
T H E U N I V E R S I T Y OF A R I Z O N A 
T U C S C) N. A R I Z O N A 8572 I 

OEPARTMKNT OK (OMPUIKK SC IKNt K 

Icon Newsletter #6 

Ralph E. Griswold 

May I. 1981 

I. Portable Icon 

1.1 Implementations 

As mentioned in earlier Newsletters, there are running implementations of Version 2 of the portable Icon 
system for the DEC-10, the C D C Cyber, 6000, the IBM 370 and compatible computers, the VAX-11/7X0, and 
the CRAY-1 . The implementation for the ICI. 2900, mentioned in the last Newsletter, is now also complete. 
I he portable system and the C D C Cyber/6000 and DEC-10 implementations are still available from us. 
Request forms are contained in Newsletter #5. 

An implementation for the PR IMF 400 has recently been completed. Tor information, contact 

Dr. V. J. Ray ward-Smith 
School of Computing Studies and Accountancy 
University of Fast Anglia 
Norwich NR4 7T.I 
Rngland 

Claude Finn has completed an implementation of Version 1.3 on the Data General MV8000. He comments 

I have now written about 5 medium sized programs (50-200 lines each), doing research on the syntax 
and grammar of on-line documentation. I he power of Icon doing this research can he seen by the 
following comparison: My first Icon program (5K lines long) replaced a 1250 line I'l I program. In 
defense of I'l. I, however, it must be pointed out that about MM) lines ol I'l. I are usable in other 
programs which do syntax scanning. Thus, my calculated "densin ratio" is about 10:1 in favor of Icon 
over I'l. I for this particular exercise. 

Finn plans to update his system to Version 2.0 and then make it available to interested users. If you are 
interested, contact him: 

Mr. Claude Finn 
Principal Member Technical Staff 
Data General Corporation 
Route 9 
Westboro, Massachusetts 015X1 

- I 



1.2 Word-Size Limitations 

When we designed the portable implementation of Icon, we hoped that it could be made to run on 16-bit 
machines. We now know that expectation was unrealistic. One ol the problems is the limitation thai 16-bit 
addresses place on the si/e ol Icon's various data regions. Real arithmetic and some internal computations 
also present problems on a 16-bit machine. II anyone who has tried to implement Icon on a 16-bit machine has 
found a way around these problems, we would be happy to stand corrected. 

1.3 I 'pdated Corrections to Version 2 

We have recently made a number of corrections to the Version 2.0 source program. Most of these relate to 
the portable aspects of the system. A list of the new corrections is available. See the document request form at 
the end ol this Newsletter. 

2. Tlii' UNIX Implementation of Icon 

2.1 Version 3 

Version 3.2 of Icon for UNIX systems is still being distributed. The list ol known bugs in this version has 
been updated recently. Sec the document request form at the end of this Newsletter. 

Paul Iggert at the University of California has converted Version 3 to run on a VAX-II 7X0 under 
Berkeley UNIX, l o r those interested, his address is 

Mr. Paul Kggert 
Department of Computer Science 
University of California 
Santa Barbara. California 93106 

2.2 Version 4 

I he inevitable "next version" is nearly done. Version 4, the successor to Version 3 lor UNIX, is near 
completion and should be ready for distribution some time this summer (its availability will be announced in 
the next Newsletter). 

Version 4 contains quite a number ol differences from Version 3 more differences than there have been 
between earlier versions, the major differences are: 

• Limitations on goal-directed evaluation have been removed from a number of control structures in order 
to pro\ idc more uniform and general evaluation ol expressions. In addition, new control structures have 
been added to allow generators to be used in a more flexible manner. 

• Co-expressions (the approximate equivalent ol co-routines on the expression level) have been added to 
allow generators to be encapsulated and hence activated at any time and place in a program rather than 
only at the site where they appear. Co-expressions and some ol the new control structures in Version 4 are 
described in I R XI-!. See the document request form at the end of this Newsletter. 

• I ist and stacks have been unified into a single data structure that can be accessed as a list, stack, or queue. 

• The null value is no longer convertible to other types and is illegal in most computations. I his allows 
detection of the use of uninitialized variables. 

3. Current Research 

3.1 Sequences and Expression Evaluation 

Some expressions in Icon, such as x + y. produce a single result and correspond to conventional 
computational expressions found in most programming languages. Other expressions, such as x y, may not 
produce any result anil correspond lo conditional expressions in SNOBOI.4. An expression such as 
f ind(s1,s2) may produce several results and is called a generator. Generators, of course, subsume ordinary 



computational and conditional expressions. 

Considerable insight into expression evaluation in Icon may be obtained by considering the sequence of 
results that expressions may produce and how such sequences relate to goal-directed evaluation and the 
control structures of Icon. 

