Rebus — A SNOBOL4/Icon Hybrid*

Ralph E. Griswold

TR 84-9

June9, 1984
Corrected January 23, 1983

Department of Computer Science
The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grant MCS81-01916.

Rebus — A SNOBOL4/Icon Hybrid

1. Introduction

SNOBOLA [1] remains popular despite advances in programming language design that make many of its
features seem quaint and awkward compared to those of modern programming languages. The nominal rea-
son for SNOBOLA’s popularity is its string pattern-matching facility, which is unrivaled in its power and con-
ciseness.

The technical reasons for the power and conciseness of SNOBOLA's pattern-matching facility are easy to
determine. The appeal of pattern matching in SNOBOLA to programmers and its usefulness in programming
derive from factors that are harder to identify.

SNOBOLA can be considered to be the combination of two languages, £ and 2[2]. In this view, £is a
language with conventional computational facilities, such as numerical computation, tests, loops, and so
forth. €, on the other hand, is a pattern-matching language with nondeterministic control structures. This
linguistic dichotomy leads to an increased vocabulary and two different linguistic frameworks that are dishar-
monious, forcing the programmer to formulate programs in a mixture of two languages.

The main motivating force in the design of Icon [3] was an attempt to integrate these components in a sin-
gle linguistic framework. The unification that is realized in Icon has proved to be successful in many ways.
The success/failure signaling mechanism of SNOBOL4 fits nicely into conventional selection and looping
control structures, replacing the Boolean-value mechanism of Algol-like languages [4). Introducing the search
and backtracking control mechanisms of pattern matching into more conventional computational contexts
has proved to be unexpectedly useful [5]. On the other hand, there also is evidence [6, 7] that the integration
of the £ and @ components has diluted the conciseness and expressiveness of pattern matching in Icon as
compared to SNOBOLA.

There may be, therefore, some advantages to the linguistic dichotomy that exists in SNOBOL4 — not
because of the dichotomy itself, but because of its nature. Mark Emmer puts it this way [8]:

Programming languages such as PASCAL, BASIC, C, and Assembler, with their IF ... THEN ... ELSE,
REPEAT ... WHILE mentality, are serial, sequential, ploddingly left-brained. [Pattern matching in] SNOBOL4
seems to be parallel, associative, intuitive, right-brained. This is the crux of the matter. Certainly we use our left
brain for problem solving, but how many of us really think exclusively in terms of IF ... THEN ... ELSE? Ima-
gination, creativity, great leaps of conception seem to originate in the inductive, parallel-functioning right brain.
And this is precisely where SNOBOL4’s pattern-matching abilities lie.

Even if the linguistic dichotomy that exists in SNOBOLA4 is viewed as beneficial rather than as detrimental,
it is nonetheless indisputable that the £ component of SNOBOL4 — with its lack of control structures — is
awkward and out of date. This raises the interesting possibility of “modernizing” SNOBOL4 by overhauling
its £component, while retaining its £ component essentially unchanged.

Such a language has several potential advantages. It would facilitate the evaluation of the “left-
brain/right-brain™ hypothesis. Furthermore, it would make use of SNOBOLA pattern matching more palat-
able in some contexts. For example, SNOBOLA4 is often taught in courses on comparative programming
languages because of its pattern-matching facilities, but its other characteristics are an embarrassment.

This report describes an experimental language, called Rebus®, that replaces much of the £component of
SNOBOL4 by a more modern structure. Experience from Icon has been used here; the contro! structures and
syntax of Rebus are adapted from those of Icon. The € component of Rebus, except for minor syntactic
changes, is that of SNOBOLA4. Except for some syntactic enhancements, the function and operation repertoire

*The name Rebus was chosen for its meaning and is not an acronym. ICURYY!
’

of Rebus is that of SNOBOLA.

The idea of improving the £ component of SNOBOLA4 is not new. Earlier approaches include extensions
to SNOBOLA's control structures [9, 10], preprocessors to produce “structured SNOBOLA4™[11-15], and even
programming styles that effect the appearance of control structures [16}, These approaches all add to the £
component of SNOBOL4 without taking anything away. The design of Rebus is more radical. It provides no
“escape mechanism™ for accessing all of SNOBOLA4’s capabilities. For example, Rebus has no labels or gotos.
One cannot transliterate an arbitrary SNOBOLA program into Rebus. Instead, Rebus includes some features
of SNOBOLA4, excludes others, and transforms others into different forms. Rebus also has syntactic support
for writing well-organized programs that is not available in SNOBOLA4.

