
The Icon Analyst 65 / 1

April 2001
Number 65

In-Depth Coverage of the Icon Programming Language and Applications

T-Sequence Collation
Generalized Collation

Although most collations are simple, with
one term coming from first sequence, the next from
second sequence, and so on, this is not always the
case. For example, two terms may come from one
sequence, three from another, and in all sorts of
variations.

We’ll handle this by introducing an index
sequence whose terms are indexes that determine
from which sequences the terms of the collation
come.

We’ll use the notation

(S1, S2, S3, …, Sn)

for generalized collation, where I is a sequence of
values in the range 1 to n and determines in order
the sequence from which the next term of the
collation is taken. If I runs out before any of S1, S2,
S3, …, S

n
 do, then I is repeated.

For example, if

I = 1, 1, 2, 2, 2

then

(1 → 6, 5 → 2)

produces

1, 2, 5, 4, 3, 3, 4, 2

The default for I is 1, 2, … n, where there are
n sequences to be collated.

Layered Collation

In the examples in the previous article, the
sequences used in collation were on disjoint sets of
shafts. Although this need not be the case, it often
is because different sets of shafts frequently serve
different purposes in weaving.

Such T-sequences are composed by collation,
but the specific shafts used are largely arbitrary,
provided the sequences in the collation are on
disjoint sets of shafts.

In constructing such layered collations, a se-
quence may be offset much in the manner of a motif
along a path. If such a collation is built up from the
bottom, for example, shafts 1 to m may be used for
one sequence and then the next sequence is offset
by m. Since the offset of the second sequence de-
pends on the bound on the first sequence, it is
awkward to describe such sequences using the
collation operation.

Instead, we will add a layering operation,

\(S1, S2, S3, …, S
n
)

in which the sequences are collated but S2 is offset
by β(S1), S3 is offset by β(S1) + β(S2), and so on.

For example,

\(1 3→
2
, 1 2,

3
)

is equivalent to

~(1 3→
2
, 4 5,

3
)

and produces

1, 4, 2, 5, 3, 4, 1, 5, 2, 4, 3, 5

As with collation, an indexing sequence can

In this issue

T-Sequence Collation 1
Constructing T-Sequences 3
Generalizing T-Sequence Operands 7
Solving Square-Root Palindrones II 9
The Morse-Thue Sequence 15
Profile Drafting ... 18
What’s Coming Up 20

2 / The Icon Analyst 65

be added to specify the order in which terms are
taken:

(S1, S2, S3, …, Sn)

Implementation

Here are the procedures for general collation
and layering:

procedure scollate(indices, args[])
 local lseq, i

 /indices := srun(1, ∗args)

 args := copyl ! args

 lseq := []

 every i := !|indices do
 put(lseq, get(args[i])) | break

 return lseq

end

procedure slayer(indices, args[])
 local lseq, i, shift

 args := copyl ! args

 shift := sbound ! args[1]

 every i := 2 to ∗args do {
 bound := sbound ! args[i]
 every !args[i] +:= shift
 shift +:= bound
 }

 push(args, indices)

 return scollate ! args

end

“Use Tabby”

For a person not familiar with weaving,
one of the most puzzling aspects of weave
drafts is the omission of a component that is
taken for granted by experienced weavers —
using tabby.

Tabby weave, also called plain weave, is
a strict one-over, one-under interlacing. One
purpose tabby serves in combination with
more complex interlacements is to add
strength and integrity to the fabric. If tabby is
alternated with another interlacement, there
can’t be any long floats.

Omitting the tabby part of a weave from
a draft (including omitting the necessary com-
ponent of the tie-up) can considerably reduce
the size of the draft. This is an important
consideration, since otherwise many drafts
would be too large to fit on a printed page.

In drafts where the tabby parts are omit-
ted or greatly abbreviated, you’ll often see
the phrase “use tabby” by portions of the
draft.

In addition to alternating tabby with
another interlacement, many weaves have
sections of tabby — plain weave between
panels of patterns.

