
Programming Techniques
Using Character Sets

and Character Mappings in Icon*

Ralph E. Griswold

TR 78-15a

December 6, 1978

Department of Computer Science

The University of Arizona

*This work was supported by the National Science Foundation under
Grant MCS75-01307.

Programming Techniques Using Character Sets
and Character Mappings in Icon*

Ralph E. Griswold

Department of Computer Science
The University of Arizona

1. Introduction

The character set and character mapping facilities in Icon,
used in conjunction with its string-processing facilities, sup-
port a number of unusual programming techniques that can be used
to advantage in a variety of nonnumerical programming problems.

This paper descibes the features that are important to these
techniques and characterizes their usage. Examples are given to
illustrate the major paradigms. A familiarity with Icon [1,2] is
assumed. This paper uses Icon constructs freely, supplementing
them with additional notation as required.

2. Character Sets

There are a variety of character sets in use on different
kinds of computers. They differ in size, in the relationship
between the internal representations of characters to control
functions and external graphics, and (hence) in collating se-
quence. The most commonly used character sets are ASCII [3],
EBCDIC [4], and various forms of BCD [5]. Internally, a charac-
ter is simply an integer in the range from 0 to one less than the
size of the character set. Thus in ASCII, there are 128 charac-
ters with internal representations from 0 to 127 (decimal), in-
clusive .

Most of the programming techniques described in this paper
depend on the use of characters within a program, rather than
their input or output. Where graphic representations are impor-
tant, it is desirable, but not necessary, to have both upper- and
lower-case letters but any of the common collating sequences will
suffice. The size of the character set is significant, however,
since in a number of applications individual characters are used
to represent or label other objects.

The size of the internal Icon character set is 256. This
character set is independent of the size of the character set for
the host computer on which Icon runs. The internal character set
and the host character set are interfaced only by input and out-
put routines. Despite the size of its character set, Icon is
ASCII based and the first 128 characters have ASCII interpreta-
tions. The use of the remaining characters is illustrated in
subsequent examples. It is assumed for ease of presentation that
both upper- and lower-case letters are available on the host
machine. This assumption is not essential, however, since Icon

*This work was supported by the National Science Foundation under
Grant MCS75-01307.

provides escape conventions for the literal representation of any
internal character, regardless of input limitations that may be
imposed by the host computer [2].

Icon supports a character set type, called cset for short. In
Icon csets may have from 0 to 256 members. The value of the
keyword &cset is a cset containing all 256 characters.

Csets are constructed from strings using the built-in function
cset(s), which produces a cset consisting of the characters in
the string s. While a string may contain duplicate characters, a
cset cannot, of course. Similarly, the order of characters in s
is irrelevant to the resulting cset. Thus

cset("armada")
cset("ramada")
cset("drama")
cset("dram")

all produce equivalent csets.

Hi storical Note; The concept of character set is latent in SNO-
B0L4 [T] and" related languages. Although there is no character
set type in SN0B0L4, typical implementations of SN0E0L4 deal with
various representations of character sets [7,8] in order to sup-
port lexical analysis functions such as SPAN(S) and BREAK(S).
The emergence of characters sets in Icon is a linguistic eleva-
tion of an implementation mechanism to full status as a source-
language feature. The consequences of this elevation exceed the
mechanisms for which they were originally developed, however.

Aside from type conversions, there are five built-in opera-
tions defined on csets:

~c complement with respect to &cset
cl + + c2 union
cl ** C2 intersection
cl ~~ c2 difference

The creation of a cset from a string may be considered to be type
conversion. Conversely, a cset may be converted to a string
using the built-in function string(c). In this operation, the
resulting string is alphabetized, that is, the characters of c
are placed in the string according to their relative position in
the collating sequence. For example,

alpha := string(&cset)

assigns to alpha a string consisting of all the available charac-
ters in order of their collating sequence. This string is re-
ferred to from place to place throughout this paper.

As a consequence of the properties of these conversions, the
result of

S2 := string(cset(s^))

is a string S2 which contains every distinct character of s^
arranged in alphabetical order. This feature can be used to
advantage, as is described in later sections.

Icon also supports implicit type conversions, coercing argu-
ments to expected types as the context demands. For example,
si || S2 is the concatenation of strings si and S2. Similarly,
if c\ and C2 are csets, ci || C2 produces a string that is the
concatenation of the results of converting c^ and C2 to strings

3. Character Mappings

Icon has an apparently innocuous built-in function for mapping
the characters in a string, map(sj,S2,S3). This function pro-
duces a result in which every character of s^ that appears in S2
is replaced by the corresponding character in S3. For example,
the result of

map("retroactive","aeiou"," ")

is "r-tr—ct-v-". Different characters can also be mapped dif-
ferently. The result of

map("retroactive","aeiou","AEIOU")

is "rEtrOActlvE".

Note: The function map in Icon is virtually identical to the
function REPLACE in SNOBOL4, the difference being in the handling
of the case in which the lengths of S2 and S3 are different. In
Icon, this is an error, while in SN0B0L4, it causes failure of
the evaluation of the function.

3.1 Properties of Character Mappings

The description of the map function given above is a superfi-
cial one. In order to use the full capabilities of this func-
tion, it is necessary to be more precise about the operation and
its consequences. In the discussion that follows, the form of
the call is

s4 := map(s1,s2,s3)

1. The length of S4 is the same as the length of S]_, regardless
of the values of S2 and S3. in Icon terms, this is stated as

size(S4) = size(si)

To remain in the domain of Icon as much as possible, this termi-
nology is used subsequently.

