
Compiler Techniques for Code Compaction
�

Saumya Debray William Evans Robert Muth

Department of Computer Science

University of Arizona

Tucson, AZ 85721, U.S.A.

fdebray, will, muthg@cs.arizona.edu

Bjorn De Sutter

Department of Electronics and Information Systems

Ghent University

B-9000 Gent, Belgium

brdsutte@elis.rug.ac.be

Technical Report TR00-04

March 2000

Abstract

In recent years there has been an increasing trend towards the incorporation of computers into a
variety of devices where the amount of memory available is limited. This makes it desirable to try to
reduce the size of applications where possible. This paper explores the use of compiler techniques to
accomplish code compaction to yield smaller executables. The main contribution of this paper is to
show that careful, aggressive, interprocedural optimization, together with procedural abstraction
of repeated code fragments, can yield signi�cantly better reductions in code size than previous
approaches, which have generally focused on abstraction of repeated instruction sequences. We
also show how \equivalent" code fragments can be detected and factored out using conventional
compiler techniques, and without having to resort to purely linear treatments of code sequences as
in suÆx-tree-based approaches, thereby setting up a framework for code compaction that can be
more exible in its treatment of what code fragments are considered equivalent. Our ideas have
been implemented in the form of a binary-rewriting tool that reduces the size of executables by
about 30% on the average.

� This work was supported in part by the National Science Foundation under grants CCR-9711166, CDA-9500991,
and ASC-9720738, and by the Fund for Scienti�c Research|Flanders under grant 3G001998.

1



1 Introduction

In recent years there has been an increasing trend towards the incorporation of computers into a

wide variety of devices, such as palm-tops, telephones, embedded controllers, etc. In many of these

devices, the amount of memory available is limited due to considerations such as space, weight, power

consumption, or price. At the same time, there is an increasing desire to use more and more sophisticated

software in such devices, such as encryption software in telephones, or speech or image processing

software in laptops and palm-tops. Unfortunately, an application that requires more memory than is

available on a particular device will not be able to run on that device. This makes it desirable to try

to reduce the size of applications where possible. This paper explores the use of compiler techniques to

accomplish this code compaction.

Previous work in reducing program size has explored the compressiblity of a wide range of program

representations: source languages, intermediate representations, machine codes, etc. [18]. The resulting

compressed form either must be decompressed (and perhaps compiled) before execution [6, 7, 8] or it

can be executed (or interpreted [11, 17]) without decompression [5, 10]. The �rst method results

in a smaller compressed representation than the second, but requires the overhead of decompression

before execution. Decompression time may be negligible and, in fact, may be compensated for by the

savings in transmission or retrieval time [8]. A more severe problem is the space required to place the

decompressed code. This also has been somewhat mitigated by techniques of partial decompression

or decompression-on-the-y [4, 6] but these techniques require altering the run-time operation or the

hardware of the computer. In this paper, we explore \compaction," i.e., compression to an executable

form. The resulting form is larger than the smallest compressed representation of the program, but we

do not pay any decompression overhead or require more space in order to execute.

Much of the earlier work on code compaction to yield smaller executables treated an executable

program as a simple linear sequence of instructions, and used procedural abstraction to eliminated

repeated code fragments. Early work by Fraser et al. used a suÆx tree construction to identify

repeated sequences within a sequence of assembly instructions [10], which were then abstracted out into

functions. Applied to a range of Unix utilities on a Vax processor, this technique managed to reduce

code size by about 7% on the average. A shortcoming of this approach is that since it relies on a purely

textual interpretation of a program, it is sensitive to super�cial di�erences between code fragments,

e.g., due to di�erences in register names, that may not actually have any e�ect on the behavior of

the code. This shortcoming was addressed by Baker, using parameterized suÆx trees [2]; by Cooper

and McIntosh, using register renaming [5] (Baker and Manber [3] discuss a similar approach); and by

Zastre, using parameterized procedural abstractions [19]. The main idea is to rewrite instructions so

that instead of using hard-coded register names, the (register) operands of an instruction are expressed,

if possible, in terms of a previous reference (within the same basic block) to that register. Further,

branch instructions are rewritten, where possible, in PC-relative form. These transformations allow

the suÆx tree construction to detect the repetition of similar but not lexically identical instruction

sequences. Cooper and McIntosh obtain a code size reduction of about 5% on the average using these

techniques on classically optimized code (in their implementation, classical optimizations achieve a code

size reduction of about 18% compared to unoptimized code). These approaches nevertheless su�er from

two weaknesses. The �rst is that by focusing solely on eliminating repeated instruction sequences,

they ignore other, potentially more pro�table, sources of code size reduction. The second is that any

approach that treats a program as a simple linear sequence of instructions, as in the suÆx-tree-based

approaches mentioned above, will su�er from the disadvantage of having to work with a particular

ordering of instructions. The problem is that two \equivalent" computations may map to di�erent

instruction sequences in di�erent parts of a program, due to di�erences in register usage and branch

labels, instruction scheduling, and pro�le-directed code layout to improve instruction cache utilization

[16].

This paper describes a somewhat di�erent approach to code compaction, based on a \whole-system"

approach to the problem. Its main contribution is to show that by using aggressive inter-procedural

1



optimization together with procedural abstraction of repeated code fragments, it is possible to obtain

signi�cantly greater reductions in code size than have been achieved to date. For the identi�cation

and abstraction of repeated code fragments, moreover, it shows how \equivalent" code fragments can

be detected and factored out without having to resort to purely linear treatments of code sequences

as in suÆx-tree-based approaches. Thus, instead of treating a program as a simple linear sequence

of instructions, we work with its (interprocedural) control ow graph. Instead of using a suÆx tree

construction to identify repeated instruction sequences, we use a �ngerprinting scheme to identify

\similar" basic blocks. This sets up a framework for code compaction that can be more exible in its

treatment of what code fragments are considered \equivalent." We use the notions of dominators and

post-dominators to detect identical subgraphs of the control ow graph, larger than a single basic block,

that can be abstracted out into a procedure. Finally, we identify and take advantage of architecture-

speci�c code idioms, e.g., for saving and restoring speci�c sets of registers at the entry to and return

from functions. Among the bene�ts of such an approach is that it simpli�es the development of code

compaction systems by using information already available in most compilers, such as the control

ow graph and dominator/postdominator trees, thereby making it unnecessary to resort to extraneous

structures such as suÆx trees.

Our ideas have been implemented in the form of a binary-rewriting tool based on alto, a post-link-

time code optimizer [15]. The resulting system, called squeeze, is able to achieve signi�cantly better

compaction than previous approaches, reducing the size of classically optimized code by about 30%. Our

ideas can be incorporated fairly easily into compilers capable of inter-procedural code transformations.

The code size reductions we achieve come from two sources: aggressive inter-procedural application

of classical compiler analyses and optimizations; and code factoring, which refers to a variety of tech-

niques to identify and \factor out" repeated instruction sequences. Section 2 discusses those classical

optimizations, and their supporting analyses, that are useful for reducing code size. This is followed,

in Section 3, by a discussion of the code factoring techniques used within squeeze. In Section 4, we

discuss interactions between classical optimizations and factoring transformations. Section 5 contains

our experimental results.

A prototype of our system can be obtained from http://www.cs.arizona.edu/alto/squeeze.

2 Classical Analyses and Optimizations for Code Compaction

In the context of code compaction via binary rewriting, it makes little sense to allow the compiler to

inate the size of the program, via transformations such as procedure inlining or loop unrolling, or to

keep obviously unnecessary code by failing to perform, for example, common subexpression elimination

and register allocation. We therefore assume that before code compaction is carried out at link time,

the compiler has already been invoked with the appropriate options to generate reasonably compact

code. Nevertheless, many opportunities exist for link time code transformations to reduce program

size. This section discusses classical program analyses and optimizations that are most useful for code

size reduction. In general, the optimizations implemented within squeeze have been engineered so as to

avoid increases in code size. For example, procedure inlining is limited to those procedures that have

a single call site, and no alignment no-ops are inserted during instruction scheduling and instruction

cache optimization.

2.1 Optimizations for Code Compaction

Classical optimizations that are e�ective in reducing code size include the elimination of redundant,

unreachable, and dead code, as well as certain kinds of strength reduction.

2.1.1 Redundant Code Elimination

A computation in a program is redundant at a program point if it has been computed previously and

its result is guaranteed to be available at that point. If such computations can be identi�ed, they can

obviously be eliminated without a�ecting the behavior of the program.

2



A large portion of code size reductions at link-time in squeeze comes from the application of this

optimization to computations of a hardware register called the global pointer (gp) register, which points

to a collection of 64-bit constants called a global address table. The Alpha processor, on which squeeze is

implemented, is a 64-bit architecture with 32-bit instructions. When a 64-bit constant must be loaded

into a register, the appropriate global address table is accessed via the gp register, together with a 16-bit

displacement.
1
Accessing a global object, i.e., loading from or storing to a global variable, or jumping

to a procedure, therefore involves two steps: loading the address of the object from the global address

table, and then accessing the object via the loaded address. Each procedure in an executable program

has an associated global address table, though di�erent procedures may share the same table. Since

di�erent procedures|which are generally compiled independently|may need di�erent global pointer

values, the value of the gp register is computed whenever a function is entered, as well as whenever

control returns after a call to another function. At link time, it is possible to determine whether a set of

functions have the same gp value, and therefore whether the recomputation of gp is necessary. It turns

out that most functions in a program are able to use the same value of gp, making the recomputation of

gp redundant in most cases. Each such computation of gp involves just one or two register operations,

with no signi�cant latency. On a superscalar processor such as the Alpha, the corresponding instructions

can generally be issued simultaneously with those for other computations, and hence do not incur a

signi�cant performance penalty. Because of this, the elimination of gp computations generally does not

lead to any signi�cant improvements in speed. However, because there are so many recomputations of

gp in a program, the elimination of redundant gp computations can yield signi�cant reductions in size.

2.1.2 Unreachable Code Elimination

A code fragment is unreachable if there is no control ow path to it from the rest of the program.

Code that is unreachable can never be executed, and can therefore be eliminated without a�ecting the

behavior of the program.

At link time, unreachable code arises primarily from the propagation of information across procedure

boundaries. In particular, the propagation of the values of actual parameters in a function call into

the body of the called function can make it possible to statically resolve the outcomes of conditional

branches in the callee. Thus, if we �nd, as a result of inter-procedural constant propagation, that a

conditional branch within a function will always be taken, and there is no other control ow path to the

code in the branch that is not taken, then the latter code becomes unreachable and can be eliminated.

Unreachable code analysis involves a straightforward depth-�rst traversal of the control ow graph,

and is performed as soon as the control ow graph of the program has been computed. Initially,

all basic blocks are marked as unreachable, except for the entry block for the whole program, and a

dummy block called Bunknown , which has an edge to each basic block whose predecessors are not all

known (see Section 2.2.1). The analysis then traverses the inter-procedural control ow graph and

identi�es reachable blocks: a basic block is marked reachable if it can be reached from another block

that is reachable. Function calls and the corresponding return blocks are handled in a context-sensitive

manner: the basic block that follows a function call is marked reachable only if the corresponding call

site is reachable.

2.1.3 Dead Code Elimination

Dead code refers to computations whose results are never used. The notion of \results not used" must

be considered broadly. For example, if it is possible for a computation to generate exceptions or raise

1On a typical 32-bit architecture, with 32-bit instruction words and 32-bit registers, a (32-bit) constant is loaded into
a register via two instructions, one to load the high 16 bits of the register and one for the low 16 bits; in each of these
instructions, the 16 bits to be loaded are encoded as part of the instruction word. However, since the Alpha has 32-bit

instructions but 64-bit registers, this mechanism is not adequate for loading a 64-bit constant (e.g., the address of a
procedure or a global variable) into a register.

3



signals whose handling can a�ect the behavior of the rest of the program, then we cannot consider that

computation to be dead. Code that is dead can be eliminated without a�ecting the behavior of the

program.

Link-time opportunities for dead code elimination arise primarily as a result of unreachable code

elimination that transforms partially dead computations (computations whose results are used along

some execution paths from a program point but not others) into fully dead ones.

2.1.4 Strength Reduction

Strength reduction refers to the replacement of a sequence of instructions by an equivalent but cheaper

(typically, faster) sequence. In general, the cheaper instruction sequence may not be shorter than the

original sequence (e.g., multiplication or division operations where one of the operands is a known

constant can be replaced by a cheaper but longer sequence of bit-manipulation operations such as shifts

and adds). The bene�ts for code compaction come from situations where the replacement sequence

happens to be shorter than the original sequence.

In squeeze, code size improvements from strength reduction come primarily from its application

to function calls. Like many processors, the Alpha has two di�erent function call instructions: the

bsr (\branch subroutine") instruction, which uses PC-relative addressing and is able to access targets

within a �xed displacement of the current location; and the jsr (\jump subroutine") instruction, which

branches indirectly through a register and can target any address. The compiler typically processes

programs a function at a time and generates code for function calls without knowledge of how far away

in memory the callee is. Because of this, function calls are translated to jsr instructions. This, in turn,

requires that the 64-bit address of the callee be loaded into a register prior to the jsr. As discussed in

Section 2.1.1, this is done by loading the address of the callee from a global address table. The code

generated for a function call therefore consists of a load instruction followed by a jsr instruction. If this

can be strength-reduced to a bsr instruction, we obtain a savings in code size as well as an improvement

in execution speed.

2.2 Program Analyses for Code Compaction

Three program analyses turn out to be of fundamental importance for the transformations discussed

above, and are discussed in this section.