For example, the sequence of results that may be produced by 

find("th", "this is the thesis") 

is 11,9,13}. The results that are actually produced by such an expression depend, of course, on the context in 
which it is evaluated. In general 

every e 

forces c to produce its entire sequence. 

I he value of using sequences to describe control structures is illustrated by alternation: 

e1 | e2 

this control structure simply produces the sequence produced by i'l followed by the sequence produced by c2. 

A notation for characterizing result sequences and results of investigating this characterization of 
expression evaluation are contained in TR XI-2. Sec the document request form at the end of this Newsletter. 

3.2 Models of String Pattern Matching 

An earlier report (TR 80-25) described how SNOBOI.4-style pattern matching might be implemcntated in 
Icon. 

the ideas in that work now have been developed more fully and provide the basis lor various models of 
string pattern matching. The results of Ibis research are described in TR XI-6 and conclude with some 
suggestions for design of an Icon-like language with a pattern-matching facility. See the document request 
form at the end of this Newsletter. 

}.} Generators in C 

In the last Newsletter, a project to add Icon-style generators to the C programming language was described 
briefly. I he results of that work have been encouraging and an implementation of a full-blown preprocessor 
to translate "C-wilh-gencrators" (Cg) into standard C is underway. The intent is to use Yacc for the 
preprocessor, with semantic actions simply transcribing the source program intact except where generator 
constructs appear. 

I he runtime system to support generators in C is complete and as soon as the preprocessor and 
documentation arc finished, the system will be made available to interested persons. 

4. Programming Corner 

4.1 An Idiom 

livery programming language has a number of particularly apt idioms. Consider the expression 

x x 

At first sight, this expression appears to be a curiosity. However, when used in a conjunction expression, it 
serves as a stack with automatic pushing ol the value ol X when it is evaluated and automatic popping ol the 
value o[ x during backtracking. Thus in 

,'l & (x • x) & i-2 

if el succeeds, the value of x is pushed and e2 is evaluated. If c2 fails, the value of x is popped and el is 
reactivated. 

In situations in which several expressions are connected by conjunction to obtain the lirst-in, last-out 

- 3-



sequencing provided by goal-directed evaluation, this reversible-assignment idiom is both concise and (once it 
is understood) clearly indicates its purpose. 

4.2 Solutions to Questions Posed in Newsletter #5 

In the programming corner of Newsletter tt5, several programming questions were posed. These questions 
are restated below with their answers. Asterisks indicate material for Version 3 only. 

Problem I: 

Q: What is the output produced by each ol the following expressions'.' 

(a) every wr i te((0 | 0) to 7) 
(b) every wr i te(0 to 3,0 to 7,0 to 7) 
(e) every write (1 | 2 to 3 | 4 by 1 | 2) 
(d) every 1 to 3 do every write (1 to 3) 

A: these expressions illustrate the use of every to force generators through all their results. I he left-to-right, 
last-in first-out order of results is shown by the output below. F.llipses are used to compress long sequences 
where the output follows an obvious pattern. 

(a) 0 (b) 000 (c) 1 (d) 1 
1 001 2 2 
2 . 3 3 
3 . 1 1 
4 . 3 2 
5 076 1 3 
6 077 2 1 
7 100 3 2 
0 101 4 3 
1 1 
2 3 
3 2 
4 176 3 
5 177 2 
6 200 2 
7 201 3 

4 
2 
4 

276 
277 
300 
301 

376 
377 



Problem 2: 

Q: For arbitrary procedures f (x,y) and g (x,y), what is the sequence of calls produced by 

every (f | g)(1 to 3. 4 I 5) 

A: 

f(1,4) 
f(1,5) 
K2.4) 
f(2,5) 
f(3.4) 
f(3,5) 
9(1.4) 
9(1,5) 
9(2,4) 
g(2,5) 
9(3.4) 
9(3.5) 

Problem 3* 

Q: (iiven 

s1 
s2 

aeiou 
"abecaeioud" 

what are the outcomes of 

(a) (find | upto)(s1,s2) 
(b) (find | upto)(s2,s1) 
(c) (if size(s1) -• size(s2) then upto else find)(s1,s2) 

A: I he answer to this question illustrates that functions are data objects in Version 3 and that function 
application involves applying the value of a (function-valued) expression, such as (find | upto). In addition, 
goal-directed evaluation applies to such expressions themselves. In fact, an expression such as ct)(el, .... en) 
involves the mutual goal-directed evaluation of eO. el en in which the value of eO is applied to el en. 
I he outcomes for the expressions above are 

(a) 
( b ) 

(c) 

Problem 4: 

Q: What are the outcomes of the following expressions? (Note any that produce errors.) 