The effect of alternating tabby with a
pattern can be seen in the patterns below. The
pattern at the left is from the “multi” se-
quence, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4… . A fabric
woven with just this sequence would have
unacceptably long floats. Alternating tabby,
as shown in the pattern at the right, produces
a strong fabric with short floats. Notice how
the pattern is spread out.

Of course, it’s not necessary to use tabby
between every interlacement of another kind.
The choice of using tabby and if so, how,
depends both the need to strengthen the fab-
ric and the visual effect the tabby produces.

The Icon Analyst 65 / 3

Constructing T-Sequences

Most of the T-sequence operations we’ve de-
scribed so far can be used for constructing, describ-
ing, and analyzing T-sequences. Most of these
operations, such as repeats and palindromes, leave
recognizable traces — you can detect their work in
the final result. Of course, most T-sequences can be
constructed in a variety of ways, so determining
the tools of construction is problematical.

There are, however, operations that leave no
visible trace. One operation that we discussed some
time ago is taking residues of T-sequences [1].
There is no way, in general, to tell whether or not
a given T-sequence is the residue sequence of
another sequence and, if so, from what sequence.

In this article, we’ll introduce operations that
fall into this category — ones useful for construct-
ing T-sequences but that do not leave visible traces
of their origins.

Term Selection

Term selection extracts specified terms from a
sequence to form a new sequence.

We’ll use the notation

S{T}

for term selection. It produces a sequence of the
terms of S in positions specified by T. Terms are
produced in the order they are given in T, and T
may contain duplicate values. For example, if

S = →(1, 8, 1, 7, 2, 1)

then

S{(→(1, 6, 1), →(16, 26))}

produces

1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7,
 6, 5, 4, 3, 2, 1

See Figures 1 and 2.

Figure 1. S = → = → = → = → = →(1, 8, 1, 7, 2, 1)

Figure 2. S{(→→→→→(1, 6, 1), →→→→→(16, 26))}

As another example,

S{3}

produces a unit sequence consisting of the third
term of S.

As in Icon, negative position values are taken
with respect to the right end of S. For example,

S{–1}

produces a unit sequence consisting of the last
term in S.

If a term in T does not correspond to a position
in S (that is, if it is out of bounds), it is ignored.

Modular Reduction

We have discussed residue sequences at some
length in an earlier article [2]. In the present con-
text, we’ll use the notation

S ≡ i

for producing the modular reduction of S, shaft-
modulo i. For example,

→(1, 10, 3, 12) ≡ 8

produces

1 ,2, 3, 4, 5, 6, 7, 8, 1, 2, 1, 8, 7, 6, 5, 4, 3,
 4, 5, 6, 7, 8, 1, 2, 3, 4

See Figures 3 and 4.

Figure 3. →→→→→(1, 10, 3, 12)

Figure 4. →→→→→(1, 10, 3, 12) ≡≡≡≡≡ 8 8 8 8 8

Mapping

Mapping the values in a sequence to other
values is the sequence equivalent of map() for
strings.

For mapping, we’ll use the notation

⊗(S, T, U)

For example,

4 / The Icon Analyst 65

⊗(→(1, 8, 1), →(4, 6), →(6, 4))

produces

1, 2, 3, 6, 5, 4, 7, 8, 7, 4, 5, 6, 3, 2, 1

See Figures 5 and 6.

Figure 5. →→→→→(1, 8, 1)

Figure 6. ⊗(→⊗(→⊗(→⊗(→⊗(→(1, 8, 1), →→→→→(4, 6), →→→→→(6, 4))

Mutation

In a recent Graphics Corner [3], we discussed
permutations — the rearrangement of terms in a
sequence — and the more general “mutations”,
which allow also for duplications and deletions.

We’ll use the notation

S ⊕ T
for mutation. For example, if

S = →(1, 7, 3, 8, 1)

then

S ⊕ (→(7, 1), →(22, 16)))

produces

6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8

See Figures 7 and 8.