2.2.1 Control Flow Analysis

Control ow analysis is essential for all of the optimizations discussed in Section 2.1. It is necessary

for redundant code elimination since, in order to identify a computation as redundant at a program

point, we have to verify that it has been computed along every execution path upto that point. It is

necessary for unreachable code elimination as well as dead code elimination because the classi�cation of

code as unreachable or dead relies fundamentally on knowing the control ow behavior of the program.

Finally, the strength reduction transformation for function calls discussed in Section 2.1.4 relies on the

knowledge of the targets of such calls.

Traditional compilers generally construct control ow graphs for individual functions, based on

some intermediate representation of the program, in a straightforward way [1]. Things are somewhat

more complex at link time because machine code is harder to decompile. In squeeze, we construct the

inter-procedural control ow graph for a program as follows:

1. The start address of the program appears at a �xed location within the header of the �le (this

location may be di�erent for di�erent �le formats). Using this as a starting point, we use the

\standard" algorithm [1] to identify leaders and basic blocks, as well as function entry blocks. We

4



use the relocation information of the executable to identify additional leaders, such as jump table

targets, which might otherwise not be detected, and we mark these basic blocks as relocatable.

At this stage, we make two assumptions: (i) that each function has a single entry block; and (ii)

that all of the basic blocks of a function are laid out contiguously. If the �rst assumption turns

out to be incorrect, we \repair" the ow graph at a later stage. If the second assumption does

not hold, the constructed control ow graph may contain (safe) imprecisions which may cause less

e�ective (size) optimizations.

2. We add edges to the ow graph. If we cannot resolve the exact target of a control transfer

instruction, we assume that the transfer is to a special block Bunknown (in the case of indirect

jumps) or Funknown (in the case of indirect function calls). We conservatively assume that Bunknown

and Funknown de�ne and use all registers, etc.

Any basic block whose start address is marked as relocatable may be the target of any unresolved

indirect jump. Thus, we add an edge from Bunknown to each such block. Any function whose

entry point is marked as relocatable may be the target of any unresolved indirect function call.

Thus, we add a call edge to it from Funknown . (This is safe, but overly conservative. We discuss,

below, how this can be improved.)

3. We carry out inter-procedural constant propagation on the resulting control ow graph, as de-

scribed in Section 2.2.2. We use the results to determine addresses that are loaded into registers.

We use this information, in turn, to resolve the targets of indirect jumps and function calls. If we

can resolve such targets unambiguously, we replace the edge to Funknown or Bunknown by an edge

to the appropriate target.

4. Thus far, we have assumed that a function call returns to its caller at the instruction immediately

after the call instruction. At the level of executable code, this assumption can be violated in two

ways.
2

The �rst involves escaping branches|ordinary (i.e., non-function-call) jumps from one

function into another|that arise either due to tail call optimization, or because of code sharing

in hand-written assembly code (such as is found in, for example, some numerical libraries). The

second involves nonlocal control transfers via functions such as setjmp and longjmp. Both these

cases are handled by the insertion of additional control ow edges, which we call compensation

edges, into the control ow graph. In the former case, escaping branches from a function f to a

function g result in a single compensation edge from the exit node of g to the exit node of f . In

the latter case, a function containing a setjmp has an edge from Funknown to its exit node, while

a function containing a longjmp has a compensation edge from its exit node to Funknown . The

e�ect of these compensation edges is to force the various dataow analyses to approximate safely

the control ow e�ects of these constructs.

5. Finally, squeeze attempts to resolve indirect jumps through jump tables, which arise from case or

switch statements. The essential idea is to use constant propagation to identify the start address

of the jump table, and the bounds check instruction(s) to determine the extent of the jump table.

The edge from the indirect jump to Bunknown is then replaced by a set of edges, one for each entry

in the jump table. If all of the indirect jumps within a function can be resolved in this way, any

remaining edges from Bunknown to basic blocks within that function are deleted.

Potentially, any procedure whose entry-point address is stored in a data section can have this (relocat-

able) address used somewhere in the program as the target of an indirect function call. Because of this,

as mentioned in step 2 above, such procedures must be assumed to be reachable via indirect calls as long

2In some architectures, the callee may explicitly manipulate the return address under some circumstances. For example,

the SPARC calling convention allows an extra word to follow a call instruction. In such a case, the callee increments
the return address to skip over this word. (We are grateful to an anonymous referee for pointing this out to us.) Such
situations do not arise in the Alpha architecture, and are not handled by squeeze.

5



as the program contains any call whose target is unknown. While this is safe, it is overly conservative.

As discussed in Section 2.1.4, the code generated by the compiler for a function call typically consists of

a load from a global address table followed by an indirect call. (A compiler can, in principle, optimize

this to a direct call when the caller and callee are within the same module, but such a scheme is still

necessary for inter-module calls.) This means that any procedure that is accessible from outside its

own module has its relocatable address stored in the global address table (which is in a data section)

and hence will be considered to be called from Funknown . As an indication of how conservative this

simple technique is, we note that for the programs in the SPECint-95 benchmark suite, about 65% of

all functions, on the average, are considered to be called from Funknown .

To improve the precision of this analysis, we extend it with an analysis of the program code and the

associated relocation information. It turns out that Alpha executables under Digital Unix have special

relocation entries, referred to as literal relocations, that are used to describe text references. These

relocation entries play a purely informational role, in that they can be ignored by the linker without

a�ecting program behavior. Each instruction that loads an address from the global address table, or

uses an address so loaded, has an associated literal relocation entry. These entries can therefore be used

to identify instructions that use a previously loaded literal; in particular, they can be used to determine

whether the loaded value is used for an indirect function call. Using this information, we can delete the

call edge from Funknown to a function f if the entry-point address of f is obtained only via loads from

the global address table (i.e., we can guarantee that this address will not be synthesized anywhere via

any sort of bit manipulation or pointer arithmetic, or obtained in some other way, e.g., by reading o�

the disk), and is used only for calls whose targets have been resolved. For the SPECint-95 benchmarks,

this results in fewer than 14% of the procedures having a call from Funknown . The resulting improvement

in control ow information has a very signi�cant e�ect on the amount of code that can be eliminated

as unreachable, and leads to a signi�cant improvement in the amount of code compaction that can be

realized.

2.2.2 Interprocedural Constant Propagation

As mentioned above, we assume that standard compiler analyses and optimizations|including constant

propagation|have already been carried out prior to link-time code compaction. Where do opportunities

for link-time constant propagation then arise? It turns out, not surprisingly, that constant values that

are propagated at compile time are those that are present in source-level compilation units, while those

propagated at link time are either values that are not available at compile time, e.g., addresses of global

names, or those that the compiler is unable to propagate across compilation unit boundaries, e.g.,

from a caller to a callee. Link-time constant propagation opportunities also arise from architecture-

speci�c computations that are not visible at the intermediate code representation level typically used

by compilers for most optimizations. An example of this is the computation of the gp register on the

Alpha processor.

The analysis we use in squeeze is essentially standard iterative constant propagation, limited to

registers but carried out across the control ow graph of the entire program. This has the e�ect

of communicating information about constant arguments from a calling procedure to the callee. To

improve precision, squeeze attempts to determine the registers saved on entry to a function and restored

at the exit from it. If a register r that is saved and restored by a function in this manner contains a

constant c just before the function is called, r is inferred to contain the value c on return from the call.
3

Constant propagation turns out to be of fundamental importance for the rest of the system, since

many control and data ow analyses rely on the knowledge of constant addresses computed in the

program. For example, the code generated by the compiler for a function call typically �rst loads the

address of the called function into a register, then uses a jsr instruction to jump indirectly through

3Unfortunately, we cannot rely on the calling conventions being observed. Hand-written assembly code in libraries
does not always obey such conventions, and a compiler may ignore them if it does inter-procedural register allocation.

6



that register. If constant propagation determines that the address being loaded is a �xed value and

the callee is not too far away, the indirect function call can be replaced by a direct call using a bsr

instruction, as discussed in Section 2.1.4. This is not only cheaper, but also vital for improving the

precision of the inter-procedural control ow graph of the program, since it lets us replace a pair of

call/return edges to Funknown with a pair of such edges to the (known) callee. Another example of

the use of constant address information involves the identi�cation of possible targets of indirect jumps

through jump tables. Unless this can be done, we must assume that the indirect jump is capable of

jumping to any basic block of a function,
4
and this can signi�cantly hamper optimizations. Finally,

knowledge of constant addresses is useful for optimizations such as the removal of unnecessary memory

references. We �nd that on the average, link-time constant propagation is able to determine the values

of the arguments and results for about 18% of the instructions of a program. (This does not mean that

these \evaluated" instructions can all be removed, since very often they represent address computations

for indexing into arrays or structures or for calling functions.)

2.2.3 Interprocedural Register Liveness Analysis

Code factoring, discussed in Section 3, involves abstracting repeated instruction sequences into proce-

dures. To call such procedures it is necessary to �nd a register that can be used to hold the return

address. Squeeze implements a relatively straightforward interprocedural liveness analysis, restricted

to registers, to determine which registers are live at any given program point. The analysis is context-

sensitive in that it maintains information about which return edges correspond to which call sites, and

propagates information only along realizable call/return paths. The \standard" dataow equations for

liveness analysis are extended to deal with idiosyncracies of the Alpha instruction set. For example,

the call pal instruction, which acts as the interface with the host operating system, has to be handled

specially since the registers that may be used by this instruction are not visible as explicit operands

of the instruction. Our implementation currently uses the node Bunknown as the target for such calls.

The conditional move instruction also requires special attention since the destination register has to be

considered as a source register as well.

In order to propagate dataow information only along realizable call/return paths, squeeze computes

summary information for each function, and models the e�ect of function calls using these summaries.

Given the site of a call to a function f , consisting of a call node nc and a return node nr, the e�ects of

the function call on liveness information are summarized via two pieces of information:

1. mayUse[f ] is the set of registers that may be used by f . A register r may be used by f if there

is a realizable path from the entry node of f to a use of r without an intervening de�nition of r.

Hence mayUse [f ] describes the set of registers that are live at the entry to f independent of the

calling context, and which are therefore necessarily live at the call node nc.

2. byPass [f ] is the set of registers whose liveness depends on the calling context for f . This consists

of those registers r such that, if r is live at nr, then r is also live at nc.

The analysis proceeds in three phases. The �rst two phases compute summary information for functions,

i.e., their mayUse and byPass sets. The third phase then uses this information to do the actual liveness

computation. While the �rst two phases can be carried out in parallel, our implementation carries them

out sequentially in order to conserve space.

It turns out that even context-sensitive liveness analyses may be overly conservative if they are not

careful in handling register saves and restores at function call boundaries. Consider a function that

saves the contents of a register, then restores the register before returning. A register r that is saved

in this manner will appear as an operand of a store instruction, and therefore appear to be used by

4More precisely, any basic block that is marked as \relocatable," as discussed in Section 2.2.1.

7



B’ C’

E’

D’

A’

stq r7,4(r30)

sub r5,r6,r9
stq r9,8(r30)
ldq r9,12(r30)
xor r5,r6,r0

xor r19,r19,r19

cmp r2,r1,r0
add r5,r6,r8
beq r0

sub r5,r6,r19
stq r19,8(r30)
ldq r19,22(r30)
xor r5,r6,r0

ldq r19,22(r22)

stq r9,16(r23)

D

ldq r19,22(r22)
stq r9,16(23)

B

stq r7,4(r30)

stq r9,8(r30)
ldq r9,12(r22)

xor r19,r19,r19
stq r9,16(r23)
xor r5,r6,r0

add r5,r6,r8
sub r5,r6,r9

C

sub r5,r6,r19
stq r19,8(r30)
ldq r19,22(r22)
xor r5,r6,r0
stq r9,16(r23)

add r5,r6,r8

A

cmp r2,r1,r0

beq r0

E

Figure 1: Local Code Factoring

the function. In the subsequent restore operation, register r will appear as the destination of a load

instruction, and therefore appear to be de�ned by the function. A straightforward analysis will infer

that r is used by the function before it is de�ned, and this will cause r to be inferred as live at every

call site for f . To handle this problem, squeeze attempts to determine, for each function, the set of

registers it saves and restores.
5
If the set of callee-saved registers of function f can be determined, we

can use it to improve the precision of the analysis by removing this set from mayUse [f ] and adding it

to byPass[f ] whenever those values are updated during the �xpoint computation.

3 Code Factoring

Code factoring involves (1) �nding a multiply-occurring sequence of instructions, (2) making one repre-

sentative sequence that can be used in place of all occurrences, and (3) arranging, for each occurrence,

that the program executes the representative instead of the occurrence. The third step can be achieved

by explicit control transfer (via a call or jump), or by moving the representative of several occurrences

to a point that dominates every occurrence. We �rst exploit the latter form of code factoring since it

involves no added control transfer instructions.

3.1 Local Factoring Transformations

Inspired by an idea of Knoop et al. [13], we try to merge identical code fragments by moving them

to a point that pre- or post-dominates all the occurrences of the fragments. We have implemented a

local variant of this scheme which we describe using the example depicted in Figure 1. The left hand

side of the �gure shows an assembly code owchart with a conditional branch (beq r0) in block A.