Rebus is implemented by a preprocessor via a variant Icon translator [17]. The preprocessor accepts Rebus
input and outputs SNOBOLA4 code, which is then run under SNOBOLA.

The material that follows assumes that the reader is familiar with Icon and SNOBOLA. In the interest of
brevity, details are referenced to Icon and SNOBOLA as appropriate.

2. Syntactic Characteristics of Rebus

The syntax of Rebus is very similar to that of Icon. For example, Rebus uses Icon’s convention for com-
ments.

String literals can be enclosed in either single or double quotation marks as in SNOBOLA4. The Icon con-
vention for continuing quoted literals is available, but literal escape sequences are not. Real literals can be
given in exponent-form as in Icon.

The syntax of identifiers is the same as that of Icon. Except in quoted literals, upper- and lowercase letters
are equivalent in Rebus. The Rebus preprocessor maps all nonliteral letters to uppercase for compatibility
with SNOBOLA.

The treatment of blanks in Rebus is as it is in Icon: blanks are optional around infix operators, except
where they are necessary to disambiguate infix/prefix combinations. Blanks are optional between prefix
operators and their operands.

To accommodate the semantics of SNOBOLA, Rebus distinguishes between statements and expressions.
Reserved words are used for distinguished syntactic constructions, as in Icon. A grammar for Rebus is given
in the appendix.

2.1 Expressions

Rebus supports all the expressions that are supported by SNOBOL4, although there are some differences
in their syntactic representation. For example, assignment in Rebus is represented by

expr; = expr,

The right operand of an assignment expression cannot be omitted in Rebus to indicate assignment of the null
string as it can be in SNOBOL4. Note that assignment is an expression, not just a statement as in standard
SNOBOLA. This treatment of assignment allows the use of the capabilities of SNOBOL4 dialects such as
MACRO SPITBOL [18]. Rebus provides an exchange operation

expry, (= expr,
as well as augmented assignment operations for incrementing and decrementing numerical values:

expr; += expr,
expr; —= expr,

These operations are only abbreviations. For example,
expry +:= expr,

is equivalent to

expr; = expr, + expr, “

so that expr, is evaluated twice.

Rebus supports operator notation that can be used in place of functional syntax for several operations in
SNOBOLA. For example, the expression

expr, % expr,

is available as a synonym for remdr(expr,, exprz)..

Comparison operations also can be represented in Rebus using operator syntax, as in:

expr, = expr,

which is synonymous with
eq(expr,, expr,)

Icon’s notation for lexical comparison is used in Rebus, as in
expry >>= expry:

which is synonymous with
Igt(expr,, expr,)

All six lexical comparison operators are provided. Library routines are included for those lexical comparison
operators that are not provided in standard SNOBOLA. The two object comparison operators,

expr; === expr,
and
expr; ~== expr,
are synonyms for ident(expr,, expr,) and differ(expr,, expr,), respectively. The prefix operations

/expr
\expr

are provided as synonyms for ident(expr;) and differ(expr), respectively.
In Rebus, string concatenation is represented by
expr, || expr,
while pattern concatenation is represented by
expr, & expr,

Because SNOBOL4 does not distinguish these two kinds of concatenation syntactically and Rebus programs
are translated into SNOBOLA, there is no way to check the appropriateness of the concatenation operations
that are used in Rebus programs. The augmented assignment operation

expr, ||:= expr,
is available as a synonym for
expr; = expr; || expr,
The expression
expr)[expry +. expr;]
produces the substring of expr, starting at expr, and extending expr; characters and is a synonym for the

*Lowercase letters are used for SNOBOLA constructions throughout this report, although uppercase latters are required
in most cases in standard SNOBOLA,

MACRO SPITBOL function substr{expr,, expr,, expry). This function also is provided in the library that is
used when Rebus programs are run under standard SNOBOLA4.

Two new keywords are also provided for convenience:

&icase
&ucase

and are synonyms for

"abcdefghijkimnopgrstuvwxyz"”
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"

respectively.