If the notation alphan is used for the set of all strings of
length n that are composed of characters in alpha, then in gener-
al the result of the operation is a many-to-one mapping of
alphasize(si) into itself.

2. The relative order of characters of S2 and S3 is significant,

since it establishes the correspondence used in the mapping.
Thus the two expressions

map(si,"aeiou","AEIUO")
map(si,"uoiea","UOIEA")

produce the same result, but the two expressions

map(si,"aeiou","AEIOU")
map (si/'uoiea", "AEIOU")

produce quite different results, in general.

(1)
(2)

As an aid to visualization, the correspondences between char-
acters in s>2 and S3 are shown as maps indicating the correspon-
dences between individual characters directly. The map for
expression (1) is

S2 a e i o u

s3

t

A E 0

i
u

Expression (2) has the map

S2 u o i

E 0 u

Note that only the relative order is important. Thus the map

S2 a e i o u

s3

t

U

t

0
t
E A

is equivalent to the previous map. The expression

map(si,"aeiou","UOIEA")

is also equivalent to expression (2).

3. As illustrated in the first example in this section, S3 may
contain duplicate characters. This results in a mapping that is
illustrated as follows

s2

L LJ

4. Duplicate characters in S2 are permitted. In this case the
last (rightmost) correspondence with S3 holds. For example, the
map for

map(s1/"aeioua","AEIOU-")

is

s2

s3 E

t

I 0

t

u

It is convenient for the purposes of discussion to deal with the
reduced forms of S2 and S3, in which there are no duplicate char-
acters in S2« In addition, it is convenient to deal with
canonical forms in which S2 *s i-n reduced form and in alphabeti-
cal order and s3 is rearranged accordingly. The expression above
in canonical form is

map(slf"aeiou","-EIOU")

The symbols §2 and §3 are used for the canonical forms of S2 and
S3, respectively. See the end of Section 3.4 for a method of
computing canonical forms.

In programming use, it is often convenient or more efficient
to use values of S2 and S3 that are not canonical or even re-
duced. The map function can be thought of as performing the
necessary canonicalization.

5. Characters of s\ that do not occur in S2 appear unchanged in
their respective positions in S4. The map function can be
thought of as setting up automatic correspondences with such
characters with themselves, but such detail is cumbersome and is
omitted from maps shown in this paper. It is worth noting that

map(slfs2,S3)

and

map(Si,alpha || s2,alpha || S3)

are equivalent.

6* sl/ S2, and S3 may be of any size, although the sizes of S2
and S3 must be the same, and size(§2) = size(§3) <= size(alpha).
Furthermore, as noted above, size(S4) = size(sj).

3.2 Substitutions

The use of map(si,52,S3) in which S2 and S3 are fixed and si
varies is called a substitution for s]_.

As a consequence of the properties listed in Section 3.1, the
following condition holds:

Substitution inverse Condition: For fixed S2 and S3 and varying
si, the substitution

S4 := map(si,s2,s3)

has an inverse if and only if §3 is equal to pi(§2) for some
permutation pi. An inverse is

si := map(s4,§3,§2)

The classical use for this kind of mapping occurs in cryptog-
raphy. Substitution ciphers, which by definition must have in-
verses, are used to substitute for characters of a message. The
form of substitution given above is directly applicable to
monoliteral substitutions. See Reference 9 for an extended dis-
cussion and for programming techniques in SNOBOL4 that can be
directly employed in Icon.

3.3. Permutations

The map function was originally designed to perform substitu-
tions and its use for this purpose is obvious. it use to effect
permutations (rearrangements) is less obvious.

A simple example illustrates the technique. Suppose that the
order of the characters of a string is to be reversed end-for-
end. As a specific case, suppose size(S3) = 6. Then

s2 := "123456"
s1 := "654321"
s4 := map(si,S2,S3)

produces the desired result. In this expression, the mapping
between S2 and S3 depends on the particular characters in S3. If
S3 consists of characters C1C2C3C4C5C5, then the map is

JT ^ A J, ^ r̂

Ci c2 c3 C4 c5 c6

The desired permutation is accomplished since the characters of
sj are mapped through S2, by relative position, into those of S3,
as illustrated by the following diagram.

sl

Historical Note: The use of character mapping to effect string
reversal was first called to the author's attention in a private
communication from Morris Seigel [10], who noted the technique is
a use of the IBM 360 translate instruction [11]. This specific
use was mentioned in the second edition of the SNOBOL4 program-
ming language manual [6]. Jim Gimpel subsequently generalized
the technique, which is described in Reference 12. A more exten-
sive, but less formal presentation is given in Reference 9.

From the example above, it is clear that the technique can be
used to perform any permutation, provided S3 is not longer than
size(alpha). Specifically:

Permutation Property:
n <= size(alpHa) and"
then the result of

If pi is a permutation on a string of size
S2 is a string of n distinct characters,

s4 := map(pi(s2),S2,S3)

is S4 = pi(s3). Furthermore, an inverse to the permutation is

S3 := map(s2,pi(s2),54)

Note that for constant values s^ and pi(S2), the first expression
above applies the permutation pi to all strings S3 of size n.