Blocks B and C contain the same instruction `add r5,r6,r8.' Since these instructions do not have

backward dependencies with any other instruction in B or C, we can safely move them into block A just

before the beq instruction, as shown in the right hand side of Figure 1. Similarly, blocks B, C, and D

share the same store instruction `stq r9,r16(r23),' and since these instructions do not have forward

dependencies with any other instruction in B, C,and D, they can be safely moved into block E. In this

case, it is not possible to move the store instruction from B and C into A because, due to the lack of

aliasing information, there are backward dependencies to the load instructions (ldq) in B and C. In

general, however, it might be possible to move an instruction either up or down. In this case, we prefer

to move it down since moving it up, over a two-way branch, will eliminate one copy while moving it

down to a block that has many predecessors might eliminate several copies.

5We do not assume that a program will necessarily respect the calling conventions with regard to callee-saved registers,

since such conventions are not always respected in libraries containing hand-written assembly code. This approach is safe,
though sometimes overly conservative.

8



Our scheme uses register reallocation to make this transformation more e�ective. For example, the

sub instructions in B and C write to di�erent registers (r9 and r19). We can, however, rename r9 to r19

in B, thereby making the instructions identical. Another opportunity rests with the xor instructions in

B and C. Even though they are identical, we cannot move them into A because they write register r0

which is used by the conditional branch. Reallocating r0 in A to another register which is dead at the

end of A will make the transformation possible.

3.2 Procedural Abstraction

Given a single-entry, single-exit code fragment C, procedural abstraction of C involves (i) creating a

procedure fC whose body is a copy of C; and (ii) replacing the appropriate occurrences of C in the

program text by a function call to fC . While the �rst step is not very diÆcult, the second step, at the

level of assembly or machine code, involves a little work.

In order to create a function call using some form of \jump-and-link" instruction that transfers

control to the callee and at the same time puts the return address into a register, it is necessary to

�nd a free register for that purpose. A simple method is to calculate, for each register r, the number
of occurrences of code fragment C that could use r as a return register. A register with the highest

such �gure of merit is chosen as the return register for fC . If a single instance of fC , using a particular

return register, is not enough to abstract out all of the occurrences of C in the program, we may create

multiple instances of fC that use di�erent return registers. We use a more complicated scheme when

abstracting function prologs (see Section 3.5.1) and regions of multiple basic blocks (see Section 3.4).

3.3 Procedural Abstraction for Individual Basic Blocks

Central to our approach is the ability to apply procedural abstraction to individual basic blocks. In

this section, we discuss how candidate basic blocks for procedural abstraction are identi�ed.

3.3.1 Fingerprinting

To reduce the cost of comparing basic blocks to determine whether they are identical (or similar), we use

a �ngerprint function to compute a �ngerprint for each basic block, such that two blocks with di�erent

�ngerprints are guaranteed to be di�erent. In general, such �ngerprint functions are de�ned with

respect to the notion of \equality" between basic blocks. For example, in our current implementation,

two blocks are considered to be equal if the instruction sequences in them are the same. Thus, the

�ngerprint function of a block is based on the sequence of instructions in the block. On the other hand,

if a code compaction scheme de�nes equality of basic blocks with respect to de�nition-use chains then

a �ngerprint based on the number of occurrences of each type of opcode may be used.

In our current implementation, a �ngerprint is a 64-bit value formed by concatenating 4-bit encodings

of the op-codes of the �rst 16 instructions in the block. Since most \systems" applications tend to have

short basic blocks, characterizing the �rst 16 instructions seems enough for most basic blocks. This

means that two blocks that are di�erent, but which have the same sequence of opcodes for their �rst

sixteen instructions, will have the same �ngerprint: we will discover them to be di�erent later, when

we actually compare them instruction by instruction.

With 4 bits per instruction, we can encode 15 di�erent opcodes and reserve one code for \other." We

decide which 15 will be explicitly represented by considering a static instruction count of the program.

The 15 most frequently occurring op-codes are given distinct 4-bit patterns. The remaining pattern,

0000, represents op-codes that are not in the top 15 in frequency.

To reduce the number of pairwise comparisons of �ngerprints that must be carried out, we use

a hashing scheme such that basic blocks in di�erent hash buckets are guaranteed to have di�erent

�ngerprints, and so need not be compared.

9



r5 = r4+1
r3 = r5+r2
r6 = r5*r3

B1

r4 = r6*2
r0 = r3-r6

{r1,r2} live

{r3,r4} live

r0 = r1+1

r5 = r0*r1
r3 = r1-r5
r4 = r5*2

r1 = r0+r2

B0

r4 = r1

B1
r5 = r4+1
r3 = r5+r2
r6 = r5*r3

r4 = r6*2
r0 = r3-r6

B0
r5 = r4+1
r3 = r5+r2
r6 = r5*r3

r4 = r6*2
r0 = r3-r6

r3 = r0

(a) before (b) after

Figure 2: Example of basic-block-level register renaming

3.3.2 Register Renaming within Basic Blocks

When we �nd two basic blocks that are \similar," i.e., have the same �ngerprint and the same number

of instructions, but which are not identical, we attempt to rename the registers in one of them so as to

make the two identical. The basic idea is very simple: we rename registers \locally," i.e., within the basic

block; and if necessary, we insert register-to-register moves, in new basic blocks inserted immediately

before and after the block being renamed, so as to preserve program behavior. An example of this is

shown in Figure 2, where block B0 is renamed to be the same as block B1.

For soundness, we have to ensure that the renaming does not alter any use-de�nition relationships.

We do this by keeping track of the set of registers that are live at each point in the basic block, as well

as the set of registers that have already been subjected to renaming. These sets are then used to detect

and disallow renamings that could alter the program's behavior. The pseudocode for our renaming

algorithm is given in Appendix A.

The renaming algorithm keeps track of the number of explicit register-to-register moves that have

to be inserted before and after a basic block that is being renamed. If, at the end of the renaming

process, the cost of renaming, i.e., the number of register moves required together with a function call

instruction, exceeds the savings from the renaming, i.e., the number of instructions in the block, the

renaming is undone.

Cooper and McIntosh describe a di�erent approach to register renaming [5]. They carry out register

renaming at the level of entire live ranges. That is, when renaming a register r0 to a di�erent register

r1, the renaming is applied to an entire live range for r0. This has the advantage of not requiring

additional register moves before and after a renamed block, as our approach does. However, it has

the problem that register renaming to allow the abstraction of a particular pair of basic blocks may

interfere with the abstraction of a di�erent pair of blocks. This is illustrated in Figure 3, where solid

double arrows indicate identical basic blocks, while dashed double arrows indicate blocks that are not

identical but which can be made identical via register renaming. Blocks B0, B1, and B2 comprise a

live range for register r0, while B3 and B5 comprise a live range for r1. We can rename r0 to r5 in

this live range, so as to make blocks B1 and B3 identical, but this will cause blocks B2 and B4 to

not be identical and therefore not abstractable into a function. We can also rename r5 to r0 in block

B3 so as to make it identical to B1, but this will interfere with the abstraction of blocks B5 and B6.

Because of such interference e�ects, it is not clear whether live-range-level renaming produces results

that are necessarily superior to basic-block-level renaming. Notice that the problem could be addressed

10



r2 = r3+r0

r1 = r0+r2

r2 = r1*r0

r1 = r0+r1

r3 = r1+r2

r2 = r3+r0

r1 = r0+r2

r2 = r1*r0

B4

r1 = r5+r1

r3 = r1+r2

B3

B5

r1 = r3-r5

r2 = r0+r5

r3 = r5*r4

B0

B1

B2

r0 = load(...)

r1 = r3-r5

r2 = r0+r5

r3 = r5*r4

B6

r0        r5

r0        r5

Live range for

Live range for

r0

r1

Figure 3: Interference e�ects in live-range-level register renaming

by judiciously splitting the live ranges. Indeed, the local renaming we use can be seen as the limiting

case of live-range-level renaming if splitting is applied until no live range spans more than one basic

block.

3.3.3 Control Flow Separation

The approach described above will typically not be able to abstract two basic blocks that are identical

except for an explicit control transfer instruction at the end. The reason for this is that if the control

transfers are to di�erent targets, the blocks will be considered to be di�erent and so will not be ab-

stracted. Moreover, if the control transfer instruction is a conditional branch, procedural abstraction

becomes complicated by the fact that two possible return addresses have to be communicated.

To avoid such problems, basic blocks that end in an explicit control transfer instruction are split

into two blocks: one block containing all the instructions in the block except for the control transfer,

and another block that contains only the control transfer instruction. The �rst of this pair of blocks

can then be subjected to renaming and/or procedural abstraction in the usual way.

The next section describes how code fragments larger than a single basic block can be subjected to

procedural abstraction.

3.4 Single-Entry/Single-Exit Regions

The discussion thus far has focused on the procedural abstraction of individual basic blocks. In general,

however, we may be able to �nd multiple occurrences of a code fragment consisting of more than one

basic block. In order to apply procedural abstraction to such a region R, at every occurrence of R in

the program, we must be able to identify a single program point at which control enters R, and a single

program point at which control leaves R. It isn't hard to see that any set of basic blocks R with a single

entry point and a single exit point corresponds to a pair of points (d; p) such that d dominates every

block in R and p post-dominates every block in R. Conversely, a pair of program points (d; p), where d
dominates p and p post-dominates d, uniquely identi�es a set of basic blocks with a single entry point

and single exit point. Two such single-entry, single-exit regions R and R0

are considered to be identical

if it is possible to set up a 1-1 correspondence ' between their members such that B1 ' B0

1
if and only

if (i) B1 is identical to B0

1
, and (ii) if B2 is a (immediate) successor of B1 under some condition C,

and B0

2
is a (immediate) successor of B0

1
under the same condition C, then B2 ' B0

2
. The algorithm to

determine whether two regions are identical works by recursively traversing the two regions, starting at

the entry node, and verifying that corresponding blocks are identical.

11



In squeeze, after we apply procedural abstraction to individual basic blocks, we identify pairs of basic

blocks (d; p) such that d dominates p and p post-dominates d. Each such pair de�nes a single-entry,

single-exit set of basic blocks. We then partition these sets of basic blocks into groups of identical

regions, which then become candidates for further procedural abstraction.

As in the case of basic blocks, we compute a �ngerprint for each region so that regions with di�erent

�ngerprints will necessarily be di�erent. These �ngerprints are, again, 64-bit values. There are 8 bits

for the number of basic blocks in the region and 8 bits for the total number of instructions, with the

bit pattern 11...1 being used to represent values larger than 256. The remaining 48 bits are used to

encode the �rst (according to a particular preorder traversal of the region) 8 basic blocks in the region,

with each block encoded using 6 bits: two bits for the type of the block, and four bits for the number

of instructions in the block. Again, as in the case of basic blocks, the number of pairwise comparisons

of �ngerprints is reduced by distributing the regions over a hash table.

It turns out that applying procedural abstraction to a set of basic blocks is not as straightforward

as for a single basic block, especially in a binary rewriting implementation such as ours. The reason is

that, in general, when the procedure corresponding to such a single-entry, single-exit region is called,

the return address will be put into a register whose value cannot be guaranteed to be preserved through

that entire procedure, e.g., because the region may contain function calls, or because the region may

contain paths along which that register is overwritten. This means that the return address register has

to be saved somewhere, e.g., on the stack. However, allocating an extra word on the stack, to hold

the return address, can cause problems unless we are careful. Allocating this space at the top of the

stack frame can cause changes in the displacements of other variables in the stack frame, relative to the

top-of-stack pointer, while allocating it at the bottom of the stack frame can change the displacements

of any arguments that have been passed on the stack. If there is any address arithmetic involving the

stack pointer, e.g., for address computations for local arrays, such computations may be a�ected by

changes in displacements within the stack frame. These problems are somewhat easier to handle if the

procedural abstraction is being carried out before code generation, e.g., at the level of abstract syntax

trees [7]. At the level of assembly code [5, 10] or machine code (as in our work), it becomes considerably

more complicated. There are, however, some simple cases where it is possible to avoid the complications

associated with having to save and restore the return address when introducing procedural abstractions.

Here, we identify two such situations. In both cases, let (d0; p0) and (d1; p1) de�ne two identical regions.

The �rst case involves situations where p0 and p1 are return blocks, i.e., blocks from which control

returns to the caller. In this case there is no need to use procedural abstraction to create a separate

function for the two regions. Instead, we can use a transformation known as cross-jumping [14], where

the code in the region (d1; p1) is simply replaced by a branch to d0. The transformation is illustrated

in Figure 4.

In the second case, suppose that it is possible to �nd a register r that (i) is not live at entry to

either region, and (ii) whose value can be guaranteed to be preserved upto the end of the regions (r may

be a general-purpose register that is not de�ned within either region, or a callee-saved register that is

already saved and restored by the functions in which the regions occur). In this case, when abstracting

these regions into a procedure p, it is not necessary to add any code to explicitly save and restore the

return address for p. The instruction to call p can simply put the return address in r, and the return

instruction(s) within p can simply jump indirectly through r to return to the caller.

If neither of these conditions is satis�ed, squeeze tries to determine whether the return address

register can be safely saved on the stack at entry to p, and restored at the end. For this, it uses a

conservative analysis to determine whether a function may have arguments passed on the stack, and

which, if any, registers may be pointers into the stack frame. Given a set of candidate regions to be

abstracted into a representative procedure, it checks the following:

1. For each function that contains a candidate region, it must be safe, with respect to the problems

mentioned above, to allocate a word on the stack frame of the function;

12



return

d0

p
0

d

p
1

1

return

(a) before

return

d0

p
0

(b) after

Figure 4: Merging Regions ending in returns via Cross-jumping

2. A register r0 must be free at entry to each of the regions under consideration;

3. A register r1 must be free at the end of each of the regions under consideration; and

4. There should not be any calls to setjmp()-like functions that can be a�ected by a change in the

structure of the stack frame.