2.2 Statements
There are two selection control structures with obvious meanings:

it stmt; then simt, [else simi;]
unless simi, then simy,

For example,
if count > 0 then output := count

writes the value of count, provided that it is greater than 0. Note the use of SNOBOLA-style output.
There are three looping control structures: '

while stmt, do stmi,
until stmy; do simt,
repeat stmi

The repeat control structure evaluates stms repeatedly as long as stme succeeds but terminates if st fails.
Note the difference from the corresponding control structure in Icon. For example,

repeat output = input
copies the input file to the output file.
There are two control structures for loop control:

exit
next

The exit control structure transfers control to the point immediately after the loop in which it appears, while
the next control structure transfers control to the beginning of the loop. For example,

while line := input do
if line = "start” then exit

reads input lines until one consisting of start is encountered.
There is an iteration control structure:
for ideniifier from expr, to expr, [by expr;] do stmt
For example,

for i from 1 to 10 do
output = ali]

writes out the first 10 elements of the array a.

A case control structure selects a statement to evaluate depending on the value of an expression. It is simi-
lar to the corresponding control structure in Icon and has the form:

case expr of { caselist }

where a caselist is a list of case clauses:
caseclause | ...

and a case clause may have one of two forms:

expr . stmt
default : stmu

The semnantics for the selection of the statement to evaluate and the handling of failure in a case statement are
the same as those for the corresponding Icon control structure. An example is

case s of {
"w" . output = text
“r’ . text = input
"d"” : text ;= ""
default . output = "erroneous command”

}

Rebus has pattern-matching and replacement statements like those of SNOBOL4 but with operator syn-
tax:

expr; 7 expr,
expr, 7 expr, <— expr;

An example is

while line ? wpat <— """ do
count +:= 1

For convenience, the commonly used form
expr; 7 expry <— ""
can be abbreviated as
expr; 71— expr,
Thus the example above can be written as
while line ?— wpat do
count +:= 1
There are two forms of return from functions;
fail
return [expr]
The null string is returned if the expression in the return statement is omitted.

The stop statement causes program termination. Finally, a statement may consist only of an optional
expression:

[expr]
or it may be compound:
{[stme;...]])
An example is
if text ? pat then {output := text; text = "}

Semicolon insertion is performed automatically at the ends of lines as it is in Icon. Therefore the example
above can be written as

if text ? pat then {
output = text
text := nn

}

2.3 Declarations
Records and functions are declared in Rebus. The syntax of a record declaration is the same as it is in Icon:

record identifier (arglist)
where arglist is a list of zero or more identifiers:
[identifier , ...]

Records are handled as they are in Icon and SNOBOLA4 (via defined data objects). Instances of records are
created and referenced as they are in SNOBOLA. For example, given the record declaration

record complex(r, i)
the expression
z ;= complex(1.0, 2.3)
assigns a complex record to z and
i(z) +:= 1.0
increments its i field by 1.0.
The form of a function declaration is

function identifier (arglist)

[local identifier , ...]
[initial stme]
[stme ;...]

end

Flowing off the end of a function is equivalent to return.
For example,

function main()
local i
i=0
repeat i +:= size(input)
output ;=i
end

is a function that prints the total number of characters in the input file (not counting line separators).

Identifiers are dynamically scoped as they are in SNOBOLA. The initial clause, if present, causes its state-
ment to be evaluated once on the first call of the function.

Program execution begins with a call to the function main. Every program must have a function named
main.

3. Examples

Comparing Rebus to SNOBOLA is difficult because of the number of points of difference, as well as differ-
ences of opinion about the relative merits of alternative language features. Specific comparisons are almost
inevitably biased, since a program written in one language influences the form of the same program written in
the other language, once they are placed side by side. It is comparatively easy to translate a Rebus program
into SNOBOLA4, but the converse is much harder because of the undisciplined use of gotos in most SNOBOL4

programs. These problems should be kept in mind when interpreting the following examples.

