THE UNIVERSITY OF ARIZONA

TUCSON, ARIZONA §5721

DEPARTMENT OF COMPUTER SCIENCE

Icon Newsletter #6

Ralph E. Griswold

May I, 1981

1. Portable lcon

1.1 Implementations

As mentioned in carlier Newsletters, there are running implementations of Version 2 of the portable Icon
system for the DEC-10, the CDC Cyber; 6000, the [BM 370 and compatible computers, the VAX-11/780, and
the CRAY-1. The implementation for the 1CI, 2900, mentioned in the last Newsletter, is now also complete,
I'he portable system and the CDC Cyber/6000 and DEC-10 implementations are stifl available from us.
Request forms are contained in Newsletter #5.

An implementation for the PRIME 400 has recently been completed. For information, contact

Dr. V. J. Rayward-Smith

School of Computing Studies and Accountancy
University of East Anglia

Norwich NR4 7TJ

England

Claude Finn has completed animplementation of Version 1.3 on the Data General MVB00U. He comments

I have now written about § medium sized programs (50-200 Jines cach). doing rescarch on the syntax
and grammar of on-line documentation. The power ot fcon doing this research can be seen by the
following comparison: My first lcon program (38 lines long) replaced a 1250 line PL. 1 program. In
detense of P11 however, it must he pointed out that about 600 lines of PL:1 are usable i other
programs which do syntax scanning. Thus, my calculated “density ratio™ is about 10:1 in favor of lcon

over PL T tor this particular exercise.

Finn plans to update his system to Version 2.0 and then make it available to interested users. If vou are
interested, contact him:

Mr. Claude Finn

Principal Member Technical Stalf
Data General Corporation

Route 9

Westboro, Massachusetts 01581

1.2 Word-Size Limitations

When we designed the portable implementation ol lcon, we hoped that it could be made to run on 16-bit
machines. We now know that expectation was unrealistic. One of the problems is the limitation that 16-bit
addresses place on the size of [con's various data regions. Real arithmetic and some internal computations
also present problems on a 16-bit machine. [anyone who has tried to implement lcon on a 16-bit machine has
found a way around these problems, we would be happy to stand corrected.

1.3 Updated Corrections to Version 2

We have recently made a number of corrections to the Version 2.0 source program. Most of these relate to
the portable aspects of the system. A list of the new corrections is available. See the document reqguest form at
the end of this Newsletter.

2. The UNIX Implementation of fcon

2.1 Version 3

Version 3.2 of leon for UNTX systems is still being distributed. The list of known bugs in this version has
been updated recently. Scee the document request torm at the end of this Newsletter.

Paul Fggert at the intversity of Calitormia has cooverted Version 3 to run on a VAX-11 780 under
Berkeley UNIXL For those interested, his address iy

Mr. Paul Eggert

Department of Computer Science
University of Calitornia

Santa Barbara, Californmia 93106

2.2 Version 4
I'he inevitable “next version™ is nearly done. Version 4, the successor to Version 3 tor UNIX| s near
completion and should be ready tor distribution some tine this summer (its availability witl be announced in
the next Newsletter).
Version 4 contains quite a number of differences trom Version 3 more differences than there have been
between carlier versions. The major differences are;
o [imitations on goal-directed evaluation have been removed from a number of control structures n order
to provide more unitorm and general evaluation of expressions. Inaddition, new control structures have
heen added to altow generators to be used 1 a more tlexible manner.

e Co-expressions (the approximate equivalent of co-routines on the expression fevel) have been added to
allow penerators to be encapsulated and henee activated at any tme and place ina program sather than
only at the site where they appear. Co-expressions and sotie of the new control structures in Version 4 are
desceribed in TR K1-1. See the document request form at the end of thns Newsletter.

e Tistand stacks have been unitied into o single data structure that can he accessed as a list, stack, or queue.

o Ihe nudl value is no longer convertible to other tvpes and is illegal in most computiations, This allows
detection ol the use of uninitialized variables.

3. Current Research

3.1 Sequences and Expression Evaluation

Some expressions in leon, such as x + y. produce a single result and correspond to conventional
computational expressions tound in most programming languages. Other expressions, such as X -y may not
produce any result and correspond to conditional expressions in SNOBOL4, An cxpression such as
find(s1.82) may produce several results and is called a gencrator. Generators, of course, subsume ordinary

computational and conditional expressions,

Considerable insight into expression evaluation in lcon may he obtained by considering the sequence of
results that expressions may produce and how such sequences relate to goal-directed evaluation and the
control structures of lcon.