An application of fixed permutations applied to a set of
strings occurs again in classical cryptography, where various
transposition ciphers (route transposition, columnar transposi-
tion, and so forth) can all be seen as instances of this paradigm
[9] .

3.4. Positional Transformations

Permutations are a restricted case of more general positional
transformations [12], A positional transformation rho(s) of a
string s is a rearrangement of the charcters of s in which

(1) Any character in a specific position in s may appear in
zero or more fixed positions in rho(s).

(2) Additional constant characters, independent of the char-
acters in s may appear in rho(s) at other fixed positions. These
characters are called nulls.

For example, (abc)(cba) is a positional transformation of abc.
The same positional transformation applied to xxy produces
(xxy) (yxx) . In this example, the parentheses are nulls.

positional Transformation Property: if rho(s) is a positional
transformation, then the result of

s4 := map(rho(s2) ,s2,s3)

is S4 := rho(S3).

Obviously not a l l p o s i t i o n a l t r a n s f o r m a t i o n s have i n v e r s e s .
For example

s 4 := m a p (, , f l " , " f l l l l l l , , , s 3)

produces a two-character string consisting of the first and last
characters of a seven-character string S3.

One form of positional transformation that always has an in-
verse is the permutation, as described in Section 3.3. The class
of positional transformations with inverses is more general,
however.

positional Transformation Inverse Property: Given a positional
transformation rho, the mapping

s4 := map(rho(s2),s2,s3)

has an inverse if and only if

(1) All the characters in s2 are distinct.

(2) All characters in s2 appear at least once in rho(s2).

If these conditions hold, the inverse is

s3 := map(s2,rho(s2),s4)

In the first place, if there is a duplicate character in s2,
only the last correspondence with S3 will hold, and a character
of S3 will be deleted in the transformation and hence cannot be
restored, in general, by any mapping.

Similarly, it is easy to see that if rho(s2) does not contain
some character in S2, then the corresponding character in s-̂ will
not appear in s, ana hence cannot be restored by any mapping. It
remains to show that characters of s2 can occur more than once in
rho(s2) and that nulls in rho(S2) do not affect the inverse map-
ping.

Consider a positional transformation in which a character of
S2 is duplicated.

C 1 C 2 " ,Cn

rho(s2):

s3-
Then the map has the form

Clc2'•-cncl

D1D2...Dn

D-

t

D.

t

D,

and s4 is clearly D^D2.•.DnDi. When the inverse transformation
is applied, rho(S2) and ŝ stand in the correspondence

rho(S2) :

'4:

•

D-

I
•

D.

. . .

. « • t
D.

•

D-

so the map for the reduced form is

• • •

I
t

D-

t

D.

• • »
• . •

I
t
D,

which is clearly an inverse to the original map. That is, dupli-
cate characters of s2 in rho(s2) always stand in the same corre-
spondence to characters of s^. Furthermore, this applies to any
rearrangement or duplication of Cj, Co, ..., Cn in rho(s2), since
duplicate characters always produce identical correspondences.

Consider next the case in which the positional transformation
contains a null X^. For simplicity, suppose rho(s2) has the form

rho(s2) : CiC2...CnXi

Then s4 will have the form

S4: D^D2...DnXi

and in the inverse transformation the following correspondences
hold:

rho(s2): Ci C2 . . . Cn Xj

I I . . . I I
t t . . . i t

S4: Di D2 . • . Dn Xj

Since by definition X} does not occur in S2, it will not appear
in the result.

It is easy to show that the same situation exists for other
nulls and that their location in rho(S2) is irrelevant.

Note: The canonical forms in the substitution paradigm can be
obtained as follows:

§2 := string(cset(S2))
§3 := map(S2,s2,s3)

This mapping is the inverse of the positional transformation that
maps §2 into S2.

Positional transformations with inverses appear in classical
transposition ciphers, such as grilles [9], in which null charac-
ters are added to the cipher to obscure the transposed message.
It is interesteing to note, as well, that message characters can
be duplicated in the cipher without interfering with the inverse
deciphering process.

4. Applications and Examples

As mentioned above, many of the models for substitution and
positional transformation are found in classical enciphering
techniques. While there are no longer many practical applica-
tions of classical enciphering techniques, there are a number of
related applications that are of interest. The examples that
follow illustrate techniques that many be useful in such cases.

For brevity, program solutions are stripped down to their
essentials. Tests for the validity of arguments and so forth are
deliberately omitted; these components easily can be added.

10

4.1 Substitutions

Example It Case Folding

One of the common uses for substitution is to establish equiv-
alences between characters by mapping one set into another. For
example, it is often convenient to consider upper- and lower-case
letters to be equivalent. Instances of this situation arise in
command processors that are insensitive to case. To simplify
processing, therefore, the input is "folded" into a single case.
The following procedure maps upper-case letters into lower-case
ones using the Icon keywords for these values:

procedure fold(s)
return map(s,&ucase,&lcase)

end

Example 2: Bit String Operations

Bit strings can be simulated by character strings composed of
zeroes and ones. The logical negation operation is then simply

procedure not(b)
return map(b,"01","10")

end

The logical operations of "or", "and", and "exclusive or" can be
performed by adding bit strings as integers and making appropri-
ate substitutions:

procedure or(bl,b.2)
return map(bl+b2,"2","1")

end

procedure and(bl,b2)
return map(bl+b2,"12","01")

end

procedure exor(bl,b2)
return map(bl+b2, "2","0")

end

Note: In general it is necessary to perform symbolic addition,
since bits strings of any reasonable size are too large to repre-
sent as integers on most computers. Furthermore, bit strings are
usually considered to be of fixed length with leading zeroes as
necessary. Therefore the expression bl+b2 above should be re-
placed by sum(bl,b2), where sum is a procedure that handles these
problems.