Word Counting

The following program for counting words is typical of a large class of programs written in SNOBOLA:
input lines are analyzed, data is stored in a table, and finally the results are written out.

letter = "abcdefghijkimnopgrstuvwxyz”

+ “"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
wpat = break(letter) span(letter) . word
count = table()

read text = input t(sort)
findw text wpat = :f(read)

count[word] = count[word] + 1 (findw) T T
sort result = sort{(count) ‘ :f(nowords)

output = "Word count.”

output =

i=0
print i=i+1

output = rpad(result[i = i + 1, 1], 15) Ipad(result[i, 2),4) :s(print)f(end)
nowords output = “There are no words"

end

This program can be cast in Rebus as follows:

function main()
letter ;= &lcase || &ucase
wpat = break(letter) & span(letter) . word
count := table()
while text := input do
while text ?7— wpat do
count{word] +:= 1
if result ;= sort(count) then {
output = "Word count:”
output = ""
i=20
repeat output := rpad(resuit[i +:= 1,1],15) || |pad(result(i, 2],4)
}
else output := "There are no words”
end

Note that the SNOBOL4 and Rebus programs are approximately the same size. There is an obvious trade-
off between brevity and program structure in the handling of the flow of control. The Rebus solution benefits
from some syntactic conveniences, such as &lcase, that would otherwise make it longer.

The corresponding Icon program is very similar to the Rebus one, except for the details of the output loop:

procedure main()
letter .= &lcase ++ &ucase
count ;= table(0)
while text := read() do
text ? while tab(upto(letter)) do
count[tab(many(letter))] +:= 1
result ;= sort(count)
it sresult > 0 then {
write("Word count:\n")
every pair := lresult do
write(left(pair[1], 15), right(pair[2], 4))

else write("There are no words”)
end

The difference between pattern matching and string scanning is evident, even in this simple example. In the
Rebus solution, there is the conceptual separation mentioned earlier:

wpat ;= break(letter) & span(letter) . word

while text ?7- wpat do
count[word] +:= 1

Contrast this with Icon string scanning:

text ? while tab(upto(letter)) do
count[tab(many(letter))] +:= 1

Binary Trees

The following program for constructing binary trees comes from a book on SNOBOL4 programming
techniques [19]. The function btree converts a string specification of a binary tree to a structure composed of
records, while bexp converts a binary tree structure back into a string. The main program loop tests these
functions by reading in string specifications, converting them to structures, and then writing out the result of
converting them back into strings.

define("addi(n1, n2)")
define(“addr(n1, n2)")
define("btree(s)l, r")

define("bexp(t)l, r, 8”)

data("bnode(value, left, right, up)”)

two = "("bal .| ","” bal . r")"

rone = "(,” bal . r ")"

lone = “(" bal . | ")”

tform = break(”(”) . s (two | rone | lone)
read output = bexp(btree(input)) :s(read)t(end)
add| left(n1) = n2
addu up(n2) = ni |:(return)
addr right(n1) = n2 :(addu)

btree s tform
btree = bnode(s)
(differ(l) addl(btree, btree(l))) :
(ditfer(r) addr(btree, btree(r))) :(return)

bexp bexp = value(t)
| = ditfer(left(t)) bexp(left(t))
r = differ(right(t)) ”,” bexp(right(t))
Ir
bexp ditfer(s) bexp "“(" s “)” (return)

end

This program illustrates several idiosyncrasies of SNOBOLA4: the function definition mechanism, the device of
returning the value of the function name, conditional tests in concatenations, and sharing code between func-
tions (in add! and addr).

The corresponding Rebus solution, obtained by translating the SNOBOLA4 solution, is;
record bnode(value, left, right, up)

function main()
repeat output := bexp(btree(input))
end

function addi(n1, n2)
left(n1) =
up(n2) = n1

end

function addr(n1, n2)
right(n1) ;=
up(n2) = n1

end

function btree(s)
local I, r, t
initial [
="("&bal .1 &"," &bal.r&")"
rone ;= "(,"” & bal . r & ")
="("

lone : & bal .| & ")
tform = reak("(") .8 & (two | rone | lone)
}
s ? tform
= bnode(s)

it \I then addl(t, btree(l))
it \r then addr(t, btree(r))
return t

end

function bexp(t)
local I, r, 81, 82
81 = value(t)
It \left(t) then | := bexp(left(t))
it \right(t) then r := ", || bexp(right(t))
82 =1||r
it \s2 then return 81 || “(" |l s2 || ")"
else returmn s1
end

Note the use of the initial clause to construct the patterns used in btree.