For example, the sequence of results that may be produced by
find("th”, “this is the thesis")

is 11.9.134. The results that are actually produced by such an expression depend, of course, on the context in
which it is evaluated. In general

every ¢
forces ¢ to produce its entire sequence.

T he value of using sequences to deseribe control structures is illustrated by alternation:

el | e2

his control structure simply produces the sequence produced by ¢/ tollowed by the sequence produced by 2.

A notation for characterizing result sequences and results of investigating this characterization ot
expression evaluation are contained in TR 81-2. See the document request form at the end of this Newsletter.
3.2 Models of String Pattern Matching

An carlier report (PR 80-25) desceribed how SNOBOU d-style pattern matching might be implementated in
Tcon,

I'he ideas in that work now have been developed more tully and provide the basis for various models of
string pattern matching, The results of this research are described in TR 81-6 and conclude with some
suggestions for design ol an Icon-like language with & pattern-matching facility, See the document request
form ut the end of this Newsletter.

3.3 Generatorsin ¢

in the lust Newsletter, a project to add leon-style generators to the C programming language was described
bricitv. FThe results of that work have been encouraging and an implementation of a full-blown preprocessor
to translate “C-with-generators™ (Cg) into standard C is underway. The intent is to use Yace for the
preprocessor, with semantic actions simply transcribing the source program intact except where generator
constructs appear.

The runtime system to support generators in C s complete and as soon as the preprocessor and
documentation are tinished, the system will be made available tointerested persons.,

4. Programming Corner

4.1 An Idiom
Fvery programming language has a number of particularly aptidioms. Consider the expression
X X
At first sight, this expression appears to be a curiosity, Tlowever, when used in a conjunction expression, it

serves s a stack with automatic pushing of the value of x when it is evaluated and automatic popping ol the
value of x during backtracking. Thus in

el & (x - x) & ¢2

it el succeeds, the value of x is pushed and €2 is evaluated. 1 e2 fails, the value of x is popped and e/ is
reactivated.

In situations in which several expressions are connected by conjunction to obtain the first-in, last-out

sequencing provided by goal-directed evaluation, this reversible-assignment idiom is both concise and (once it
is understood) clearly indicates its purposc.

4.2 Solutions to Questions Posed in Newsletter #5
In the programming corner of Newsletter #5, several programming uestions were posed. These questions
are restated below with their answers. Asterisks indicate material for Version 3 only.

Problem |:

Q: Whatis the output produced by each of the following expressions?

(1) every write((0 | 0) to 7)

(b) every write(0 to 3,0 to 7,0 to 7)

() every write(1 | 2to 3 | 4 by 1] 2)
() every 1 to 3 do every write(1 to 3)

A: These expressions illustrate the use of every to foree generators through all their results. Vhe left-to-right,
last=in first-out order of results is shown by the output helow. Ellipses are used to compress long sequences
where the output follows an obvious pattern.
(@) (bh) 000 (¢)
001

(d)

076
077
100
101

WR =W =W~

176
177
200
201

NOUMBHBEWN==ONOUMEWN=O

HBENHEWONNWNNW=LEWUN=W—=N

276
277
300
301

376
377

Problem 2:

Q: For arbitrary procedures f(x,y) and g (x,y). what is the sequence of calls produced by

every (f | g)(1 to 3, 4 | 5)

f(1,4)
£(1,5)
f(2,4)
£(2,5)
1(3,4)
£(3,5)
g(1.4)
g(1,5)
g(2,4)
g(3.4)
9(3.5)

Problem 3*:

Q: Given

s1: "aeiou”
s2 ;- "abecaeioud”

what are the outcomes ol

(a) (find | upto)(s1,s2)
(b) (find | upto)(s2,s1)
(c) (if size(s1) - size(s2) then upto else find)(s1,s2)

Az The answer to this question itlustrates that functions are data objects in Version 3 and that function
application involves applying the value of a (function-valued) expression, such as (find | upto). [n addition,
poal-directed evaluation applies to such expressions themselves, In fact, an expression such as eti(e/, ..., en)
imvolves the mutual goal-directed evaluation of ¢, el, ..., en in which the value of e} is applied to e/, ..., en.
I he outcomes for the expressions above are

(a1) 5
tb) |
(<) 5

Problem 4:

Q: What are the outcomes ot the following expressions? (Note any that produce errors.)