(a) 
(b) 
(e) 
(d) 
(e) 

(x | y) : 
(x & y) : 
(1 & x) : 
(x & 1) : 
(x * 1) : 

3 
3 
3 
3 
3 

A: The term outcome is used in the technical sense here. As indicated, the outcomes of the litst three 
expressions arc variables, since assignment returns its left operand as a variable. 

5-



(a) 
(b) 
(c) 
(d) 
(e) 

Problem 5: 

x (assigned the value 3) 
y (assigned the value 3) 
x (assigned the value 3) 
error (variable expected) 
error (variable expected) 

Q: Given the procedure 

procedure drive(x) 
fail 

end 

What is the output produced by 

(a) dr ive(wri te(1 to 7)) 
(b) dr ive(wr i te(0 to 7,0 to 7)) 

A: This problem illustrates the relationship between goal-directed evaluation and the control structure every, 
which forces generators to produce all their results. I he same effect can be produced by a procedure that only 
fails, hence forcing goal-directed evaluation to produce all the results of its argument. 

(a) 1 
2 
3 
4 
5 
6 
7 

(h) 00 
01 
02 

06 
07 
10 
11 
12 

66 
67 
70 
71 
72 

76 
77 

Problem 6*: 

Q: What does the execution of the following program do? 

- 6 -



procedure main() 
f(f : write) 

end 

(Note: this program is slightly different f rom that given in Newsletter 115, where a second argument to f was 

accidentally included.) 

A : This one is t r icky. Since the program has no procedure declarat ion for f, one might suppose the execut ion 

of the program is an error. Recall Problem 3 above, however, not ing that funct ion and procedure appl icat ions 

are evaluated the same way. Fur thermore, in Version 3, variables arc not dereferenced unt i l all the arguments 

are evaluated. Ib is applies to the " / e r o t h " argument, which is the funct ion or procedure to be appl ied. 

Evaluat ion of the first argument assigns a funct ion value to f (i.e.. the value ol w r i t e ) . Hence this expression is 

equivalent to w r i t e ( w r i t e ) and produces the output 

function write 

( the fo rm ol the output is a consequence of " imag ing " a non-str ing value for the purposes of output . I'll is is 

the same imaging that is used in t racing procedure calls.) 

Problem 7: 

O: I he fo l lowing procedure is proposed as a generator ol " w o r d s " strings ol consecutive letters in the 

lines of the input file. It does not work properly, however. What does it actually do and what arc the causes of 

the problems.' Rewri te the procedure to work properly. 

procedure genwordf) 
local line 
static letters 
initial letters : &lcase ••• &ucase 
while line : read() do 

scan line using 
while tab(upto(letters)) 

do suspend tab(many(letters)) 
end 

A: I here arc two things wrong w i th this procedure, one more subtle than the other. I he less subtle error is that 

the procedure simply terminates alter the w h i l e loop. In this case, the procedure would return a f inal null 

value a spurious result fo l lowing the words it is supposed to produce. There should be a fa i l before the e n d . 

A more subtle problem lies in ihe s u s p e n d expression itself, s u s p e n d is l ike eve ry it lorces its 

argument to generate all its results. A l though neither tab nor m a n y have alternative results, tab docs restore 

the value ol & p o s if it is re-activated to produce a second result. I lence, & p o s is always restored to its posi t ion 

pi ior to the first word ami t his procedure loops, cont inual ly re luming the first word of the lirst line of input ! 

I here are two ways ol c i rcumvent ing this problem: use ol an auxi l iary identif ier or expl ic i t ly prevent ing 
generation ol alternatives in the s u s p e n d expression, and hence the backtracking done by tab. I bus the 
w h i l e loop can he rewr i t ten as 

while tab(upto(letters)) do | 
t : tab(many(letters)) 
suspend t 

while tab(upto(letters)) do 
suspend |tab(many(letters))! 

Incidental ly, this problem is suff iciently insidious that it deserves attent ion in the design ol Icon. I he subtlety 

of the problem lies in the fact that, except for reversible assignments. Icon does data backt rack ing only in tab 

and m o v e . 



Request for Icon Documents 

Please send the documents cheeked below to: 

• Corrections to Version 2 of Icon (updated April. I9X I) 

D Corrections, Changes, and Known Bugs Related to Version 3.2 of Icon (updated April. 19X1) 

• New Control Structures for Icon, I'RXI-I 

• Sequences and Expression Evaluation in Icon, TK 81-2 

• Models of String Pattern Matching. TR 81-6 

Return this form to: 

Ralph E. Griswold 
Department ol Computer Science 
University Computer Center 
The University of Arizona 
Tucson, Arizona X572I 
USA 

-8-