Example 3: Displaying Card Decks

A related application of substitution is illustrated by the
problem of manipulating and displaying a deck of cards. Here a
standard deck of playing cards can be represented by 52 distinct
characters. Although any 52 distinct characters can be used, it
is convenient to use the upper- and lower-case letters, since

11

their graphic representations facilitate program development and
debugging. Therefore

deck := deckimage := fcucase || &lcase

provides a "fresh" deck. The identifier deckimage is retained as
a labeling of the cards, while deck may, for example, be shuf-
fled. Since individual characters are used to represent the
cards, shuffling can be done easily by character exchanges [13]:

procedure shuffle(deck) local m
every m := size(deck) to 2 by -1 do
deck[random(m)] :=: deck[m]

return deck
end

In order to display a shuffled deck, it is necessary to determine
the suit and denomination of each card. Again, this can be done
by a substitution in which the first 13 characters of deckimage
are mapped into the character C (for clubs), the second 13 into D
(for diamonds), and so on. The third argument to map in this
case is

suits := repl("C",13) II repl("D",13) II repl("H",13)
I I repl("S",13)

Similarly, the denominations can be identified by associating the
first character of each 13-character group of deckimage with A
(for ace), the second character in each group by 2, and so on.
The third argument of map in this case is

denoms := repl("A23456789TJQK",4)

A simple display of a deck of cards is then provided by the fol-
lowing procedure

procedure display(deck)
global deckimage,suits,denoms
write(map(deck,deckimage,suits))
write(map(deck,deckimage,denoms))
return

end

This procedure displays the deck with the suits on the first line
and the denominations directly below. For example, if the shuf-
fled deck begins with the 3 of clubs, the ace of .hearts, and the
8 of spades, and so on, the display has the following form:

CH S ...
3A8 ...

A refinement to this display is given in Section 4.2.

Note that the technique used above is independent of the char-
acter set of the host computer on which Icon runs. Even if the
host character set is BCD, the procedures above will work proper-
ly, since internally Icon supports a larger character set. Thus

12

is is not necessary to change deckimage if the host character set
does not support lower-case letters. The interface between the
internal character set only occurs when the (upper-case) results
are written out.

Example 4; Masking Characters

In order to isolate characters of interest from those that are
not of interest, it is useful to map all uninteresting characters
into a single "null" that is not in the set of interest. The
following procedure substitutes the character s3 for all charac-
ters in si that are not contained in s2.

procedure mask(si,s2,s3)
return map(si, ~s2,repl(s3,size(~s2)))

end

For example,

mask("Watch for spooks","aeiou","-")

produces -a o oo— .

An alternate form of coding that uses duplicate characters
rather than character-set complementation is

procedure mask(si,s2,s3)
return map(sl,alpha || s2,repl(s3,size(alpha)) || s2)

end

Here a correspondence between each character of alpha (the string
of all characters) and s3 is first established and then the cor-
respondences of characters in s2 with themselves are appended to
override their correspondences with s3.

Example 5: Extracting and Displaying Suits

In card games like bridge, it is customary to sort hands into
suits and to order the suits by denomination. All the cards in
the same suit can be extracted by substituting some null for all
characters that are not in the desired suit. Standard templates
for the suits can be set up as follows:

blanker := repl(" ",13)
denom := substr(&lcase,13)
clubs := denom || repl(blanker,3)
diamonds := blanker || denom || repl(blanker,2)
hearts := repl(blanker,2) II denom || blanker
spades := repl(blanker,3) II denom

The mapping to get the clubs, for example, is

suit := map(hand,deckimage,clubs)

The identifier denom is used to associate the cards of each suit
with the same denominations, regardless of suit. For example,
the 2 of clubs and the 2 of hearts are both mapped into b. In

13

each case, all characters that do not correspond to a given suit
are mapped into a blank. Note that it is essential to select a
null that is not among the characters used to represent the
cards.

If the suit above is converted to a cset and back to a string,
the result is an (alphabetized) version of the suit with a single
instance of the null. A further substitution can be performed to
get the corect visual representation of each card:

map(cset(suit),denom,"AKQJT9 87 65 432")

If the hand contains the ace, queen, ten, and two of clubs, the
result would be AQT2.

Note that the null used here is "invisible" in printed output,
although is it actually the first character in the string pro-
duced above (for the ASCII collating sequence). It can be re-
moved, if desired, by performing the following operation instead:

map(differ(suit," "),denom,"AKQJT98765432")

Note that in any case the final mapping to get the desired visual
representation is done after the formation of the cset, since the
visual representations are not in alphabetical order according to
rank.

Other Applications

A number of other interesting uses of substitution are given
in Reference 12. Two examples are the translation of Roman nu-
meral to a higher "octave" in the conversion of Arabic numerals,
and the use of ten's-complement arithmetic to effect symbolic
subtraction by addition.

4.2 Positional Transformations

Example 6: Reversal

The reversal of the order of characters in a string, as de-
scribed in Section 3.3, is not of interest in itself, since there
is a built-in function in Icon for performing this operation.
The solution of the problem, however, serves as a model for a
number of other positional transformations.