Figure 7. S = → → → → →(1, 7, 3, 8, 1)

Figure 8. S ⊕⊕⊕⊕⊕ (→ (→ (→ (→ (→(7, 1), → → → → →(22, 16)))

Parity Adjustment

In an earlier article [4], we mentioned that
some kinds of weaving require alternating parity
in T-sequences: odd, even, odd, even … or even,
odd, even, odd … . We can represent parity by

sequences of 2s (even) and 1s (odd), as in 1 2, and
2 1, . Although it’s speculative, we can consider

more general parity sequences, such as

24, 18, 24

Since all that matters in parity is the residue
modulo 2, any sequence with appropriate residues
modulo 2 can be used as a parity sequence. For
example,

→(1, 100)

is equivalent to

1 2, 50

If a sequence does not have the desired parity
pattern, it can be modified so that it does, which is
called parity adjustment.

We’ll use the notation

S ± T

to denote the result of adjusting the parity of S
according to the parity of T.

There are many ways parity might be ad-
justed. One possibility would be to delete terms
that do not have the desired parity. This is not
satisfactory for weave design — if nothing else, it
might produce an empty sequence. Another possi-
bility is to add or subtract one from terms that do
not have the desired parity. The problem with this
is that terms in T-sequences usually have the val-
ues they do for a reason. Instead, the method of
parity adjustment usually used by weavers is to
add “incidental” terms to produce the desired
parity pattern.

Again, there are many ways incidentals might
be added. For the time being, we’ll take a simple
approach. If a term does not have the desired
parity, an incidental term one greater than it will be
inserted before it. For example,

(→(1, 7) × 2) ± (→(1, 7))

produces

1, 4, 3, 5, 8, 7, 9, 12, 11, 13

Downloading Icon Material
Implementations of Icon are available for down-
loading via FTP:

ftp.cs.arizona.edu (cd /icon)

The Icon Analyst 65 / 5

See Figures 9 and 10.

Figure 9. (→→→→→(1, 7) × × × × × 2)

Figure 10. (→→→→→(1, 7) × × × × × 2) ±±±±± (((((→→→→→(1, 7))

Compression

Some T-Sequences do not have all the values
in the range from 1 to their bounds. This may
happen because a draft does not require as many
shafts as a loom has. See Figure 11.

Figure 11. A T-Sequence with Missing Terms

It may be desirable to remove gaps in a T-
sequence by compressing it. For example, the re-
sult clearly shows how many shafts are required.
See Figure 12.

Figure 12. A Compressed T-Sequence

Compression moves shafts down as neces-
sary to fill in gaps, starting with the lowest gap.

We’ll use the notation

⊥ S
to indicate the compression of S. Of course, if there

are no missing terms in S, S is unchanged by this
operation.

Duplicate Removal

Adjacent duplicate terms in T-sequences can
cause structural problems in weaving. Duplicates
may arise accidentally, as for example, when com-
bining two separately developed sequences or by
taking the residues of an integer sequence of a
mathematical origin.

We’ll use the notation

∅S

to indicate the removal of adjacent duplicate terms.
For example,

∅((→(8,1, 8), →(8, 3, 6)))

produces

8, 7, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 7, 8, 7, 6, 5,
 4, 3, 4, 5, 6

See Figures 13 and 14.

Figure 13. (→(8,1, 8), →(8, 3, 6))(→(8,1, 8), →(8, 3, 6))(→(8,1, 8), →(8, 3, 6))(→(8,1, 8), →(8, 3, 6))(→(8,1, 8), →(8, 3, 6))

Figure 14. ∅∅∅∅∅((→(8,1, 8), →(8, 3, 6)))(→(8,1, 8), →(8, 3, 6)))(→(8,1, 8), →(8, 3, 6)))(→(8,1, 8), →(8, 3, 6)))(→(8,1, 8), →(8, 3, 6)))

Summary

In this article we have introduced the follow-
ing T-sequence operations:

S{T} term selection
S ≡ i modular reduction
⊗(S, T, U) term mapping
S ⊕ T mutation

Supplementary Material

Supplementary material for this issue of the Analyst, including images and program material,
is available on the Web. The URL is

http://www.cs.arizona.edu/icon/analyst/iasub/ia65/

6 / The Icon Analyst 65

S ± T parity adjustment
⊥ S compression
∅S duplicate removal

Implementation

procedure sselect(x1, x2) # term selection
 local lseq, i

 x1 := spromote(x1)
 x2 := copy(spromote(x2))

 lseq := []

 while i := get(x2) do
 put(lseq, x1[i]) # may fail

 return lseq

end

procedure smod(x, i) # residue reduction
 local lseq

 x := spromote(x)

 lseq := []

 every put(lseq, residue(!x, i, 1))

 return lseq

end

procedure smap(x1, x2, x3) # term mapping
 static tdefault
 local i, smaptbl

 initial tdefault := []

 x1 := copy(spromote(x1))
 x2 := spromote(x2)
 x3 := spromote(x3)

 if ∗x2 ~= ∗x3 then fail

 smaptbl := table(tdefault) # mapping table

 every i := 1 to ∗x2 do # build the map
 smaptbl[x2[i]] := x3[i]

 every i := 1 to ∗x1 do # map the values
 x1[i] := (tdefault ~=== smaptbl[x1[i]])

 return x1

end

procedure smutate(x1, x2) # mutation
 local lseq

 x1 := spromote(x1)
 x2 := spromote(x2)

 lseq := []

 every put(lseq, x1[!x2])

 return lseq

end

procedure sparity(x1, x2) # parity adjustment
 local lseq, i, j, k

 x1 := spromote(x1)
 x2 := spromote(x2)

 lseq := []

 every i := 1 to ∗x1 do {
 j := x1[i]
 k := x2[i]
 if (j % 2) = (k % 2) then put(lseq, j)
 else put(lseq, j + 1, j)
 }

 return lseq

end

procedure scompress(x) # compacting
 local unique, target

 x := spromote(x)

 unique := set(x)

 target := []

 every put(target, 1 to ∗unique)

 return smap(x, sort(unique), target)

end

procedure sremdupl(x) # duplicate removal
 local lseq, i

 x := copy(spromote(x))

 lseq := [get(x)] | return []

 while i := get(x) do
 if lseq[–1] ~= i then
 put(lseq, i)

 return lseq

end

References

1. “Shaft Arithmetic”, Icon Analyst 57, pp. 1-5.

2. “Residue Sequences”, Icon Analyst 58, pp. 5-6.

3. “Graphics Corner — Image Permutations”, Icon
Analyst 64, pp. 13-18.

4. “Name Drafting”, Icon Analyst 57, pp. 11-14.

The Icon Analyst 65 / 7

Generalizing T-Sequence Operands

In the motif-along-a-path operation

M @ P
M is positioned at the first term in P, followed by M
at the second term in P, and so on. This is, of course
concatenation.

If we had first introduced the concept of chang-
ing the vertical origin of a sequence, we might have
cast an offsetting operation as

M ↑ i

Then we might have cast a motif along a path as a
concatenation:

M ↑ i, M ↑ j, ...

where the path is i, j, … .
Of course, M @ P is much more compact and

captures the essence of the operation in the way
that the explicit concatenation does not.

But, had we started with M ↑ i, we might
never have thought of the second argument being
a sequence instead of an integer.

On the other hand, we have already allowed
the interpretation of an integer as a unit sequence,
so M @ i perfectly valid.

All this raises the question of operations that
have been defined with integer operands. Con-
sider term repetition, Si. What might ST mean? If
we use motif-along-a-path as a model, it should
mean the concatenation of Si, Sj, … where T = i, j,
… .