If these conditions are satis�ed then, on entry, p allocates an additional word on the stack and saves the

return address (passed via r0) into this location; and, on exit, loads the return address from this location

(using r1) and restores the stack frame. The current implementation of the safety check described above

is quite conservative in its treatment of function calls within a region. In principle, if we �nd that space

can be allocated on the stack but have no free registers for the the return address at entry or exit from

the abstracted function, it should be possible to allocate an extra word on the stack in order to free up

a register, but we have not implemented this.

3.5 Architecture-Speci�c Idioms

Apart from the general-purpose techniques described earlier for detecting and abstracting out repeated

code fragments, there are machine-speci�c idioms that can be pro�tably exploited. In particular, the

instructions to save and restore registers (the return address and callee-saved registers) in the prolog

and epilog of each function generally have a predictable structure and are saved at predictable locations

within the stack frame. For example, the standard calling convention for the DEC Alpha processor

under Digital Unix treats register r26 as the return address register (ra) and registers r9 through

r15 as callee-saved registers. These are saved at locations 0x0(sp), 0x8(sp), 0x10(sp), and so on.

Abstracting out such instructions can yield considerable savings in code size. Such architecture-speci�c

save/restore sequences are recognized and handled specially by squeeze, for two reasons: �rst, these

instructions often do not form a contiguous sequence in the code stream; and second, handling them

specially allows us to abstract them out of basic blocks that may not be identical to each other.

3.5.1 Abstracting Register Saves

In order to abstract out the register save instructions in the prolog of a function f into a separate

function g, it is necessary to identify a register that can be used to hold the return address for the call

from f to g. For each register r, we �rst compute the savings that would be obtained if r were to be

used for the return address for such calls. This is done by totaling up, for each function f where r is free

13



Save0
15

Save0
14

Save0
9

Save0
ra

Save0
14

sp = sp - 32
bsr  r0, Save0

9

. . .

f0:

bsr  r0, 
sp = sp - 40

f1:

stq  r15, 0x38(sp)

stq r14, 0x30(sp)

stq  r9, 0x8(sp)

stq  ra, 0x0(sp)
ret  (r0)

Figure 5: Example code from abstraction of register save actions from function prologs

at entry to f , the number of registers saved in f 's prolog. We then choose a register r with maximum

savings (which must exceed 0), and generate a family of functions Saver
15
; : : : ;Saver

9
;Saverra that save

the callee-saved registers and the return address register, and then return via register r. The idea is

that function Saveri saves register i and then falls through to function Saveri�1
.

As an example, suppose we have two functions f0() and f1(), such that f0() saves registers r9, . . . ,

r14, and f1() saves only register r9. Assume that register r0 is free at entry to both these functions

and is chosen as the return address register. The code resulting from the transformation described

above is shown in Figure 5.

It may turn out that the functions subjected to this transformation do not use all of the callee-saved

registers. For example, in Figure 5, suppose that none of the functions using return address register r0

save register r15. In this case, the code for the function Save0
15
becomes unreachable and is subsequently

eliminated.

A particular choice of return address register, as described above, may not account for all of the

functions in a program. The process is therefore repeated, using other choices of return address registers,

until either no further bene�t can be obtained, or all functions are accounted for.

3.5.2 Abstracting Register Restores

The code for abstracting out register restore sequences in function epilogs is conceptually analogous to

that described above, but with a few di�erences. If we were simply to do the opposite of what was

done for register saves in function prologs, the code resulting from procedural abstraction at each return

block for a function might have the following structure, with three instructions to manage the control

transfers and stack pointer update:

...

bsr r1, Restore /* call function that restores registers */

sp = sp + k /* deallocate stack frame */

ret (ra) /* return */

If we could somehow move the instruction for deallocating the stack frame into the function that restores

saved registers, there would be no need to return to the function f whose epilog we are abstracting:

control could return directly to f 's caller (in e�ect realizing tail call optimization). The problem is

that the code to restore saved registers is used by many di�erent functions, which in general have stack

frames of di�erent sizes, and hence need to adjust the stack pointer by di�erent amounts. The solution

to this problem is to pass, as an argument to the function that restores registers, the amount by which

14



to f0’s caller(s) to ’s caller(s)f1

. . .

15

14

9

ra

ldq  r15, 0x38(sp)

ldq r14, 0x30(sp)

ldq  r9, 0x8(sp)

Restore

Restore

Restore

Restore

ra = 32 ra = 40
f0: f1:

ldq   ra, 0(ra)
ret    (ra)

sp  =  sp + ra
ra  =  sp - ra

Figure 6: Example code from abstraction of register restore actions from function epilogs

the stack pointer must be adjusted. Since the return address register ra is guaranteed to be free at this

point|it is about to be overwritten with f 's return address prior to returning control to f 's caller|it

can be used to pass this argument.
6
Since there is now no need for control to return to f after the

registers have been restored|it can return directly to f 's caller|we can simply jump from function f
to the function that restores registers, instead of using a function call. The resulting code requires two

instructions instead of three in each function return block:

...

ra = k /* sp needs to be adjusted by k */

br Restore /* jump to function that restores registers */

The code in the function that restores registers is pretty much what one would expect. Unlike the

situation for register save sequences discussed in Section 3.5.1, we need only one function for restoring

registers. The reason for this is that there is no need to call this function: control can jump into it

directly, as discussed above. This means that we don't have to generate di�erent versions of the function

with di�erent return address registers. The overall structure of the code is analogous to that for saving

registers: there is a chain of basic blocks, each of which restores a callee-saved register, with control

falling through into the next block, which saves the next (lower-numbered) callee-saved register, and so

on. The last member of this chain adjusts the stack pointer appropriately, loads the return address into

a register, and returns. There is, however, one minor twist at the end. The amount by which the stack

pointer must be adjusted is passed in register ra, so this register cannot be overwritten until after it

has been used to adjust the stack pointer. On the other hand, since the memory location from which

f 's memory address is to be restored is in f 's stack frame, we can't adjust the stack pointer until after

the return address has been loaded into ra. We get around this problem using the following instruction

sequence:

...

add sp, ra, sp /* sp = sp + ra � new sp */

sub sp, ra, ra /* ra = sp - ra � old sp */

ldq ra, 0x0(ra) /* ra = return address */

ret (ra)

The resulting code for restoring saved registers, for the functions considered in the example illustrated

in Figure 5, is shown in Figure 6.

6In practice not all functions can be guaranteed to follow the standard calling convention, so it is necessary to verify
that register ra is, in fact, being used as the return address register by f .

15



We go through these contortions in order to minimize the number of registers used. If we could �nd

another register that is free at the end of every function, we could load the return address into this

register, resulting in somewhat simpler code. However, in general it is not easy to �nd a register that is

free at the end of every function. The reason we go to such lengths to eliminate a single instruction from

each return block is that there are a lot of return blocks in the input programs, typically amounting

to about 3%{7% of the basic blocks in a program, excluding return blocks for leaf routines that do not

allocate/deallocate a stack frame (there is usually at least one|and, very often, more than one|such

block for each function). The elimination of one instruction from each such block translates to a code

size reduction of about 1%{2% overall. (This may seem small, but to put it in perspective, consider

that Cooper and McIntosh report an overall code size reduction of about 5% using suÆx-tree based

techniques.)

3.6 Abstracting Partially Matched Blocks

As discussed in the preceding sections, the smallest code unit considered for procedural abstraction by

squeeze is the basic block. In other words, squeeze will not attempt to carry out any form of procedural

abstraction on two blocks that are not the same, even though there may be a signi�cant amount of

\partial match" between them, i.e., the blocks may share common subsequences of instructions. This is

illustrated by the pair of basic blocks shown in Figure 7(a), with matched instructions indicated by lines

drawn between them. Our experiments, described in this section, indicate that abstraction of partially

matched blocks is computationally quite expensive but adds very little additional savings in code size.

For this reason we have chosen not to include partial matching within squeeze.

There are two issues that have to be addressed when considering procedural abstraction of partially

matched blocks: �rst, how to identify partially matched blocks to abstract; and second, how to transform

the code to e�ect this abstraction. In our experiments, abstraction of partially matched blocks was

carried out after procedural abstraction of \fully matched" blocks, discussed in Section 3.3. In general,

a particular basic block B0 may be partially matched against many di�erent blocks, which may match

di�erent subsequences of its instructions. The savings obtained from procedural abstraction in this case

depends on the block B1 that is chosen as a match. Once a block B1 is partially matched with B0 and

subjected to procedural abstraction, B1 is not available for partial matching against other basic blocks.

This means that even though, from B0's perspective, B1 may yield the largest savings when procedural

abstraction is carried out, this may not be the best choice globally, since we may have obtained greater

savings by matching B1 with some other block. The problem of computing a globally optimal set

of partial matches for a set of basic blocks, i.e., one that maximizes the savings obtained from their

procedural abstraction, is computationally diÆcult (the related longest common subsequence problem

is NP-complete [12]). We therefore take a greedy approach, processing basic blocks in decreasing order

of size. When processing a block B0, we compare it against all other blocks and choose a block B1

that yields maximal savings (computed as discussed below) when procedural abstraction is carried out

based on partial matching of B0 and B1: B1 is then put into a partition associated with B0. When all

blocks have been processed in this manner, all of the blocks in the same partition are abstracted into a

single procedure.

The savings obtained by procedural abstraction of two partially matched blocks B0 and B1 is deter-

mined as follows. First, we use dynamic programming to determine the minimum edit distance between

the two blocks, and thus the best match between them. Now consider the second issue mentioned above,

namely, carrying out the program transformation. Since we have a partial match between these blocks,

there will have to be multiple execution paths through the resulting procedure, such that the call from

B0 will take one path while that from B1 will take another. We can do this by passing an argument to

the abstracted procedure indicating, for any call, which call site it originated from, and therefore which

instructions it should execute. When scanning down blocks B0 and B1, whenever we �nd a mismatched

sequence of instructions in either block, we generate code in the abstracted procedure to test this argu-

ment and execute the appropriate instruction sequence based on the outcome. Figure 7(b) shows the

16



r1 = r2+1
r1 = r1+r3
ld r2, 0(r2)

r3 = r1+8
r4 = r0+4
r1 = r4+r2
st r1, 12(sp)

r1 = r2+1
r1 = r1+r3
st r1, 16(r0)
r3 = r1+8
ld r7, 8(sp)

r2 = r7*r3
r1 = r4+r2
st r1, 12(sp)

h
h
h
h
h
h
h
h

h
h
h
h
h
hh

(a) A pair of partially matched blocks

ld  r2, 0(r2)
B1

st  r1, 16(r0)

r4 = r0+4 ld  r7, 8(sp)
r2 = r7*r3

r1 = r2+1
r1 = r1+r3

r3 = r1+8

st  r1, 12(sp)
r1 = r4+r2

B0

B2

B3

B4 B5

B6

return

ld  r2, 0(r2)
B1

r3 = r1+8
r4 = r0+4

r1 = r2+1
r1 = r1+r3

B0

B2
st  r1, 16(r0)
r3 = r1+8
ld  r7, 8(sp)
r2 = r7*r3

st  r1, 12(sp)
r1 = r4+r2

B6

return

(b) Procedure obtained from the maximal

matching

(c) Procedure obtained after unmatching

unpro�table instructions

Figure 7: Procedural abstraction of partially matched blocks

control ow graph of the resulting procedure. In addition to the instructions shown, we also have to

manage control ow. For this, we need a conditional branch at the end of blocks B0 and B3 (in general,

if there are more than two blocks in the partition being abstracted, we may need explicit comparison

operations to determine which of a set of alternatives to execute), and an unconditional branch for each

of the pairs of blocks fB1, B2g and fB4, B5g, for a total of 15 instructions. Notice that by designating

the instruction in block B3 as a \match" between the two original blocks, and thereby having B3 be

common to the execution paths for both of the call sites of the procedure, we save a single copy of this

instruction, but pay a penalty of two branch instructions for managing control ow around it. In this

case, it turns out to be better, when determining the original partial match, to ignore the fact that the

two `r3 = r1+8' instructions can be matched. This would yield the code shown in Figure 7(c), with a

total of 14 instructions. On the other hand, if instead of the single matched instruction in B3 we had

a sequence of, say, 10 matched instructions, the savings incurred from combining them into a single

block within the abstracted procedure would outweigh the cost of the additional instructions needed

to manage control ow. As this example illustrates, the minimal edit distance between the two blocks

does not necessarily yield the greatest savings: sometimes we can do better by ignoring some matches.

It is not obvious that the dynamic programming algorithm for computing minimum edit distance can

be modi�ed in a straightforward way to accommodate this. Instead we use a post-processing phase to

17



\unmatch" instructions that incur too great a control ow penalty.

Even with the improvement of unmatching instructions where a match is not deemed pro�table, the

cost of control ow management signi�cantly lowers the overall bene�ts of procedural abstraction based

on partial matches. In the example shown in Figure 7, for example, at each call site for the resulting

procedure we would need two additional instructions|one to set the argument register identifying the

call site, another to carry out the control transfer|for an overall total of 18 instructions. By contrast,

the two original basic blocks shown in Figure 7(a) contain a total of 15 instructions. Thus, despite the

signi�cant partial match between these two blocks, it is not pro�table in this case to abstract them out

into a procedure. In general, we found that procedural abstraction based on partial matches incurs a

large computational cost, but yields overall code size savings of around 0.4{0.6%. We obtained similar

results with a number of other variations on this scheme, such as factoring out only common suÆxes or

pre�xes of blocks. Because of the high computational cost of this transformation and the low bene�t it

produces, we decided not to include it within squeeze.

