ondition variable. The aller must alreadyhold the mutex semaphore.void v_signal ( strut v * )This unbloks a thread waiting on a ondition variable.void pu_enter ( void )void pu_leave ( void )This pair of routines obtain and release a pu lok { by disabling and re{enablingall interrupts { in order to enter and leave an interrupt sensitive ritial region. Theyprovide an interrupt safe mutex.



44strut sem *pu_new ( void )void pu_wait ( strut sem * )void pu_signal ( strut sem * )These routines are used in onjuntion with pu_enter and pu_leave to imple-ment a pu loked ondition variable. The routine pu_wait is used to blok and waitfor a signal while holding a pu lok. pu_signal is used to unblok a thread waitingfor the signal, typially from an interrupt handler where the pu lok is impliitlyheld. tmr_rate_set Set lok interrupt rate.tmr_rate_get Get lok interrupt rate.tmr_hookup Connet a funtion to the timer.tmr_delay Blok urrent thread for an interval.tmr_delay_ Blok and delay using ontinuation.tmr_delay_q Blok and delay reusing last ontinuation.Table A.4. Timer allsA.5 Timer failitiesA programmable hardware timer exists whih produes interrupts at a 100 Hz rate.On the x86, the atual rate is 100.0067052 Hz. The timer is aessed by the followingfuntions:void tmr_rate_set ( int hz )This sets the rate at whih interrupts are produed by the timer. If this funtionis never alled, timer interrupts are produed at 100 Hz.int tmr_rate_get ( void )This disovers the rate at whih interrupts are produed by the timer.void timer_hookup ( fptr fun )This spei�es a C funtion that is alled eah time the timer interrupts. Only oneallbak of this sort is allowed; subsequent alls replae the previously establishedfuntion. A null argument may be spei�ed to disonnet the funtion.



45void thr_delay ( int ntiks )This is a onvenient (although somewhat impreise) way to obtain timing delays.After this all the thread is bloked until the spei�ed number of timer tiks haveelapsed. At this time the thread will be made ready, and will run immediately if itis the runnable thread of most urgent priority. Otherwise, it will run only after moreurgent runnable threads have bloked.void thr_delay_ ( int ntiks, tfptr fun, void *arg )This is idential to thr_delay exept that it resumes in a ontinuation funtion.void thr_delay_q ( int ntiks )This funtion delays, resuming in a previously established ontinuation funtion.Usually the ontinuation will have been spei�ed in a thr_delay_ all, but theontinuation given in thr_new ould be used as well. The thr_delay_q funtion isonvenient for onstruting periodi loops using tail-reursion.vga_put Put a harater on the sreen.vga_puts Put a string on the sreen.vga_sreen Selet an alternate sreen.gethar Await and read a keystroke.gethare Read keystroke and eho to sreen.sio_get Read harater from serial port.sio_put Send harater to serial port.sio_gets Read string from serial port.sio_puts Send string to serial port.sio_baud Set serial port baud rate.Table A.5. Devie driver allsA.6 Devie driversThis setion summarizes the most important devie driver aess routines.void vga_put ( int  )void vga_puts ( har *s )void vga_sreen ( int n )



46The onsole driver outputs haraters to a VGA ompatible video ard supportinga 25 line by 80 olumn onsole. A all to vga_put plaes a single harater on thesreen. Calling vga_puts plaes all haraters in a null terminated string on thesreen. A all to vga_sreen selets one of 8 virtual sreens for display. Additionalfuntions manipulate the ursor and are desribed in the soure ode.1int gethar ( void )int gethare ( void )The keyboard driver reads from the standard PC keyboard. Calling gethar readsa harater from the keyboard without attempting to eho the harater. Callinggethare reads a harater and ehos it to the onsole, as would normally be expeted.int sio_get ( int port )void sio_put ( int port, int  )void sio_gets ( int port, har *s )void sio_puts ( int port, har *s )void sio_baud ( int port, int rate )The serial driver reads from and writes to either serial port 0 or 1. Calls tosio_get and sio_put read and write a single harater from the spei�ed port.Calls to sio_gets and sio_puts read and write a string from the spei�ed port. Aall to sio_baud sets the baud rate on the spei�ed port. Rates from 300 to 38400are supported exatly. A rate of 56000 baud is only possible with a 3 perent errorgiven the standard 1.8432 Mhz rystal, but this seems to work just �ne.A.7 Interrupt failitiesvoid vetor_hookup ( int vetor, fptr fun )This all arranges that the spei�ed C funtion is alled whenever the indiatedinterrupt ours.A.8 Booting and initializationAfter bootstrap, the kernel reloates itself to the lowest part of memory. It thenmakes the rest of memory available for dynami alloation. After all subsystems areinitialized, the �rst thread is started in the funtion user_init. This is expeted tobe supplied by the user and will typially alloate resoures and start other threadsneessary to run the intended appliation. This �rst thread runs at the most urgentpossible priority (priority 0), so that no other threads run until it exits.1The soure ode may be obtained from http://kofa.mmto.org/skidoo. This thesis desribesversion 0.4.1 of Skidoo.
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