For example, if

S = 1 → 3

and

T = 4, 2

then ST is equivalent to

1 → 34 , 1 → 32

and produces

1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 1, 1, 2, 2, 3, 3

We now will adapt the view that promoting
an integer argument to a sequence amounts to the
concatenation of the results for all the integers in
the sequence.

What are the consequences of this? For some
operations, it is of no apparent use, even if it is well

defined. An example is repetition, which general-
izes as

T

The result of this operation is
i, j, …

where T = i, j, … ; in other words
(i + j + …)

A more interesting case is the generalization
of i → j to S → Τ. What does this mean? Presumably
a concatenation, but of what and in what order,
now that we have two integer operands promoted
to sequences.

We basically have two choices: The concat-
enation of runs from the arguments of S and T in
parallel or in cross-product evaluation as in Icon.
That is, if

S = i, j, …

and

T = n, m, …

parallel evaluation gives

i → n, j → m, …

while cross-product evaluation gives

i → n, i → m, … j → n, j → m, …

We generally tend to favor cross-product
evaluation, if only because it is more powerful than
parallel evaluation. As you probably know, cross-
product evaluation permeates Icon, while parallel
evaluation motivated co-expressions, which were
an add-on to the original language. It is cross-
product evaluation that makes Icon such an inter-
esting and powerful programming language.

On the other hand, parallel evaluation seems
appropriate in the context of T-sequences. We’ll
opt for parallel evaluation. For example,

(1 → 6) → (3, 6, 1, 6, 1, 2)

produces the result shown in Figure 1.

Figure 1. Generalized Runs

Runs have another feature that needs consid-
eration — the optional increment, k:

8 / The Icon Analyst 65

i j

Consistency demands that the increment be al-
lowed to be a sequence also:

S T

This operation terminates when S or T runs
out. On the other hand U is repeated as necessary
and the default for it is 1.

Summary

Here are the operations for which promotion
of integer arguments to sequences applies:
:

S T run
T repetition

S ⇒ T extension
ST term repetition
S × T scaling

 T closed palindrome
S ≡ T modular reduction

Implementation

Here are the corresponding procedures:

procedure sruns(x1, x2, x3) # run
 local lseq, i, j, k, limit

 x1 := copy(spromote(x1))
 x2 := copy(spromote(x2))
 x3 := copy(spromote(x3))

 lseq := []

 repeat {
 i := get(x1) | break
 j := get(x2) | break
 k := get(x3) | break
 put(x3, k) # recycle
 if j < i then k := –k
 every put(lseq, i to j by k)
 }

 return lseq

end

procedure srepeat(x1, x2) # repeat
 local lseq, count

 x1 := spromote(x1)

 count := 0

 every count +:= !spromote(x2)

 lseq := copy(x1)

 every 2 to count do
 lseq |||:= x1

 return lseq

end

procedure sextend(x1, x2) # extend
 local lseq, part, i

 x1 := spromote(x1)

 lseq := []

 every i := !spromote(x2) do {
 part := []
 until ∗part >= i do
 part |||:= x1
 lseq |||:= part[1+:i]
 }

 return lseq

end

procedure srepl(x1, x2) # replicate terms
 local lseq, i, j

 x1 := spromote(x1)
 x2 := spromote(x2)

 lseq := []

 every i := !x2 do
 every j := !x1 do
 every 1 to i do
 put(lseq, j)

 return lseq

end

procedure sscale(x1, x2) # scale
 local lseq, j, i

 x1 := spromote(x1)

 lseq := []

 every i := !spromote(x2) do
 every j := 1 to ∗x1 do
 put(lseq, (x1[j] – 1) ∗ i + 1)

 return lseq

end

procedure scpal(x1, x2) # closed palindrome
 local lseq, i

 x1 := spromote(x1)

The Icon Analyst 65 / 9

 (/x[2] := [1]) | (x2 := spromote(x2))

 i := 0

 every i +:= !x2

 lseq := srepeat(sopal(x1), i)

 put(lseq, lseq[1])

 return lseq

end

procedure smod(x1, x2) # modular reduction
 local lseq, i

 x1 := spromote(x1)
 x2 := spromote(x2)

 lseq := []

 every i := !x2 do
 every put(lseq, residue(!x1, i, 1))

 return lseq

end

Solving Square–Root Palindromes II

In the last article on square-root palindromes,
we showed how the solutions of square-root contin-
ued fractions can be used to provide empirical
results from which more general formulas can be
deduced [1]. In that article, however, we limited our
investigation to continued fractions with specific
numerical coefficients.