4. Running Rebus
The command
Rebus optrions file

translates the specified file, whose name must end with the suffix .reb. The result is a corresponding .sno file.
The available options are

-8 produce code to run under the MACRO SPITBOL dialect of SNOBOLA4 (the default)

-4 produce code to run under the standard implementation of SNOBOLA4

-X execute the translated program
An appropriate library is provided, depending on the SNOBOL4 option that is selected.

Compilation errors are detected by the Rebus preprocessor and are given in terms of the source line in the
Rebus program.

Run-time errors are detected by SNOBOLA, but the line number in the Rebus source program is given, as
well as the statement number in the generated SNOBOL4 program. Tracing and statistics from SNOBOL4
are reported in terms of statement numbers.

5. Programming Considerations
SNOBOLA programmers should be careful to use

expr, = expr,
in Rebus programs in place of
expr, = expr,
Note that the latter expression is syntactically correct in Rebus, which may obscure a mistake of this kind. On

the other hand, the omission of a concatenation operation in a Rebus program, which is another mistake com-
monly made by SNOBOL4 programmers, is usually detected as a syntactic error.

If Rebus programs are run under standard SNOBOLA, assignment is limited to its statement form®. That
is,
expr) = expr, = expr,
cannot be used with standard SNOBOLA.

The SNOBOILA programs generated by the Rebus translator and the support libraries use identifiers that
end in underscores. Such identifiers should not the used in Rebus programs.

The run-time error trapping mechanism relies on the SNOBOL4 keyword &errlimit and tracing. If a

“It is possible to generate code for assignment so that it can be used as an cxpression in standard SNOBOLA. The execu-
tion overhead required does not justify this luxury.

-10-

Rebus program interferes with tracing, run-time error detection may be ineffective.

6. Conclusions

Rebus is an experiment. It does not attempt to address many of the issues in programming language design
that SNOBOLA highlights. In particular, there are many aspects of pattern matching that could bear exami-
nation.

Experience with the use of Rebus provides support for the thesis presented in the introduction of this
report: it seems to be much easier to program in Rebus than in SNOBOL4 and the introduction of control
structures into the semantic framework of SNOBOLA4 does not dilute the power of pattern matching.

What this suggests is not so much that SNOBOLA4 should be redesigned, but that SNOBOL4-style pattern
matching may have a useful role in more modern languages.

Acknowledgements

Dave Hanson, Madge Griswold, Bill Mitchell, and Steve Wampler provided a number of helpful com-
ments on the presentation of the material in this report.

References

1. Griswold, Ralph E., James F. Poage, and lvan P. Polonsky. The SNOBOL4 Programming Language,
second edition. Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 1971.

2. Griswold, Ralph E. and David R. Hanson. “An Alternative to the Use of Patterns in String Processing”,
ACM Transactions on Programming Languages and Systems, Vol. 2, No. 2 (April 1980), pp. 153-172.

3. Griswold, Ralph E. and Madge T. Griswold. The Icon Programming Language. Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey. 1983.

4. Griswold, Ralph E. “Expression Evaluation in the Icon Programming Language”, 1984 ACM Sympo-
sium on LISP and Functional Programming, Austin, Texas.

5. Wampler, Stephen B. and Ralph E. Griswold. “Result Sequences”, Computer Languages, Vol. 8, No. 1
(1983), pp. 1-14.

6. Griswold, Ralph E. Pattern Maiching in Icon, Technical Report TR 80-25, Department of Computer
Science, The University of Arizona, Tucson, Arizona. 1980.

7. Griswold, Ralph E. Icon Newsletter #15, Department of Computer Science, The University of Arizona,
Tucson, Arizona. 1984.

8. Emmer, Mark B. SNOBOL4+; The SNOBOLA4 Language for the 8086 /8088 Computer Family, Catspaw,
Inc., Salida, Colorado. 1984,

9. Griswold, Ralph E. “Suggested Revisions and Additions to the Syntax and Control Mechanism of SNO-
BOLA4", SIGPLAN Notices, Vol. 9, No. 2 (February 1974), pp. 7-23.

10. Abrahams, Paul W. “Improving the Control Structure of SNOBOL4", SIGPLAN Notices, Vol. 9, No. §
(May 1974), pp. 10-12.