(a) (xy): 3
(b) (x &y):-3
(<) (v & x): 3
(d) (x & 1. 3
() (x + 1) : 3

A: The termv anreome is used in the technical sense here. As indicated, the outcomes of the first three
expressions are vartables, sinee assignment returns its left operand as a variable,

(a) x (assigned the value 3)
(h) y (assigned the value 3)

(¢) x (assigned the value 3)
() error (variable expected)
() error (variable expected)

Problem 5:

Q: Given the procedure

procedure drive(x)
fail
end

What is the output produced by

(1) drive(write(1 to 7))
(h) drive(write (0 to 7,0 to 7))

Az This problem dlustrates the relationship between goal-dirceted evaluation and the control structure every,
which forces generators to produce all thewr results, The same effect can be produced by i procedure that only
fails, henee foreing goal-directed evaluation to produce all the results of its argument.

(it) 1 (h) 00
2 01
3 02
4
5
6
7

06
07
10
11
12

66
67
70
71
72

76
77

Problem 6%:

Q: What does the execution of the following program do?

-6-

procedure main(}
f(f . write)
end

(Note: this program is slightly different from that given in Newsletter #5, where a second argument to f was
accidentally included.)

A: This one is tricky. Since the program has no procedure declaration for f, one might suppose the execution
of the program is an crror. Recall Problem 3 above, however, noting that function and procedure applications
are evaluated the same way. Furthermore, in Version 3, variables are not dereferenced until all the arguments
are evitluated. This applies to the “zeroth™ argument, which is the function or procedure to be applied.
Evaluation of the fisst argument assigns a function value to f(i.c.. the value of write). Hence this expression is
cquivalent to write (write) and produces the output

function write

{ e torm ol the output is a consequence of “imaging™ & non-string value for the purposes of output. F'his is
the same imagig that is used in tracing procedure calls.)

Problem 7;

Q: The following procedure is proposed as o gencrator of *words™ strings of consecutive letters in the
lines of the input file. 1t does not work properly, however, What does it actuatly do and what are the causes of
the problemis? Rewrite the procedure to work properly.

procedure genword ()

local line

static letters

initial letters : &lcase ++ &ucase

while line : read() do

scan line using
while tab (upto (letters))
do suspend tab(many (letters))

end

Az There are two things wrong with this procedure, one more subtle than the other. The less subtle error is that
the procedure simply terminates alter the while loop. In this case, the procedure would return @ final null
vilue aspurious result tollowing the words it is supposced to produce. Phere should be a fail betore the end.

A more subtle problem hes in the suspend cxpression itsell. suspend is like every it forces its
argument to penerate all its results, Although neither tab nor many have alternative results, tab does restore
the value of &posit itis re-activated to produce i second result. Henee, &pos is always restored o its position
prior to the tirst word and this procedure Toops, continually returing the first word ol the tirst line of input!

Fhere are two wayvs ot ciccumventing this problem: use ol an auxitiary dentifier or explicitly preventing
generation of alternatives in the suspend expression, and hence the backtracking done by tab. hus the
while loop cian be rewritten as

while tab(upto(letters)) do |
t . tab(many (letters))

suspend t

!
'

ur

while tab(upto(letters)) do
suspend [tab(many (letters))}

fncidentally, this problem is sufficiently insidious that it deserves attention in the design of teon. The subtlety
of the problem lies in the fact that, except for reversible assignments, Teon does data backtracking only in tab
and move.

Request for Icon Documents

Please send the documents checked below to:

Corrections to Version 2 of lcon (updated April, 1981)
Corrections, Changes, and Known Bugs Related to Version 3.2 of lcon (updated April 1981)
New Control Structures for Teon, TR 81-i

Scquences and Expression Evatuation in feon, TR 81-2

gogooao

Models of String Pattern Matching, TR 81-6

Return this form to;

Ralph E. Griswold

Department of Computer Science
University Computer Center

The University of Arizona
lucson, Arizona 88721

UISA

'y