4 Interactions between Classical Optimizations and Code Factoring

There is considerable evidence that (appropriately controlled) optimization can yield signi�cant reduc-

tions in code size. Compiler \folklore" has it that some amount of peephole optimization can speed up

the overall compilation process because of the resulting reduction in the number of instructions that

have to be processed by later phases.
7

Cooper and McIntosh observe code size reductions of about

18% due to compiler optimizations [5], while our own experiments, discussed in Section 5, indicate that

enabling optimizations that do not increase code size yield a code size reduction of about 20% on the

average.

However, since classical compiler optimizations are aimed primarily at increasing execution speed,

the reductions in size they produce are, in many cases, the happy but coincidental outcome of transfor-

mations whose primary goal is a reduction in execution time. Examples of transformations that can,

in some situations, lead to an increase in code size include machine-independent optimizations such as

partial redundancy elimination, procedure inlining, and shrink wrapping, as well as machine-dependent

optimizations such as instruction scheduling and instruction cache optimization, both of which can re-

sult in the insertion of no-ops for alignment purposes. Even for transformations that lead to code size

reductions, using execution speed improvement as the primary goal of optimization can yield smaller

size reductions than might be possible otherwise. For example, in the local factoring transformation

discussed in Section 3.1, if an instruction can be hoisted either upward or downward, it is preferable to

hoist it downward, since this can yield greater size reductions. However, if our primary goal is increasing

execution speed, we would prefer to hoist it upward instead, so as to hide latencies.

This discussion does not take into account interactions between classical optimizations, whose pri-

mary goal is a reduction in execution time, and code factoring transformations, whose primary goal is

a reduction in code size. As a simple example, consider the code sequences in the following two basic

blocks:

Block B1 Block B2

load r1, 8(sp) load r1, 8(sp)

add r1, r2, r3 add r1, r2, r3

load r1, 12(sp) (*)

add r4, r5, r6 add r4, r5, r6

add r1, r4, r1 (*)

mul r3, r6, r3 mul r3, r6, r3

add r3, r5, r3 add r3, r5, r3

store r3, 16(sp) store r3, 16(sp)

7We believe this observation is due to W. A. Wulf.

18



As presented, these two blocks are di�erent, and cannot be subjected to procedural abstraction into

the same procedure. If the compiler determines that the two instructions in block B2 marked as (*)

are dead (e.g., due to code-eliminating optimizations elsewhere that cause r1 to become dead at the

end of block B2), and eliminates them, the two blocks then become identical and can be factored out

into a procedure. However, if the compiler does an even better job of optimization, and is able to �nd

a free register in block B1 that allows it to eliminate the load instruction in that block, the two blocks

again become di�erent and cannot be abstracted into a procedure. Notice that in the latter case, the

compiler's decision to eliminate the load instruction is a locally good decision|it reduces code size by

one instruction and is likely to improve speed|but, from the standpoint of code compaction, not such

a good decision globally.

Interactions such as these give rise to a phase ordering problem between size-oriented and speed-

oriented transformations. One possible way to deal with this would be to iterate the transformations to

a �xpoint. However, this is not a satisfactory solution, because transformations such as code factoring

require a lot of code sequence comparisons to identify repeated instruction sequences that can be

factored out, and therefore are quite expensive; iterating over them is likely to be so expensive as to be

impractical. We currently do not do perform such iteration.

5 Experimental Results

To evaluate our ideas, we used the eight SPEC-95 integer benchmarks, as well as six embedded applica-

tions, adpcm, epic, gsm, mpeg2dec, mpeg2enc and rasta, obtained from the MediaBench benchmark suite

from UCLA (http://www.cs.ucla.edu/~leec/mediabench). We evaluated squeeze on code obtained

from two di�erent C compilers: the vendor-supplied C compiler cc V5.2-036, invoked as cc -O1, and

the GNU C compiler gcc version 2.7.2.2, at optimization level -O2. The programs were compiled with

additional ags instructing the linker to retain relocation information and to produce statically linked

executables.
8
The optimization level chosen for each compiler was selected to allow \standard" opti-

mizations except for those, such as procedure inlining and loop unrolling, that can increase code size. At

optimization level -O1, the vendor-supplied compiler cc carries out local optimizations and recognition

of common subexpressions; global optimizations including code motion, strength reduction and test

replacement; split lifetime analysis; and code scheduling; but not size-increasing optimizations such as

inlining; integer multiplication and division expansion using shifts; loop unrolling; and code replication

to eliminate branches. Similarly, at the -O2 level of optimization, the gcc compiler carries out most

supported optimizations that do not involve a space-speed tradeo�. In particular, loop unrolling and

function inlining are not carried out.

The baseline for our measurements is code optimized by the compiler as discussed above, but with

unreachable code and no-ops removed and pro�le-guided code layout|which can improve performance

signi�cantly, but is not carried out by either of the compilers we used for our experiments|carried out.

This eliminates library routines that are not referenced by the program but which get linked into the

program because of references to other routines in the library, and excludes size reductions that could

be trivially obtained by a traditional compiler. We include pro�le-directed code layout in the baseline

to allow a fair comparison: squeeze carries out this optimization, and we do not want the resulting

performance improvements to unduly inate the execution speed of the resulting executables.

To obtain instruction counts, we �rst disassemble the executable �les and discard unreachable code

and no-op instructions. This eliminates library routines that are linked in but are not actually called,

as well as any no-op instructions that may have been inserted by the compiler for instruction scheduling

or alignment purposes. To identify unreachable code, we construct a control ow graph for the entire

program and then carry out a reachability analysis. In the course of constructing the control ow

graph, we discard unconditional branches. We reinsert those that are necessary after all the code

8The requirement for statically linked executables is a result of the fact that squeeze relies on the presence of relocation

information for its control ow analysis. The Digital Unix linker ld refuses to retain relocation information for non-
statically-linked executables.

19



com
press

gcc
go

ijpeg
li

m
88ksim

perlvortexadpcm
epic

gsm

m
peg2dec

m
peg2enc

rasta

Average
0.0

0.5

1.0

1.5

Normalized code size

U
noptim

ized
B

ase
Squeezed

(
a
)
C
o
m
p
ile
r
:
cc

com
press

gcc
go

ijpeg
li

m
88ksim

perlvortexadpcm
epic

gsm

m
peg2dec

m
peg2enc

rasta

Average
0.0

0.5

1.0

1.5

Normalized code size

U
noptim

ized
B

ase
Squeezed

(
b
)
C
o
m
p
ile
r
:
g
cc

F
ig
u
r
e
8
:
E
�
e
c
t
s
o
f
c
o
m
p
a
c
t
io
n
o
n
c
o
d
e
s
iz
e
(
n
o
r
m
a
liz
e
d
)

t
r
a
n
s
fo
r
m
a
t
io
n
s
h
a
v
e
b
e
e
n
c
a
r
r
ie
d
o
u
t
;
d
u
r
in
g
c
o
d
e
la
y
o
u
t
,
ju
s
t
b
e
fo
r
e
t
h
e
t
r
a
n
s
fo
r
m
e
d
c
o
d
e
is
w
r
it
t
e
n

o
u
t
.
T
o
g
e
t
a
c
c
u
r
a
t
e
c
o
u
n
t
s
,
t
h
e
r
e
fo
r
e
,
w
e
g
e
n
e
r
a
t
e
t
h
e
�
n
a
l
c
o
d
e
la
y
o
u
t
in

e
a
c
h
c
a
s
e
(
i.e
.,
w
it
h
a
n
d

w
it
h
o
u
t
c
o
m
p
a
c
t
io
n
)
a
n
d
c
o
u
n
t
t
h
e
t
o
t
a
l
n
u
m
b
e
r
o
f
in
s
t
r
u
c
t
io
n
s
.

5
.1

C
o
d
e
S
iz
e

T
h
e
o
v
e
r
a
ll
c
o
d
e
s
iz
e
r
e
d
u
c
t
io
n
s
a
c
h
ie
v
e
d
u
s
in
g
o
u
r
t
e
c
h
n
iq
u
e
s
a
r
e
s
u
m
m
a
r
iz
e
d
in

F
ig
u
r
e
8
.
T
h
e
c
o
r
r
e
-

s
p
o
n
d
in
g
r
a
w
d
a
t
a
a
r
e
g
iv
e
n
in

T
a
b
le
2
in

A
p
p
e
n
d
ix

B
.
F
ig
u
r
e
8
(
a
)
s
h
o
w
s
t
h
e
e
�
e
c
t
s
o
f
sq
u
ee
ze

o
n
c
o
d
e

c
o
m
p
ile
d
u
s
in
g
t
h
e
v
e
n
d
o
r
-
s
u
p
p
lie
d
C

c
o
m
p
ile
r
cc
,
w
h
ile

F
ig
u
r
e
8
(
b
)
s
h
o
w
s
t
h
e
e
�
e
c
t
s
o
f
sq
u
ee
ze

o
n

c
o
d
e
c
o
m
p
ile
d
u
s
in
g
t
h
e
G
N
U
C
c
o
m
p
ile
r
g
cc
.
T
h
e
c
o
lu
m
n
s
la
b
e
lle
d
\
U
n
o
p
t
im

iz
e
d
"
r
e
fe
r
t
o
p
r
o
g
r
a
m
s

c
o
m
p
ile
d
a
t
o
p
t
im

iz
a
t
io
n
le
v
e
l
-
O
0
,
w
h
e
r
e
n
o
o
p
t
im

iz
a
t
io
n
is
c
a
r
r
ie
d
o
u
t
,
a
n
d
s
e
r
v
e
a
s
a
r
e
fe
r
e
n
c
e
p
o
in
t

t
o
in
d
ic
a
t
e
h
o
w
m
u
c
h
c
o
d
e
s
iz
e
r
e
d
u
c
t
io
n
is
r
e
a
liz
e
d
u
s
in
g
o
n
ly

o
p
t
im

iz
a
t
io
n
s
c
a
r
r
ie
d
o
u
t
b
y
t
h
e
c
o
m
-

p
ile
r
,
w
h
ile

t
h
e
c
o
lu
m
n
s
la
b
e
lle
d
\
B
a
s
e
"
r
e
fe
r
t
o
c
o
d
e
o
p
t
im

iz
e
d
a
t
t
h
e
a
p
p
r
o
p
r
ia
t
e
le
v
e
l,
a
s
d
is
c
u
s
s
e
d

a
b
o
v
e
,
w
it
h
u
n
r
e
a
c
h
a
b
le
c
o
d
e
a
n
d
n
o
-
o
p
s
r
e
m
o
v
e
d
.
I
t
c
a
n
b
e
s
e
e
n
fr
o
m

t
h
is
t
a
b
le
t
h
a
t
u
s
in
g
c
la
s
s
ic
a
l

c
o
m
p
ile
r
o
p
t
im

iz
a
t
io
n
s
,
e
a
c
h
o
f
t
h
e
s
e
c
o
m
p
ile
r
s
is
a
b
le
t
o
a
c
h
ie
v
e
s
ig
n
i�
c
a
n
t
im

p
r
o
v
e
m
e
n
t
s
in

c
o
d
e
s
iz
e

2
0



Transformation Savings (%)

redundant computation elimination 34.14
Basic block and region abstraction 27.42
Useless code elimination 22.43
Register save/restore abstraction 9.95
Other inter-procedural optimizations 6.06

Table 1: Code size improvements due to di�erent transformations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16+
0.0

5.0

10.0

15.0

20.0

Sa
vi

ng
s 

(%
)

0.0

5.0

10.0

15.0

20.0

Sa
vi

ng
s 

(%
)

Basic block size

Figure 9: Contribution to procedural abstraction savings for basic blocks of di�erent sizes

compared to the unoptimized code: cc obtains a size reduction of just over 10% on the average, while

gcc is able to achieve an average size reduction of about 20%. More importantly, however, it can be seen

that, even when given the already optimized executables as input, squeeze is able to achieve signi�cant

further reductions in size. For the cc-compiled programs it achieves an average size reduction of just

over 30%, while for the gcc-compiled programs the average size reduction is a little over 28%. The

greatest reduction in size is about 40% for the adpcm program, while the smallest is about 15{17% for

the go program.

Table 1 gives a breakdown of the average contribution of di�erent kinds of code transformations

towards the code size reductions we achieve. Four classes of transformations account for most of these

savings. About a third of the savings comes from the elimination of redundant computations of the

global pointer register gp; about 27% comes from \ordinary" procedural abstraction; architecture-

speci�c abstraction of register save/restore sequences accounts for another 10%; and useless code elim-

ination accounts for about 22% of the savings. (Recall that our baseline programs have already had

unreachable code and no-ops removed. The �gure given here refers to code that subsequently becomes

useless, due to inter-procedural optimization, as discussed in Section 2.1.) The remainder of the savings

arise due to a variety of inter-procedural optimizations.

We also measured the extent to which basic blocks of di�erent sizes contribute to the overall savings

due to procedural abstraction. For small basic blocks, the savings per block abstracted tends to be small,

but the likelihood of �nding other similar blocks, and thereby increasing the total resulting savings, is

large. The opposite is true for large blocks: each basic block that is abstracted accrues a signi�cant

savings, but the likelihood of �nding similar or identical blocks that can be abstracted is not as high.