The approach is to provide, by conventional means, general
templates for the transformation. The second argument of map
serves as a labeling for the third argument, while the first
argument is the desired permutation. The terms image and object
are used to refer to these two strings, respectively. For re-
verse, a possible image, object, and corresponding template size
are

revimage := "abcdefghijklmnopqrstuvwxyz"
revobjct :~ "zyxwvutsrqponmlkjihgfedcba"
revsize := size(revimage)

and the procedure is

14

procedure reverse(s)
global revimage,revobjct,revsi ze
if size(s) <= revsize then
return map(
section(revobjct,-size(s)),
section(revimage ,size (s)) ,
s
)

else
return reverse(section(s,revsize+l))

I| map(revobjct,revimage,substr(s ,1, revsize))
end

If s is not longer than the image template, the reversal is done
in one mapping. In this case, specific templates of the correct
length are selected from the general ones. Note that the first
part of revimage is used, while the last part of revobjct is
used. If s is too long, it is divided into two portions. One
portion is reversed by a recursive call, while the other is re-
versed using the full templates. This process can also be done
iteratively at the expense of some complication of the code.

Note that the templates can be chosen in any convenient fash-
ion, as long as revobjct is the reversal of revimage. For maxi-
mum efficiency in reversing long strings, the templates should be
as long as possible: alpha and its reversal. These strings can
be formed by conventional means:

revimiage := ""
every c := lalpha.do

revimage := c |I revimage

In fact, these strings can be obtained by bootstrapping:

revimage := "ab"
revobjct := "ba"
revobjct := reverse(alpha)
revimage := alpha

This technique had the advantage of using the most elementary
characterization of the positional transformation as well as
avoiding possible errors in constructing the two long strings by
conventional methods.

It is reasonable to question the use of map to effect this
permutation, since it can be more easily coded by conventional
techniques. One method is simply to concatenate successive char-
acters in reverse order. The most compact Icon code for this
method is

procedure reverse (s) local t
every t := !s | | t
return t

end

Both this method and the mapping method are approximately time

15

linear in size(s) if secondary effects such as storage management
anomalies are ignored. The conventional method is clearly lin-
ear. The map function itself is time linear in the sizes of its
first and second arguments (see Section 6.2). In the procedure
above, these two sizes are the same. Hence the mapping method is
also time linear in size(s). Results of actual timings are shown
in Fig. 1.

time

mapping

characters

Fig. 1 — Timings of String Reversal Methods

The interesting fact is tha
tionality for the iterative
the mapping method. Furthe
characters! That is, the t
of time for two-character s
of the mapping method impro
space requirements in terms
on the details of internal
has the clear advantage of
Part of the cost of transie
constants of proportionalit
garbage collection that may

t the (measured) co
method is nearly 8
rmore, the cross-ov
wo methods take abo
trings, and the rel
ves rapidly thereaf
of transient stror
storage management,
creating fewer inte
nt allocation is sh
y, but part is defe
occur at unpredict

nstant of propor-
.5 times that of
er point is at two
ut the same amount
ative performance
ter. Although the
age are dependent
the mapping method
rmediate strings,
own in the relative
rred in the form of
able times to the

16

detriment of the conventional method. These remarks apply in
general to the relative efficiency of effecting positional trans-
formations by conventional means versus mapping.

Example 7; Character Exchange

A positional transformation that is similar to reversal is the
exchange of adjacent characters in a string, For example, ABCDEF
becomes BADCFE. The model for the solution to this problem is
the same as reversal: an image to label the string to be trans-
formed and an object that is the desired transformation of the
labels. Suitable values are

ximage := "abcdefghijklmnopqrstuvwxyz"
xobjct := "badcfehgjilknmporqtsvexwzy"
xsize := size(ximage)

The procedure is virtually identical to the one for reversal, the
difference being in the method for selection of the appropriate
parts of the templates and the order of concatenation if the
string is too long to be processed in one map:

procedure xchar(s)
global ximage,xobjct,xsize
if size(s) <= xsize then
return map(
substr(xobjct,1,size(s)) ,
substr(ximage,1,size(s)),
s
)

else
return map(xobjct,ximage,substr(s,1,xsize))

M xchar(section(s,xsize+l))
end

As with reversal, longer images and object provide more efficien-
cy for processing long strings.

This example is included to illustrate an important aspect of
this kind of positional transformation: the object must be a
permutation of the image. In this case, this is only true if s
is of even length. Suppose, for example, that the value of s is
ABCDE. The map produced by the procedure above is

map("badcf","abcde","ABCDE")

Since the first argument contains a character, f, that does not
appear in the second argument, this character is not changed by
the mapping and appears in the result, which is BADCf, the last
character being spurious. The procedure above only produces
meaningful results for strings of even length. Of course, the
exchange operation is not well defined for strings of odd length,
which is the essential source of the problem. It is easy to add
a check or modification to handle strings of odd length, but the
problem is a general one and must be taken into account when
performing positional transformations.