In this article, we’ll look at coefficients that are
variables. Figure 1 shows an example as displayed
in Mathematica.

Figure 1. Continued Fraction for
Palindrome a, b, c, b, a

In what follows, we’ll use some conventions to
simplify the handling of data. The letter n will play
the role it has before in . Other lowercase
letters, starting at the beginning of the alphabet — a,
b, c, … — will be used as variables. See Figure 1.

The Mathematica solution for this continued
fraction is shown in Figure 2.

Figure 2. Solution for a, b, c, b, a

The first step is to convert one of the (identi-
cal) radicands in the Mathematica solution to a
useful form.

As shown in the previous article, the internal
Mathematica format for expressions is relatively
messy. Here’s what it looks like for one of the
radicands in Figure 2:

\!\(\((\((2\ b + b\^2\ c + 2\ n + 4\ a\ b\ n + 2\ b\ c\ n +
2\ a\ b\^2\ c\ n + 2\ a\ n\^2 + 2\ a\^2\ b\ n\^2 +c\ n\^2 +
2\ a\ b\ c\ n\^2 + a\^2\ b\^2\ c\ n\^2)\)/\((2\ a + 2\ a\^2\
b + c + 2\ a\ b\ c + a\^2\ b\^2\ c)\))\)\)

What we want to do is convert Mathematica’s syn-
tax to Icon’s syntax so that we can evaluate such
expressions for different values of the variables. To
do this, we’ll write a program, transcf.icn, which
will take Mathematica-style input and output an
Icon program evalcf.icn to do the evaluation. See
Figure 3.

Figure 3. Processing Mathematica Expressions

Here, in a somewhat neater layout than actu-
ally will be produced, is what evalcf.icn will look
like:

procedure main()

… # heading
 every n := 1 to 50 do {
 every a := 1 to n do {
 every b := 1 to n do {
 every c := 1 to n do {
 N := … # translated numerator
 D := … # translated denominator
 if (N % D) ~= 0 then next
 m := N / D # integer result
 write(a, " ", b, " ", c, " ", m," ", n)
 }
 }
 }
 }
end

10 / The Icon Analyst 65

The main program loops over a range for n.
Within that loop, each of the variables ranges from
1 to n. (The limit on n for the inner loops is possible
because no coefficient in a square-root continued
fraction can exceed n [2].)

The numerator and denominator are evalu-
ated separately and if the denominator (D) evenly
divides the numerator (N), there is an integer result
(m), and a solution is written.

With this in mind, we can look at transcf.icn.
Most of evalcf.icn is boiler plate and is just put out
literally. The more difficult part of transcf.icn lies
in converting Mathematica syntax to Icon syntax.

Comparing the displayed form in Figure 2
with the text output, it’s easy to decipher the
Mathematica syntax. The Mathematica syntax for
addition works as it stands. For most other opera-
tors, backslashes serve to escape operator symbols
and we can just delete the backslashes. An appar-
ent exception is multiplication. A term like 2\ b
stands for 2b and the equivalent Icon expression is
2 ∗ b. Actually, the blank as an operator symbol
stands for multiplication.

We’ll use replacem() from the Icon program
library module strings to perform the required
mappings. This procedure is called as

replacem(s, s1, t1, s2, t2, … sn, tn)

It produces the result of replacing in s all instances
of s1 by t1, s2 by t2, … sn by tn.