The distribution of the average savings we observed for our benchmarks is shown in Figure 9. It can be

seen that small blocks account for a signi�cant amount of the savings: about 7% of the savings comes

from blocks containing just two instructions, while close to 15% comes from blocks containing three

instructions. Beyond this the savings generally drop o� as the number of instructions increases, except

21



compress gcc go
ijpeg li

m88ksim perl
vortex

adpcm gsm

mpeg2dec

mpeg2enc
rasta

0.0

10.0

20.0

30.0

40.0

50.0

C
od

e 
si

ze
 r

ed
uc

ti
on

 (
%

)
0.0

10.0

20.0

30.0

40.0

50.0

C
od

e 
si

ze
 r

ed
uc

ti
on

 (
%

)

User code

Libraries

Figure 10: Contributions to code size reduction: user code vs. libraries

for a large bump at basic blocks of size 10. The reason for this, it turns out, is that very often there is a

large number of return blocks that restore all the callee-saved registers and the return address register

from memory, deallocate the stack frame, and then return from the function. These actions require

10 instructions on the processor we used. The contribution of large basic blocks|those exceeding 12

instructions in length|is, on the average, quite small, even though occasionally we are able to abstract

blocks that are quite long. (In the gcc and vortex benchmarks, basic blocks of up to 25 instructions are

abstracted. In the rasta benchmark, such blocks can be up to 44 instructions long.)

As mentioned earlier, our experiments use statically linked executables, where the code for the library

routines is linked into the executable by the linker prior to compaction. It is possible that library code is

more (or less) compressible than user code. This could happen, for example, if the libraries are compiled

using di�erent compilers or compiler optimization levels. It is desirable to identify, therefore, the extent

to which the presence of library code inuences our results. For example, if it turns out that library

code is highly compressible while user code is not, then our results would not be readily applicable to

non-statically-linked executables. To this end, we instrumented squeeze to record, for each addition or

deletion of code during its run, the function(s) with which the size change should be associated. For the

classical optimizations implemented within squeeze, this is straightforward. For procedural abstraction,

we use the following approach. Suppose that n di�erent instances of a particular code fragment were

abstracted into a procedure, resulting in a net savings in code size of m, then the function containing

each of these instances is credited with a savings of m=n instructions (not necessarily an integral

quantity). We then use a list of functions in the user code, obtained using a modi�ed version of the

lcc compiler [9], to estimate the total size of user code and the code savings attributable to it. These

measurements do not account for indirect e�ects of having the library code available for inspection,

such as improved precision of dataow analyses, which may give rise to additional opportunities for

optimization. Nevertheless, this information is useful for obtaining qualitative estimates of the inuence

of library code on our overall numbers. Our results are shown in Figure 10. The bars labelled \User

code" represent the fraction of instructions in user code, relative to the total number of user code

instructions, that were deleted in the process of code compaction, while those labelled \Libraries" give

the corresponding �gures for library code. For both the user code and libraries, the amount of reduction

in code size typically ranges from around 25% to around 30%, with an average reduction of about 27%

for user code and about 26% for library code.
9
There are a few programs (li, perl, vortex, adpcm) where

the user code is noticeably more compressible than the libraries, and a few others (go, gsm, rasta) where

the libraries are more compressible. In general, however, the user and library code are more or less

comparable in their contribution to the overall code size reduction measured.

9These numbers refer to the control ow graph prior to code layout, i.e., before unconditional branches are added while

linearizing the graph.

22



5.2 Code Speed

One intuitively expects the programs resulting from the code compaction techniques described here

to be slower than the original code, primarily because of the additional function calls resulting from

the procedural abstraction that occurs. A more careful consideration indicates that the situation may

be murkier than this simple analysis suggests, for a number of reasons. First, much of the code size

reduction is due to aggressive inter-procedural optimizations that also improve execution speed. Second,

transformations such as pro�le-directed code layout, which need not have a large e�ect on code size, can

nevertheless have a signi�cant positive e�ect on speed. On the other hand, on a superscalar processor

such as the Alpha 21164, slow-downs can occur in the compressed code for reasons other than procedural

abstraction, e.g., due to the elimination of no-ops inserted by the instruction scheduler in order to align

the instructions so as to increase the number of instructions issued per cycle.

To determine the actual e�ect of our transformations on our benchmarks, we compared the execution

times of the original optimized executables with those resulting from the application of squeeze to

these executables. Execution pro�les, in the form of basic block execution counts, were obtained for

each program using pixie, and these were fed back to squeeze during code compaction. The SPEC

benchmarks were pro�led using the SPEC training inputs and subsequently timed on the SPEC reference

inputs. For each of the remaining benchmarks, we used the same input for both pro�ling and subsequent

timing. The timings were obtained on a lightly loaded DEC Alpha workstation with a 300 MHz Alpha

21164 processor with a split primary direct mapped cache (8 Kbytes each of instruction and data cache),

96 Kbytes of on-chip secondary cache, 2 Mbytes of o�-chip secondary cache, and 512 Mbytes of main

memory, running Digital Unix 4.0. Our results are shown in Figure 11. The corresponding raw data

are given in Table 3 in Appendix B. In each case, the execution time was measured as the smallest time

of 10 runs. The columns labelled \Original" refer to the execution times of the inputs optimized at the

appropriate level for each compiler, as discussed earlier, but without the elimination of unreachable code

and no-ops. These are provided as a reference point. The columns labelled \Base" refer to executables

obtained by removing unreachable code and no-ops from the original executables and then performing

pro�le-directed code layout. The execution times of the executables produced by squeeze correspond to

the columns labelled \Squeezed."

The results of our timing experiments indicate that it is by no means a foregone conclusion that

squeezed code will be slower than original code. For many of our benchmarks, the squeezed code runs

signi�cantly faster than the original. For example, for the compress benchmark compiled using cc, the

squeezed executable is about 11% faster than the base and original executables, and using gcc, it is

about 23% faster than the base and original executables. For m88ksim compiled using cc, the squeezed

executable is about 35% faster than the base and about 36% faster than the original, and using gcc,

it is about 30% faster than both the base and original. For perl compiled using cc, it is about 28%

faster than the base and about 22% faster than the original, and using gcc, it is about 13% faster than

the base and original. Only two programs su�er slow-downs as a result of code compaction: vortex

and epic, both under the gcc compiler. The former slows down by about 10%, the latter by about

23%. The reasons for these slow-downs are discussed in Section 5.3. Overall, for the set of benchmarks

considered, the average speedup, compared to both the base and original programs, is about 16% for

the cc-compiled executables and about 10% for the executables obtained using gcc. In other words, code

compaction yields signi�cant speed improvements overall, and the compressed code performs favorably

even when the performance of the original code is enhanced via pro�le-guided code layout. The reasons

for this, explored in Section 5.3, are generally that for most of our benchmarks, the squeezed code

experiences signi�cant decreases in the number of instruction cache misses and the average amount of

instruction-level parallelism that can be sustained.

5.3 Low-Level Dynamic Behavior

To better understand the dynamic behavior of programs subjected to code compaction, we examined

various aspects of their low-level execution characteristics. Our results, which are summarized in Figure

23



com
press

gcc
go

ijpeg
li

m
88ksim

perlvortexadpcm
epic

gsm

m
peg2dec

m
peg2enc

rasta

Average
0.0

0.5

1.0

1.5

Normalized Execution Time

O
riginal

B
ase

Squeezed

(
a
)
C
o
m
p
ile
r
:
cc

com
press

gcc
go

ijpeg
li

m
88ksim

perlvortexadpcm
epic

gsm

m
peg2dec

m
peg2enc

rasta

Average
0.0

0.5

1.0

1.5

Normalized Execution Time

O
riginal

B
ase

Squeezed

(
b
)
C
o
m
p
ile
r
:
g
cc

F
ig
u
r
e
1
1
:
E
�
e
c
t
s
o
f
c
o
m
p
a
c
t
io
n
o
n
e
x
e
c
u
t
io
n
T
im

e
(
n
o
r
m
a
liz
e
d
)

1
2
,
w
e
r
e
o
b
t
a
in
e
d
u
s
in
g
h
a
r
d
w
a
r
e
c
o
u
n
t
e
r
s
o
n
t
h
e
p
r
o
c
e
s
s
o
r
,
in

e
a
c
h
c
a
s
e
u
s
in
g
t
h
e
s
m
a
lle
s
t
o
f
t
h
r
e
e

r
u
n
s
o
f
t
h
e
p
r
o
g
r
a
m
.

5
.3
.1

T
o
ta
l
In
stru

c
tio

n
s
E
x
e
c
u
te
d

C
o
d
e
s
iz
e
r
e
d
u
c
t
io
n
s
d
u
r
in
g
c
o
d
e
c
o
m
p
a
c
t
io
n
c
o
m
e
fr
o
m

t
w
o
s
o
u
r
c
e
s
:
in
t
e
r
-
p
r
o
c
e
d
u
r
a
l
o
p
t
im

iz
a
t
io
n

a
n
d
c
o
d
e
fa
c
t
o
r
in
g
.
S
o
m
e
in
t
e
r
-
p
r
o
c
e
d
u
r
a
l
o
p
t
im

iz
a
t
io
n
s
r
e
d
u
c
e
t
h
e
n
u
m
b
e
r
o
f
in
s
t
r
u
c
t
io
n
s
e
x
e
c
u
t
e
d
:

fo
r
e
x
a
m
p
le
,
t
h
e
e
lim

in
a
t
io
n
o
f
u
n
n
e
c
e
s
s
a
r
y
g
p
r
e
g
is
t
e
r
c
o
m
p
u
t
a
t
io
n
s
,
e
lim

in
a
t
io
n
o
f
n
o
-
o
p
s
in
s
e
r
t
e
d
fo
r

a
lig
n
m
e
n
t
a
n
d
in
s
t
r
u
c
t
io
n
s
c
h
e
d
u
lin

g
,
d
e
a
d
c
o
d
e
e
lim

in
a
t
io
n
,
a
n
d
in
lin

in
g
o
f
p
r
o
c
e
d
u
r
e
s
c
a
lle
d
fr
o
m

a

s
in
g
le
c
a
ll
s
it
e
.
O
t
h
e
r
o
p
t
im

iz
a
t
io
n
s
,
in

p
a
r
t
ic
u
la
r
t
h
e
e
lim

in
a
t
io
n
o
f
u
n
r
e
a
c
h
a
b
le
c
o
d
e
,
h
a
v
e
n
o
e
�
e
c
t

o
n
t
h
e
n
u
m
b
e
r
o
f
in
s
t
r
u
c
t
io
n
s
e
x
e
c
u
t
e
d
.
C
o
d
e
fa
c
t
o
r
in
g
,
o
n
t
h
e
o
t
h
e
r
h
a
n
d
,
le
a
d
s
t
o
t
h
e
e
x
e
c
u
t
io
n
o
f

a
d
d
it
io
n
a
l
b
r
a
n
c
h
in
s
t
r
u
c
t
io
n
s
fo
r
t
h
e
p
r
o
c
e
d
u
r
e
c
a
lls

a
n
d
r
e
t
u
r
n
s
,
a
n
d
s
o
a
lw
a
y
s
r
e
s
u
lt
s
in

a
n
in
c
r
e
a
s
e

in
t
h
e
n
u
m
b
e
r
o
f
in
s
t
r
u
c
t
io
n
s
e
x
e
c
u
t
e
d
.

F
ig
u
r
e
1
2
(
a
)
s
h
o
w
s
t
h
e
r
e
la
t
iv
e
n
u
m
b
e
r
o
f
in
s
t
r
u
c
t
io
n
s
e
x
e
c
u
t
e
d
b
y
t
h
e
o
r
ig
in
a
l
a
n
d
t
h
e
s
q
u
e
e
z
e
d

p
r
o
g
r
a
m
s
,
c
o
m
p
a
r
e
d
t
o
t
h
e
b
a
s
e
p
r
o
g
r
a
m
.
A
s
o
n
e
m
ig
h
t
e
x
p
e
c
t
,
s
in
c
e
t
h
e
o
n
ly

d
i�
e
r
e
n
c
e
b
e
t
w
e
e
n
t
h
e

o
r
ig
in
a
l
a
n
d
b
a
s
e
p
r
o
g
r
a
m
s
is
t
h
a
t
t
h
e
b
a
s
e
p
r
o
g
r
a
m

h
a
s
h
a
d
u
n
r
e
a
c
h
a
b
le
c
o
d
e
a
n
d
n
o
-
o
p
s
e
lim

in
a
t
e
d
,

t
h
e
b
a
s
e
p
r
o
g
r
a
m
a
lw
a
y
s
e
x
e
c
u
t
e
s
fe
w
e
r
in
s
t
r
u
c
t
io
n
s
t
h
a
n
t
h
e
o
r
ig
in
a
l.
M
o
r
e
o
v
e
r
,
t
h
e
d
i�
e
r
e
n
c
e
b
e
t
w
e
e
n

2
4



compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

0.0

0.5

1.0

T
ot

al
 in

st
ru

ct
io

ns
 e

xe
cu

te
d

cc {O1

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

0.0

0.5

1.0

T
ot

al
 in

st
ru

ct
io

ns
 e

xe
cu

te
d

gcc {O2
(a) Instructions executed (normalized)

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

0.0

1.0

2.0

3.0

In
st

ru
ct

io
n 

ca
ch

e 
m

is
se

s

cc {O1

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

0.0

1.0

2.0

3.0
In

st
ru

ct
io

n 
ca

ch
e 

m
is

se
s

gcc {O2
(b) Instruction cache misses (normalized)

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

0.0

0.5

1.0

In
st

ru
ct

io
ns

 p
er

 c
yc

le

cc {O1

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

0.0

0.5

1.0

1.5

In
st

ru
ct

io
ns

 p
er

 c
yc

le

gcc {O2
(c) Instruction-level parallelism

Original Base SqueezedKey:

Figure 12: Low-level dynamic behavior

25



these|due entirely to eliminated no-ops|is typically not large, ranging from about 1% to 9% and

averaging about 4%. More interestingly, when we consider the code generated by squeeze, we �nd that

for many programs, the squeezed version executes fewer instructions than the base programs. For these

programs, the reduction in instructions executed resulting from optimizations by squeeze o�set any

dynamic increases due to factoring. For other programs, the e�ects of code factoring outweigh those

due to optimizations, and result in a net increase in the number of instructions executed. Overall, we

�nd that for the benchmarks considered, the squeezed versions of the code obtained for cc execute about

3% fewer instructions on the average than the base versions, while for the gcc-compiled binaries they

execute a little over 3% more instructions, on the average.