17

Example 8: Decollation

Both the positional transformations in the preceding examples
are permutations. An example of a positional transformation that
is not a permutation is decollation, the selection of every other
character of a string. For example, to get the even characters,
the following values can be used:

decimage := "-a-b-c-d-e-f-g-h-i-j-k-1-m-n-o-p-q-r-s-t-u-v-w-x-y-z"
decobjct := "abcdefghijklmnopqrst"
decsize := size(decimage)

with the procedure

procedure decollate(s)
global decimage,decobjct,decsize
if size(s) <= decsize then
return map(
substr(decobjct,1,size(s)/2) ,
substr(decimage,1,size(s)),
s
)

else
return map(
map(decobjct,decimage,substr(s,l,decsize))

I| decollate(section(s,decsize+l))
)

end

Here only the even-numbered characters in the image have corre-
spondences in the object and hence the result is the even-
numbered characters in s. Any characters can be used as nulls in
the image, provided that they are not the same as any of the
labels for the even-numbered characters.

The odd-numbered characters can be selected by using the
values above, but with a slightly modified image:

"a-b-c-d-e-f-g-h-i-j-k-1-m-n-o-p-q-r-s-t-u-v-w-x-y-z"

Since this value is just a one-character offset of the one above,
the two operations can be combined into a single procedure decol-
late(s,n), where n is an integer whose parity, odd or even,
determines whether the odd- or even-numbered characters are se-
lected. A general-purpose procedure for decollation is

procedure decollate(s,n) local length
length := size(s)
n := mod (n ,2)
if length+n <= decsize then
return map(
substr(decobjct,1,(length+n)/2),
substr(decimage,n+1,length),
s
)

else
map (
substr(decobjct,1,(decsize-2)/2),

18

substr(decimage,n + l,decsize-2),
substr(s,l,decsize-2)
)

end
decollate(section(s,decsize-l),n)

The decollation of a smaller size than usual in the second
section of the procedure allows for the fact that if n is odd,
the substring of decimage starts at the second character. The
choice of decsize-2 allows both parts of the decollation to oper-
ate on strings of even length, assuming s is of even length. An
examination of this procedure will reveal that it operates cor-
rectly for strings of odd length. If s were split at decsize-1,
however, the parity would have to be reversed for the second
part.

Example 9: Collation

Strings can be collated as well as decollated by mapping.
Since there are two strings specified in the collation process,
it is useful to have two corresponding images, one to label each
of the strings to be collated. The object is then the collation
of these two images:

colimagel := "abcdefghijklm"
colimage2 := "nopqrstuvwxyz"
colobject := "anbocpdqerfsgthuivjwkxlyrnz"
colsize := size(colimagel)

A collation procedure is

procedure collate(sifs2)
global colimagel,colimage2,colobject,colsize
if size(s) <= colsize then
return map(
substr(colobject,1,2*size(s)),
substr(colimagel,1,size(s)) || substr(colimaae2,1,size(s)),
si || s2
)

else
return map(
colobject,
colimagel || colimage2,
substr(si,1,colsize) || substr(s2,1,colsize)
)

I | collate(section(si,colsize+l) ,section(s2,colsize + 1))
end

This procedure assumes that si and s2 are of the same length,
is instructive to examine the result when this condition is not
satisfied.

It

19

Example 10: Displaying a Card Deck

The di
produces
obtained
and there
of each c
character
ters in t
the repre
ed wi th a
display p
sections,
convenien

splay of the
as unattract
if the suit
are separat
ard. Here t
s and 52 den
he result if
sentation of
single map
urposes it i
say four se
t image and

deck of ca
ive result,
and denomin
ors (say bl
here are 10
omination c
one separa
each card,
using long
s more reas
ctions of 1
object stri

rds as
A mor

ation o
anks) b
4 objec
haracte
ting ch
While

image a
onable
3 cards
ngs are

done in Exam
e attractive
f each card
etween the r
ts to be lab
rs) and some
aracter is p
the result
nd object st
to divide th
each. For

pie 3 a
displa
are adj
epresen
eled (5
156 ch
laced a
can be
rings,
e resul
this pu

bove
y is
acent
tation
2 suit
arac-
fter
obtain-
for
t into
rpose,

disimage := "ABCDEFGHIJKLMabcdefghijklm"
disobjct := "Aa Bb Cc Dd Ee Ff Gg Hh Ii Jj Kk LI Mm"

where it is assumed that the upper-case letters label the suits
and the lower-case letters label the denominations. The suit and
denomination strings are then concatenated before mapping. A
procedure is

procedure display(deck) local i
global disimage,disobjct,deckimage',suits,denoms
every i := 1 to 5 2 by 13 do
write(
map(
di sobjct,
di simage,
map(substr(deck,i,13),deckimage,suits)
)

end
)

Example 11: Directed Graphs

While it is customary to represent directed graphs by list structures
or adjacency matrices, they can also be represented by character strings
by associating a distinct character with each node and representing
the arcs as character pairs. For example the graph

has arcs AB, AC, CD, BD, and DD.
this graph is represented by

g := "ABACCDBDDD"

Represented as a single string,

20

(If nodes without connecting arcs are allowed, a string contain-
ing all the nodes may be kept separately.) This representation
is very compact and with the string processing operations of
Icon, many graph operations can be performed economically. For
example, a procedure to compute the number of nodes in a graph is
simply

procedure nodecount(g)
return size(cset(g))

end

Other graph operations are easily performed. For example, a cset
of all nodes that are direct successors of other nodes is pro-
duced by

snodes := cset(decollate(g,2))

An example of the use of this representation is given by a proce-
dure to determine the transitive closure of a node in a graph:

procedure closure(n,g)
local st,sn
sn := n
while (tn := sn ++ successors(sn,g)) ~=== sn do
sn := tn

return tn
end

The procedure successors(sn,g) returns all direct successors in g
of nodes in the cset sn. Definition of this procedure is left as
an exercise. The operation x ~=== y succeeds if x and y are
different csets, so the loop continues until nothing new is added
to the cset. It should be noted that all direct successors of
the nodes in the evolving cset are added at each step.