11. Sommerville, Ian. “S-SNOBOL — Structured SNOBOLA4", SIGPLAN Notices, Vol. 14, No. 1 (January
1979), pp. 91-99.

12. Hanson, David R. "RATSNO — An Experiment in Software Adaptability”, Software — Practice and
Experience, Vol. 7 (1977), pp. 625-630.

13. Beyer, Terry. FLECS: User’s Manual, Technical report, Department of Computer Science, University of
Oregon, Eugene, Oregon. 1975.

14. Croff, David L. SNOFLEX Handbook, Technical report, Department of Computer Science, Eugene,
Oregon. 1974,

-11-

15.

16.

Haight, R. C. The SNOFLAKE Programming Language, Technical Memorandum 70-9155-2, Bell Tele-
phone Laboratories, Inc., Murray Hill, New Jersey. 1970,

Arora, Kamal A. and William F. Applebe. Structured Programming in SNOBOL or SNOBOL Con-
sidered Not Harmful. Technical Report Cs 78 12, Department of Computer Science, Southern Methodist
University, Dallas, Texas. 1978.

. Griswold, Ralph E. The Construction of Variant Translators for Icon, Technical Report TR 83-19,

Department of Computer Science, The University of Arizona, Tucson, Arizona. 1983.

. Dewar, Robert B. K. and Anthony P. McCann. “MACRO SPITBOL — A SNOBOL4 Compiler”,

Software — Practice and Experience, Vol. 7 (1977), pp. 95-113.

Griswold, Ralph E. String and List Processing in SNOBOLM; Techniques and Applications. Prentice-
Hall, Inc., Englewood Cliffs, New Jersey. 1975,

-12-

program
decls

decl

record

Sfnc
fnchead

arglist

idlist

locals

initial

Jncbody

stmit

returm

match
repl

repin

|

l

|

|

Ll l

|

| bl

[A A

e el

|

l

|

Appendix — Grammar for Rebus

decls end—of—file

decls decl
Sne

record
record identifier (arglist)
fnchead ; locals initial fncbody end

function identifier (arglist)

idlist

identifier
idlist , identifier

locals local idlist ;
initial stmz ;

simt ; fncbody

nexpr
stop

exit

next

return

maich

repl

repin

Jor

if

unless

case

while

until

repeat

{ compound }

fail
return nexpr

expr 7 expr
expr 7 expr <— expr

expr 7— expr

|

for identifier from expr to expr do stmt
for identifier trom expr to expr by expr do simt

for

|

if - it stmt then simy
if stmt then stmt else stmt

|

unless - unless stmr then sime
case - case expr of { caselist }

cclause
caselist ; cclause

|

caselist

cclause - default : stmt
expr . stmt

|

while - while stmt do stmt
until - until stmt do stmi
repeat - repeat stmt

compound - stmt
stmt ; compound

|

nexpr

|

expr

|

exprl

exprl =: expr
exprl = expr

exprl +.= expr
exprl —= expr
exprl ||:= expr

expr

[A

exprl - expr?
- expr2 | exprl

l

expr2 expr3

expr2 == expr3
expr2 >>= expr3
expr2 >> expr3
expr2 <<= expr3
expr2 << expr3
expr2 ~= expr3
expr2 = expr3
expr2 >= expr3
expr2 > expr3
expr? <= expr3
expr2 < expr3
expr2 ~= expr3
expr2 == expr3
expr? ~=== expr3

|

e b b e e

|

l

expr3 — expréd
expr3 || exprd
expr3 & exprd

|

|

|

expré
expréd @ exprS

exprS - expr6
- exprS + expr6
- exprS — expr6
expr6 expr?

expr6 o expr7
expr6 [expr?
expr6 % expr7

e

|

expr7

l

expr8 A expr?

l

expr9
expr9 $ expr8
expr9 . expr8

expr8

l

element
@ expr9
. expr9
| expr9
+ expr9
* expr9
/ expr9
$ expr9
A expr9
~ expr9
- expr9
? expr9

expr9

v e e

element literal

identifier
(exprlist)

element [exprlist]
element [expr +. expr]
element [expr]
identifier (exprlist)

& identifier

e

|

exprlist nexpr

exprlist |, nexpr

l

literal integer—literal
real-literal
dgstring—literal

sqstring—literal

L

-15-