5.3.2 Instruction Cache Misses

Since modern CPUs are signi�cantly faster than memory, delivering instructions to them is a major

bottleneck. A high instruction cache hit-rate is therefore essential for good performance. Primary

instruction caches, in order to be fast, tend to be relatively small and have low associativity. This

makes it advantageous to lay out the basic blocks in a program in such a way that frequently executed

blocks are positioned close to each other, since this is less likely to lead to cache conicts [16]. However,

code factoring can undo the e�ects of pro�le-directed code layout, by \pulling out" a code fragment

into a procedure that cannot be positioned close to its call site. The problem arises when, for example,

we have two instances of a repeated code fragment that are not close to each other but where both code

fragments are frequently executed. If these code fragments are factored out into a procedure, there will

be two frequently executed call sites for the resulting procedure, and it may not be possible to lay out

the code in a way that positions the body of the procedure close to both of these call sites. This can

lead to an increase in instruction cache misses.

Figure 12(b) shows the e�ect of code compaction on instruction cache misses. For the cc-compiled

programs, the compress benchmark experiences a large increase in the number of instruction cache misses

as a result of factoring. For the binaries obtained from gcc, two programs|ijpeg and vortex|su�er

large increases in the number of cache misses, while two others|gcc and go|experience smaller but

nevertheless noticeable increases. The number of instruction cache misses goes down for the remaining

programs; in a few cases|notably, compress, li, m88ksim, epic, and mpeg2dec|quite dramatically.

Overall, the squeezed programs incur 36% fewer instruction cache misses, on the average, for the cc-

compiled binaries, and 40% fewer misses for the gcc-compiled binaries, than the corresponding base

programs.

5.3.3 Instruction Level Parallelism

The Alpha 21164 processor, on which our experiments were run, is a superscalar machine that can

execute up to four instructions per cycle, provided that various scheduling constraints are satis�ed.

For example, at most two integer and two oating-point instructions can be issued in a cycle; and no

more than one instruction in a group of simultaneously issued instructions should try to access memory

or access the same functional unit. Instructions are fetched in groups of four, and each such group

is then examined for opportunities for multiple issues by evaluating to what extent they satisfy these

constraints. This means that it is possible for a plausible code transformation, such as the deletion

of a no-op instruction, to alter the instruction sequence in such a way that opportunities for multiple

instruction issues are reduced dramatically, with a corresponding loss in performance (conversely, the

judicious insertion of no-ops can lead to an increase in the level of instruction-level parallelism that

can be exploited). To address this problem, squeeze carries out instruction scheduling after all other

transformations have been applied and the �nal code layout has been determined.

Since squeeze eliminates no-ops inserted by the compiler for scheduling and alignment purposes,

there is the potential for a signi�cant loss in instruction-level parallelism in the code it produces. To

26



evaluate whether this is the case, we measured the average number of instructions issued per cycle for

the various executables. The results are shown in Figure 12(c). It can be seen that the elimination of

no-ops incurs a price in the base program, where the average number of instructions issued per cycle

is slightly smaller (by about 1% for cc and 0.5% for gcc) than the original program. However, the

instruction scheduler in squeeze is able to overcome this problem and, for almost all of the programs

tested, is able to attain a higher number of instructions per cycle. On the average, the instructions

issued per cycle in the squeezed programs, compared to the base programs, improves by about 6% for

the cc-compiled binaries and about 8% for the gcc-compiled binaries.

5.3.4 Summary

As Figure 11 shows, two of the 14 benchmarks we used, vortex and epic compiled under gcc, su�er a

slowdown as a result of code compaction. Their low-level execution characteristics indicate the possible

reasons for this. Like many of the other programs, code compaction causes an increase in the total

number of instructions executed for both of these programs. While the other programs are generally

able to compensate for this by improvements elsewhere, vortex su�ers an increase in instruction cache

misses and epic su�ers a reduction in the average number of instructions issued per cycle. Some

of the other programs incur degradations in some dynamic execution characteristics but are able to

compensate for this with improvements in other characteristics. For example, compress under cc and

ijpeg under gcc, both of which su�er dramatic increases in the number of instruction cache misses, are

nevertheless able to eke out overall improvements in speed due to a combination of a reduction in the

total number of instructions executed and|for ijpeg compiled with gcc|an increase in the average

number of instructions issued per cycle.

5.4 The E�ects of Code Factoring

Figure 13 shows the e�ect of code factoring by itself on code size and execution time. The raw data are

given in Tables 4 and 5 in Appendix B. The graphs compare squeeze performing all code transformations

except for code factoring, against squeeze with code factoring enabled. It can be seen that factoring

reduces the size of the programs by about 5{6%. An interesting aspect of this comparison is that the

elimination of code due to various optimizations within squeeze has the e�ect of reducing the apparent

eÆcacy of code factoring, since code that might otherwise have been factored is eliminated as useless or

unreachable. The result of this is that the greater the code-shrinking e�ects of classical optimizations,

the smaller we �nd the bene�ts due to factoring.

Since the smallest code unit we consider for procedural abstraction is the basic block, our approach

does not pick out and abstract instruction sequences that are subparts of a block. By comparison,

suÆx-tree based approaches such as those of Cooper and McIntosh [5] are able to abstract out repeated

instruction sequences that are subsequences of a block. Despite this limitation in our approach to code

factoring, the relative size reductions we obtain via factoring are essentially the same as those of Cooper

and McIntosh. A possible explanation for this is that the ability to abstract out subsequences within a

basic block is likely to make a di�erence only for large basic blocks, and the proportion of such blocks

generally tends to be small in most programs.

As one would expect, factoring causes an increase in the number of instructions executed. On the

average, this results in an increase in execution time of about 4% for the cc-compiled binaries, and about

10% for the gcc-compiled binaries. Some gcc-compiled binaries experience signi�cant slow-downs, with

vortex slowing down by about 37% , epic by about 23%, and perl by about 18%.

6 Conclusions

This paper focuses on the problem of code compaction to yield smaller executables. It describes a

\whole-system" approach to the problem, where the use of aggressive inter-procedural optimization,

27



compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

cc {O1

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

gcc {O2
(a) Code size (normalized)

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

cc {O1

compress gcc go
ijpeg li

m88ksim perl
vorte

x
adpcm epic

gsm

mpeg2dec

mpeg2enc
rasta

Average
0.0

0.5

1.0

gcc {O2
(b) Execution time (normalized)

without factoring with factoringKey:

Figure 13: Relative impact of Code Factoring on code size and execution time

together with procedural abstraction of repeated code fragments, yields signi�cantly greater reductions

in code size than have been achieved to date. For the identi�cation and abstraction of repeated code

fragments, it departs from classical suÆx-tree-based approaches. Instead, it uses information already

available in most compilers, such as the control ow graph and dominator/postdominator trees. Because

it does not treat the program as a simple linear sequence of instructions, it can be more exible in its

treatment of what code fragments may be considered \equivalent." This simpli�es the implementation

and sets up a framework for code compaction that can be more exible in its treatment of what code

fragments are considered \equivalent." This results in a system that is able to obtain considerably

greater compaction, even on optimized code, than previous approaches, without incurring signi�cant

performance penalties.

Acknowledgements

We are grateful to Nathaniel McIntosh for helpful discussions, and for pointing us to the UCLA Medi-

abench benchmark programs. Comments by the anonymous reviewers were very helpful in improving

the contents of the paper.

28



References

[1] A. V. Aho, R. Sethi and J. D. Ullman, Compilers { Principles, Techniques and Tools, Addison-

Wesley, 1986.

[2] B. S. Baker, \A Theory of Parameterized Pattern Matching: Algorithms and Applications (Ex-

tended Abstract)", Proc. ACM Symposium on Theory of Computing, 1993, pp. 71{80.

[3] B. S. Baker and U. Manber, \Deducing Similarities in Java Sources from Bytecodes", Proc.

USENIX Annual Technical Conference, June 1998, pp. 179{190.

[4] Martin Bene�s, Steven M. Nowick, and Andrew Wolfe. A fast asynchronous Hu�man decoder for

compressed-code embedded processors. In Proc. International Symposium on Advanced Research

in Asynchronous Circuits and Systems, September 1998.

[5] K. D. Cooper and N. McIntosh, \Enhanced Code Compression for Embedded RISC Processors".

Proc. SIGPLAN '99 Conference on Programming Language Design and Implementation, May 1999,

pp. 139{149.

[6] J. Ernst, W. Evans, C. Fraser, S. Lucco, and T. Proebsting. Code compression. In SIGPLAN '97

Conference on Programming Language Design and Implementation, 1997.

[7] M. Franz. Adaptive compression of syntax trees and iterative dynamic code optimization: Two

basic technologies for mobile-object systems. in Mobile Object Systems: Towards the Programmable

Internet, eds. J. Vitek and C. Tschudin, Springer LNCS vol. 1222, pp. 263{276, Feb. 1997.

[8] M. Franz and T. Kistler. Slim binaries. Communications of the ACM 40:12, pp. 87{94, Dec. 1997.

[9] C. W. Fraser and D. R. Hanson, A Retargetable C Compiler: Design and Implementation, Addison-

Wesley, 1995.

[10] C. W. Fraser, E. W. Myers, and A. L. Wendt, \Analyzing and Compressing Assembly Code", Proc.

SIGPLAN '84 Symposium on Compiler Construction, June 1984, pp. 117{121.

[11] C.W. Fraser and T.A. Proebsting. Custom instruction sets for code compression. Unpublished

manuscript. http://research.microsoft.com/ toddpro/papers/pldi2.ps, October 1995.

[12] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness, W. H. Freeman, 1979.

[13] J. Knoop, O. R�uthing, and B. Ste�en, \Optimal Code Motion: Theory and Practice", ACM

Transactions on Programming Languages and Systems vol. 16 no. 4, July 1994, pp. 1117{1155.

[14] S. S. Muchnick, Advanced Compiler Design and Implementation, Morgan Kaufman, 1997.

[15] R. Muth, S. K. Debray, S. Watterson, and K. De Bosschere, \alto : A Link-Time Optimizer for

the DEC Alpha", Technical Report 98-14, Dept. of Computer Science, The University of Arizona,

December 1998.

[16] K. Pettis and R. C. Hansen, \Pro�le-Guided Code Positioning", Proc. SIGPLAN '90 Conference

on Programming Language Design and Implementation, June 1990, pp. 16{27.

[17] T.A. Proebsting. Optimizing an ANSI C interpreter with superoperators. In Proc. Symp. on

Principles of Programming Languages, pages 322{332, January 1995.

[18] R. van de Wiel. The `Code Compaction' Bibliography. URL:

http://www.win.tue.nl/cs/pa/rikvdw/bibl.html.

[19] M. J. Zastre, Compacting Object Code via Parameterized Procedural Abstraction, Masters Thesis,

Dept. of Computing Science, University of Victoria, Canada, 1993.

29



A The Local Register Renaming Algorithm

Suppose we want to rename the registers in a basic block Bfrom , if possible, to make it identical to a

block Bto . Pseudocode for the algorithm used by squeeze for this is shown in Figure 14. For simplicity

of exposition, we assume that instructions are of the form `reg
3
= reg

1
op reg

2
.' The ith operand of

an instruction I is given by I:Op[i]. We assume that operands 1 and 2 are the source operands and

operand 3 is the destination operand. In addition, each instruction I has �elds I:oldOp[i] that are
used to keep track of the operand register before renaming. These �elds are used to undo the renaming

if necessary, and are all initialized to ?. The algorithm maintains two global arrays, InSubst and

OutSubst, that keep track of register moves that have to be inserted at the entry to and exit from the

block, respectively, if the renaming is successful. Each element of these arrays is initialized to ?.

The main routine that carries out the renaming is RenameBlock, illustrated in Figure 14. The basic

idea is to work through each instruction in Bfrom and try to rename its operands to make it identical to

the corresponding instruction in Bto without violating any semantic constraints. If this cannot be done,

or if the total number of move instructions that must be inserted before and after the block exceeds the

savings that would be obtained from procedural abstraction of the block, the renaming is abandoned.

In this case, control is transferred to the label bailout, where the renaming of each instruction in the

block is undone.

The pseudocode for renaming individual operands is shown in Figure 15. The idea is to record the

original value of the operand in the appropriate oldOp �eld of the instruction being renamed, rename

the operand, and then propagate this renaming forward in the basic block until the register that is

being renamed becomes rede�ned or the end of the block is reached.