Although the representation above is very compact and easy to
manipulate, it is not suitable for display purposes. A position-
al transformation can produce a much more attractive result.
Using an image and object of the form

grimage := "1234567890"

grobjct := "1 -> 2; 3 ->4; 5 -> 6; 7 -> 8; 9 -> 0; "

produces a display of the graph above as

A -> B; A ->C; C -> D; B -> D; D -> D;
It is a straightforward matter to generate longer image and ob-
ject strings and to write a general-purpose procedure for produc-
ing the display.

Translation between various formats for input, output, dis-
play, and internal manipulation are easily derived in this man-
ner.

21

Example 12: Biliteral Substitution

A classical ciphering technique is biliteral substitution, in
which two characters are substituted for each character of the
message. For example, DZ might be substituted for A, FR for B,
and so on. This substitution is easily seen to be the collation
of two simple substitutions, which can be performed as follows:

procedure bilit(s,image,first,second)
return collate(
map(s,image,first),
map(s,image,second)
)

end

where first and second are the two substitutions for the charac-
ters of image.

One use of this kind of "cipher" is in obtaining the hexadeci-
mal representation of a character string. For ASCII, the values
are

hexl := repl("0",16) II repl("l",16) II repl ("2",16) II repl ("3",16'
repl("4",16) II repl("5",16) II repl("6",16) II repl("7",16)

hex2 := repl("0123456789ABCDEF",8)

The keyword &ascii, consisting of a string of all ASCII characters in
collating sequence, may be used for the image. For example, the
value of

bilit("hello",&ascii,hexl,hex2)

is 68656C6C6F.

The use of this technique to convert character strings to
their bit representations is left as an exercise.

Other Applications

References 9 and 12 provide numerous examples of positional
transformations ranging from the reformatting of dates to the
generation of pig latin.

5. Limitations

The main limitation on the programming techniques described in
this paper are imposed by the limited size of the character set.
In positional transformations, this is usually more of an annoy-
ance than an actual limitation, since most positional transforma-
tions such as the reversal of a long string can be decomposed
into a sequence of shorter transpositions. However, if the scope
of the transposition requires more labels than there are charac-
ters in the character set, a different technique has to be used.

The really serious limitation occurs in the use of characters
to represent distinct objects. The representation of a deck of
playing cards in this way works nicely with any commonly used

22

character set, but that is merely a convenient coincidence. In
the case of graphs, the representation used clearly limits the
cases that can be handled. Furthermore, since the methods spe-
cifically rely on character operations, there is no way to extend
the techniques if the size of the character set is inadequate.

6. Implementation

The techniques used to implement string and cset operations
are only of interest here to the extent that they affect the
efficiency of the programming techniques that have been describ-
ed. See Reference 14 for a description of dynamic storage man-
agement in Icon and the details of data layout.

6.1 Character Sets

Character sets are represented as bit strings, with the bit in
the position of the character in collating sequence set to 1 if
the character is in the character set and set to 0 otherwise.
The amount of space required for a cset depends on the size of
the character set (256 in Icon), not on the number of characters
it contains. In any event, csets require comparatively little
storage space.

The construction of a cset from a string involves processing
the characters of the string in sequence, setting the correspond-
ing bit in the cset. This process is time linear in the size of
the string.

Constructing a string from a cset involves the converse pro-
cess and is also time linear in the number of characters in the
cset.

Complementing a character set is time linear in the number of
characters not in the character set, but is a comparatively fast
operation compared to those that involve accessing characters.
The other built-in character set operations are also time linear
and correspondingly efficient.

6.2 Mapping

map(sj,S2,33) is performed by first building a table of corre-
spondences between the characters of S2 and those of S3. This
table contains one entry for each character in the character set
(256 in Icon) and it is initialized by having each character
correspond to itself. Then the entry for each character is S2 is
replaced by the corresponding character in S3, working from left
to right. Thus if there are duplicate characters in S2, the last
(right-most) correspondence results naturally.

Once the table is built, the characters in s^ are processed in
sequence and the result is built from the characters obtained by
the entry in the table that corresponds to the character of s^.

The amount of time required to build the table of correspon-
dences is proportional to the size of S2 and the amount of time
required to do the actual mapping is proportional to the size of

23

SJ. Thus the total time required for the mapping is approxi-
mately

a*size(si) + b*size(S2) + c

where c is constant overhead including the initialization of the
table of correspondences.

The table of correspondences is static. The only storage
allocation required for mapping is for the resulting string.
Furthermore, if map is called successively with the same values
of S2 and S3, the previous table of correspondences is used with-
out reinitialization.

7. Conclusions

The character set and string processing facilities of Icon
make programming techniques feasible that otherwise would require
data to be represented in different ways. The main advantages of
these techniques are the compactness of the data representations
and the comparative efficiency of the operations.

This efficiency is largely obtained by the internalization of
processes that would ordinarily involve loops at the source-
language level. Specific examples of this are identifying dis-
tinct characters, sorting them using cset(s), and the positional
transformations of long strings using a single mapping operation.
Given appropriate computer architecture, character sets can be
manipulated as bit vectors, with the potential improvement in
efficiency that can be obtained from parallel operations [15].