B Experimental Results: Raw Data

The overall code size reductions achieved using our techniques are shown in Table 2. Table 2(a) shows

the e�ects of squeeze on code compiled using the vendor-supplied C compiler cc V5.2-036, invoked as

cc -O1, with additional linker options to retain relocation information and to produce statically linked

executables. Table 2(b) shows the e�ects of squeeze on code compiled using the GNU C compiler

gcc version 2.7.2.2, at optimization level -O2, with additional ags instructing the linker to retain

relocation information and produce statically linked executables. The second column of this table,

labelled \unoptimized," gives the code size obtained using gcc -O0, i.e., with no optimization. The

third column, labelled \optimized," gives the size of the programs using gcc -O2. The fourth column,

labelled \squeezed," gives the code size obtained using squeeze on the optimized input programs. The

�fth column shows the code size reduction obtained using classical optimizations within gcc. The last

column shows the additional reduction in code size obtained using squeeze.

Table 3 shows the overall e�ects of code compaction on execution time. Each execution time reported

was measured as the smallest time of 10 runs. The execution times for the original executables are given

in the column labelled \Original" (Torig). The times for the original program, but with unreachable

code and no-ops removed and pro�le-guided code layout added, are given in the column labelled \Base"

(Tbase). This corresponds to the code labelled \optimized" in Table 2. The execution times of the

executables produced by squeeze are reported in the column labelled \Squeezed" (Tsqz ). The column

labelled Tsqz=Torig gives the speed of the compressed code relative to that of the original code, while

that labelled Tsqz=Tbase gives the speed of the compressed code relative to that of the uncompressed

code enhanced with pro�le-guided code layout.

Finally, Tables 4 and 5 isolate and compare the e�ects of code optimization and code factoring.

Table 4 shows the e�ects on code size, while Table 5 gives the e�ects on execution time.

30



function RenameBlock(Bfrom , Bto)
begin

if NumInstr (Bfrom) 6= NumInstr(Bto) return fail;

n := NumInstr(Bfrom);
LiveIn := fr j r is live at entry to Bfromg;
LiveRegs := fr j r is live at entry to Bfromg;
NumMoves := 0;
SavedRegs := fr j r is a callee-saved register that is saved by the function containing Bfromg;
Forbidden := LiveRegs [ fr j r is callee-saved and r 62 SavedRegsg;

for i := 1 to n do

insfrom := Bfrom [i] � `reg from
3

= reg
from
1

op reg
from
2

';
insto := Bto [i] � `reg to3 = reg

to
1 op reg

to
2 ';

if (insfrom 6= insto) then
for j 2 f1; 2g do

if reg
from
j 6= reg

to
j and reg

from
j 2 LiveIn then

if (InSubst[reg fromj ] 6= ?) goto bailout;

InSubst[reg fromj ] := reg
to
j ;

NumMoves += 1;
�

if (ReplaceOp(j; insfrom ; insto ; LiveIn) = fail) goto bailout;
od

if the de�nition insfrom reaches the end of Bfrom then

if the de�nition insto does not reach the end of Bto goto bailout;

OutSubst[reg from3 ] := reg
to
3 ;

NumMoves += 1;
�

if (ReplaceOp(3; insfrom ; insto ;Forbidden) = fail) goto bailout;

if (insfrom 6= insto) goto bailout;

LiveIn := LiveIn � freg from
3

g;

LiveRegs := (LiveRegs � freg
from
3

g) [ freg to3 g;
�

od

if (NumMoves + 1 < n) then /* the `+1' is for the bsr that will be added */
InsertMoves (Bfrom ; InSubst; OutSubst);
return success;

�

bailout:
for i := 1 to n do

insfrom := Bfrom [i];
if (insfrom :oldOp[1] 6= ?) then insfrom :Op[1] := insfrom :oldOp[1];
if (insfrom :oldOp[2] 6= ?) then insfrom :Op[2] := insfrom :oldOp[2];
if (insfrom :oldOp[3] 6= ?) then insfrom :Op[3] := insfrom :oldOp[3];

od

return fail;
end

Figure 14: Algorithm for local register renaming

31



function ReplaceOp(k, insfrom , insto , Forbidden)
begin

rfrom := insfrom :Op[k];
rto := insto :Op[k];
if (rfrom = rto) return success;
if (rto 2 Forbidden) return fail;

insfrom :oldOp[k] := rfrom ;
insfrom :Op[k] := rto ;

for each instruction I after insfrom to the end of the block do

for j 2 f1; 2g do

if (I:Op[j] = rfrom) then
if (I:oldOp[j] 6= ?) return fail;
I:oldOp[j] := rfrom ;
I:Op[j] := rto ;

�

od

if (I:Op[3] = rfrom) break;
od

return success;
end

function InsertMoves (Bfrom ; InSubst; OutSubst)
begin

if 9r : InSubst[r] 6= ? then

if Bfrom has multiple predecessors then
create a new basic block B0 and redirect all edges entering Bfrom to enter B0 instead;
add an edge from B0 to Bfrom ;

else

B0 := Bfrom ;
�

for each r0 = InSubst[r] s.t. r0 6= ? do

insert an instruction `r0 := r' in B0;
od

�

if 9r : OutSubst[r] 6= ? then

if Bfrom has multiple successors then
create a new basic block B00 and redirect all edges out of Bfrom to be out of B00 instead;
add an edge from Bfrom to B00;

else

B00 := Bfrom ;
�

for each r0 = OutSubst[r] s.t. r0 6= ? do

insert an instruction `r0 := r' in B00;
od

�

end

Figure 15: Pseudocode for operand replacement and move insertion

32



Program Size (No. of instructions)
Program unoptimized optimized squeezed Nopt=Nunopt Nsqz=Nopt

(Nunopt ) (Nopt) (Nsqz )

compress 21502 20915 15581 0.973 0.745
gcc 431928 332822 251137 0.771 0.755
go 111988 79445 66116 0.709 0.832
ijpeg 66295 57285 42365 0.864 0.740
li 41822 40029 25861 0.957 0.646
m88ksim 61541 52356 36265 0.851 0.693
perl 118556 102374 72546 0.864 0.709
vortex 165960 148906 94939 0.897 0.638
adpcm 18448 18242 10867 0.989 0.596
epic 35680 33968 23188 0.952 0.683
gsm 33200 29757 20534 0.896 0.690
mpeg2dec 38820 37869 26592 0.976 0.702
mpeg2enc 52701 47230 34166 0.896 0.723
rasta 94871 91359 60900 0.963 0.667

Geometric Mean 0.893 0.699

(a) Compiler = cc

Program Size (No. of instructions)
Program unoptimized optimized squeezed Nopt=Nunopt Nsqz=Nopt

(Nunopt ) (Nopt) (Nsqz )

compress 21864 20959 15682 0.959 0.748
gcc 525049 337857 250238 0.643 0.741
go 133404 79509 67329 0.596 0.847
ijpeg 80453 56077 43121 0.697 0.769
li 44220 38751 25158 0.876 0.649
m88ksim 72317 52759 37187 0.730 0.705
perl 137897 102176 74030 0.741 0.725
vortex 205488 150358 100907 0.732 0.671
adpcm 18591 18282 10879 0.983 0.595
epic 29395 27302 20399 0.929 0.747
gsm 36146 30281 20690 0.838 0.683
mpeg2dec 35234 27984 21169 0.794 0.756
mpeg2enc 52436 41392 32055 0.789 0.774
rasta 96935 90103 59889 0.930 0.665

Geometric Mean 0.794 0.717

(a) Compiler = gcc

Table 2: Code size reduction

33



Program Execution Time (secs) Tsqz=Torig Tsqz=Tbase

Original (Torig) Base (Tbase) Squeezed (Tsqz )

compress 320.31 320.32 284.58 1.000 0.888
gcc 260.80 282.12 242.94 1.082 0.861
go 345.91 336.27 302.03 0.972 0.898
ijpeg 327.07 334.11 330.97 1.022 0.991
li 311.01 316.66 276.77 1.018 0.874
m88ksim 394.89 385.92 251.33 0.977 0.651
perl 242.46 261.94 188.15 1.080 0.718
vortex 471.57 487.46 334.01 1.034 0.685
adpcm 14.00 14.30 12.05 1.021 0.843
epic 17.81 17.73 17.35 0.996 0.979
gsm 7.45 7.74 7.15 1.039 0.924
mpeg2dec 5.42 6.22 5.11 1.148 0.822
mpeg2enc 13.04 13.60 11.36 1.043 0.835
rasta 6.29 6.51 5.44 1.035 0.836

Geometric Mean: 1.032 0.837

(a) Compiler = cc

Program Execution Time (secs) Tsqz=Torig Tsqz=Tbase

Original (Torig) Base (Tbase) Squeezed (Tsqz )

compress 372.40 376.06 288.66 1.010 0.768
gcc 256.39 272.79 253.49 1.064 0.929
go 391.50 373.39 347.03 0.954 0.929
ijpeg 394.50 385.12 364.40 0.976 0.946
li 359.17 360.77 319.80 1.004 0.886
m88ksim 389.84 395.12 273.59 1.014 0.692
perl 260.25 263.57 229.90 1.013 0.872
vortex 512.53 501.27 553.52 0.978 1.104
adpcm 14.25 15.70 12.50 1.102 0.796
epic 18.63 18.48 22.71 0.992 1.229
gsm 8.22 8.18 7.91 0.995 0.967
mpeg2dec 9.60 9.74 8.33 1.015 0.855
mpeg2enc 15.35 15.06 13.84 0.981 0.919
rasta 6.47 6.71 5.54 1.037 0.826

Geometric Mean: 1.009 0.900

(b) Compiler = gcc

Table 3: Impact of Compaction on Execution Time

34



Program Size (No. of instructions)
Program base unfactored factored Nbase=Nf� Nf+=Nf�

(Nbase) (Nf�) (Nf+)

compress 20915 16491 15581 0.788 0.945
gcc 332822 264214 251137 0.794 0.951
go 79445 68591 66116 0.863 0.964
ijpeg 57285 45608 42365 0.796 0.929
li 40029 27955 25861 0.698 0.925
m88ksim 52356 38328 36265 0.732 0.946
perl 102374 77091 72546 0.753 0.941
vortex 148906 100968 94939 0.678 0.940
adpcm 18242 11565 10867 0.634 0.940
epic 33968 24461 23188 0.720 0.948
gsm 29757 21680 20534 0.729 0.947
mpeg2dec 37869 27714 26592 0.732 0.960
mpeg2enc 47230 35543 34166 0.753 0.961
rasta 91359 64405 60900 0.705 0.946

Geometric Mean 0.739 0.946

(a) Compiler = cc

Program Size (No. of instructions)
Program base unfactored factored Nbase=Nf� Nf+=Nf�

(Nbase) (Nf�) (Nf+)

compress 20959 16582 15682 0.791 0.946
gcc 337857 278500 250238 0.824 0.899
go 79509 71593 67329 0.900 0.940
ijpeg 56077 46807 43121 0.835 0.921
li 38751 27554 25158 0.711 0.913
m88ksim 52759 39566 37187 0.750 0.940
perl 102176 81803 74030 0.801 0.905
vortex 150358 108949 100907 0.725 0.926
adpcm 18282 11599 10879 0.634 0.938
epic 27302 21749 20399 0.797 0.938
gsm 30281 22104 20690 0.730 0.936
mpeg2dec 27984 22290 21169 0.797 0.950
mpeg2enc 41392 33666 32055 0.813 0.952
rasta 90103 63693 59889 0.707 0.940

Geometric Mean 0.770 0.932

(a) Compiler = gcc

Table 4: Optimization vs. Code Factoring: code size

35



Execution Time (secs)
Program base unfactored factored Nbase=Nf� Nf+=Nf�

(Nbase) (Nf�) (Nf+)

compress 320.32 280.92 284.58 0.877 1.013
gcc 282.12 223.40 242.94 0.792 1.087
go 336.27 288.28 302.03 0.857 1.048
ijpeg 334.11 326.13 330.97 0.976 1.015
li 316.66 262.63 276.77 0.829 1.054
m88ksim 385.92 238.75 251.33 0.619 1.053
perl 261.94 184.11 188.15 0.703 1.022
vortex 487.46 305.99 334.01 0.628 1.092
adpcm 14.30 10.39 12.05 0.727 1.160
epic 17.73 17.96 17.35 1.013 0.966
gsm 7.74 7.10 7.15 0.917 1.007
mpeg2dec 6.22 4.96 5.11 0.797 1.030
mpeg2enc 13.60 11.18 11.36 0.822 1.016
rasta 6.51 5.20 5.44 0.799 1.046

Geometric Mean 0.803 1.043

(a) Compiler = cc

Execution Time (secs)
Program base unfactored factored Nbase=Nf� Nf+=Nf�

(Nbase) (Nf�) (Nf+)

compress 376.06 279.39 288.66 0.743 1.033
gcc 272.79 207.37 253.49 0.760 1.222
go 373.39 321.51 347.03 0.861 1.079
ijpeg 385.12 354.40 364.40 0.920 1.028
li 360.77 294.18 319.80 0.815 1.087
m88ksim 395.12 272.05 273.59 0.689 1.006
perl 263.57 195.39 229.90 0.741 1.177
vortex 501.27 403.26 553.52 0.804 1.373
adpcm 15.70 11.00 12.50 0.701 1.136
epic 18.48 18.41 22.71 0.996 1.234
gsm 8.18 7.82 7.91 0.956 1.012
mpeg2dec 9.74 8.70 8.33 0.893 0.957
mpeg2enc 15.06 13.45 13.84 0.893 1.029
rasta 6.71 5.21 5.54 0.776 1.063

Geometric Mean 0.820 1.097

(a) Compiler = gcc

Table 5: Optimization vs. Code Factoring: Execution Time

36