It is interesting to note that csets are so useful in their
role as sets independent of their relationships to specific char-
acters, despite the limitation on the number of objects that can
be represented. At the same time, csets provide an economical
facility, largely because they are limited in number.

There is no inherent reason why a language character set
should be resticted to the character set of the host machine.
Indeed, in the CYBER 175 implementation of Icon, the language
character set is four times the size of the (standard) host char-
acter set and on the DEC-10 it is twice the size of the host
character set. Character sets larger than those normally sup-
ported by any computer could easily be implemented, increasing
the scope of the string processing facilities.

The problem of supporting a language character set that is
different from the host character set is not as difficult as it
might appear. In Icon, the size of a character (and hence of
character sets) is an implementation parameter. Icon was origi-
nally configured for 128 characters and later changed to 256
characters to allow more flexibility. The change was easy and
accomplished quickly. Furthermore, an internal character set
that is independent of the host character set is an advantage,
especially for enhancing portability, since the bulk of the sys-
tem is written in machine-independent form with known collating
sequence (ASCII is used). For example, the lexical analyzer is

24

machine independent, whereas if the internal character set varied
according to the host character set of the target computer, there
would be many complications.

The penalty fo
space required fo
size of the chara
space required fo
age overhead that
set. Similarly,
required for each
operations is inc
require more time
have to be proces
correspondences e

Such "
cability
is beyond
advantage
provide i
are suppo
sing of d
problems
the chara
"di fferen

Acknowledgement

r .a larger character s
r representing csets a
cter set approximately
r storing a cset prope
is independent of the
the larger the charact
character of every st
reased also. The larg
in data movement and
sed is increased for c
stablished in map.

et is prima
nd strings.
doubles th
r, although
size of th

er set, the
ring. The
er size of
the number
set operati

rily in the
Doubling the

e amount of
there is stor-

e character
more space is
time for some
strings may
of items that
ons and the

supe r char
of the tec
to
of

scope
very 1

nternal re
rted
a ta
r ela
cter
ces

by th
for de
ted to
set o

of opi

acter sets" would exte
hniques described in t
of this paper, a poten
arge character sets li
presentations for larg
e host character set a
vices like phototypese
the imbedding of the
f the language, especi
nion" about collating

nd the domain of appli-
his paper. Although it
tially more important
es in their capacity to
er sets of graphics than
nd hence in the proces-
tters. There are thorny
host character set in
ally with respect to
sequences.

I am indebted to Jim Gimpel for introducing me to character
mappings. Students in my string and list processing classes have
served in an exemplary manner as guinea pigs. In addition, David
R. Hanson and John T. Korb have provided helpful suggestions on
the presentation of the material in this paper.

References

1. Griswold, Ralph E., David R. Hanson, and John T. Korb. The
Icon Programming Language; An Overview. Technical Report TR
78-3b,~ Depar tmefnt of Computer Science, The University of Arizona,
Tucson, Arizona. October 2, 1978.

2. Griswold, Ralph E. User's Manual for the Icon Programming
Language. Technical Report TR 78-14, Department of~Computer
Science, The University of Arizona, Tucson, Arizona. October 6,
1978.

3. American National Standards Institute. USA Standard Code for
Information Interchange, X3.4-1968. New York, New York. 19 68"

4. IBM Corporation. System/370 Reference Summary. Form GX20-
18 50-3. White Plains , ""New "T6TRT ~TTTU~.

5. Control Data Corporation. SCOPE Reference Manual. Publica-
tion Number 60307 200. Sunnyvale, CaHTor'nTa. T9~7T7~

6. Griswold, Ralph E., James F. Poage, and Ivan P. Polonsky.

25

T!l2 S^° pQL4 Programming Language, 2nd ed. Prentice-Hall, Engle-
wood Clitls, New Jersey. T¥7T'.

7. Griswold, Ralph E. The Macro imp]ementation of SNODOL4; A
Case Study in Machi ne-Independent Software Development. W. H.
Freeman, San Francisco. 1972.

8. Gimpel, James F. "The Minimization of Spatially Multiplexed
Character Sets", Communications of the ACM, Vol. 17, No. 6 (June,
1974). pp. 315-3TF:

9. Griswold, Ralph E. String and List Processing in SN0B0L4,
Techniques and Applications. Prentice-Hall, Inc. Englewood
Cliffs, N.J. 1TT5~. "

10. Seigel, Morris M. Letter to author, October 12, 1969.

11. Coinputer Usage Company, Programming the IBM/360. John Wiley
& Sons, New York. 1966. p. 2081^

12. Gimpel, James F. Algorithms in SNOBOL4. John Wiley & Sons,
New York. 1976. pp. 46-51.

13. Knuth, Donald E. The Art of Computer Programming, vol. 2.
Addison-Wesley, Reading, Massachusetts. 1969. p^ Df5.

14. David R. Hanson. A Portable Storage Management System for
the Icon Programming Language? Technical Report TR 78-16"7~
Department ot CompuTcr Science, The University of Arizona, Tuc-
son, Arizona. October 8, 1978.

15. Aho, Alfred V., John' E. Hopcroft, and Jeffry D. Ullman. The
Design and Analysis of Computer Algorithms. Addison Wesley Pub--
TTsbTng Company, ReadTng, Massachusetts. 19 76.

26