Here’s the code to convert Mathematica syntax
to Icon syntax:

exp := replacem(exp,
 "\\ ", " ∗ ", # multiplication
 "\\^", " ^ ", # exponentiation
 "\\(", "(", # left parenthesis
 "\\)", ")", # right parenthesis
 "\\/", " / ", # division
 "\\!", "" # ?
)

The result for the example above is:

(((((2 ∗ b + b ^ 2 ∗ c + 2 ∗ n + 4 ∗ a ∗ b ∗ n + 2 ∗ b ∗
c ∗ n + 2 ∗ a ∗ b ^ 2 ∗ c ∗ n + 2 ∗ a ∗ n ^ 2 + 2 ∗
a ^ 2 ∗ b ∗ n ^ 2 + c ∗ n ^ 2 + 2 ∗ a ∗ b ∗ c ∗ n ^ 2 +
a ^ 2 ∗ b ^ 2 ∗ c ∗ n ^ 2)) / ((2 ∗ a + 2 ∗ a ^ 2 ∗ b +
c + 2 ∗ a ∗ b ∗ c + a ^ 2 ∗ b ^ 2 ∗ c)))))

We have a few more parentheses than we need, but
they don’t hurt anything.

There is one important simplification we need

to make before going on. The form of the radicand
is n2 + m. We want m as a function of a, b, c, and n.
You will note that the coefficient of n2 in the nu-
merator is the same as the denominator, as it must
be to have the form n2 + m. So we can get the
formula for m by the simple expedient of setting n2

to 0 (m is not a function of n2). This can be done by
adding the argument pair

"n ^ 2", "0"

as the last replacement in replacem(). Then the
result of replacement is

(((((2 ∗ b + b ^ 2 ∗ c + 2 ∗ n + 4 ∗ a ∗ b ∗ n + 2 ∗ b ∗
c ∗ n + 2 ∗ a ∗ b ^ 2 ∗ c ∗ n + 2 ∗ a ∗ 0 + 2 ∗ a ^ 2 ∗
b ∗ 0 + c ∗ 0 + 2 ∗ a ∗ b ∗ c ∗ 0 + a ^ 2 ∗ b ^ 2 ∗ c ∗ 0
)) / ((2 ∗ a + 2 ∗ a ^ 2 ∗ b + c + 2 ∗ a ∗ b ∗ c + a ^ 2 ∗
b ^ 2 ∗ c)))))

Thus, the terms that contain n2 will evaluate to 0
and drop out.

Here is transcf.icn in its entirety. The form of
the palindrome (abcba in our example) and the
limit on the loop for n are given as the command-
line options –n s and –l i, respectively. The form
option is mandatory.

link options
link strings

procedure main(args)
 local exp, line, vars, limit, c, opts, form, output
 local expr1, expr2

 opts := options(args, "l+n:")

 form := \opts["n"] | stop("∗∗∗ no form specified")

 limit := \opts["l"] | 50 # optional loop limit

 output := open("evalcf.icn", "w") |
 stop("∗∗∗ cannot open file for program")

 exp := ""

 # Input may be on more than one line.

 while exp ||:= pretrim(read(input))

 # Variables are guaranteed to be lowercase
 # letters. n is guaranteed to be the solution
 # variable.

 vars := string((cset(exp) ∗∗ &letters) –– 'n')

 # Perform ad–hoc replacements to convert
 # Mathematica syntax to a valid Icon expression.

 exp := replacem(exp,
 "\\ ", " ∗ ", # multiplication
 "\\^", " ^ ", # exponentiation

The Icon Analyst 65 / 11

 "\\(", "(", # left parenthesis
 "\\)", ")", # right parenthesis
 "\\/", " / ", # division
 "\\!", "", # ?
 "n ^ 2", "0" # terms in n ^ 2
)

 # Remove extra surrounding parentheses.

 while exp ?:= 2(="(", tab(bal(')')), pos(–1))

 # Get numerator and denominator.

 exp ? {
 expr1 := tab(upto('/'))
 move(2)
 expr2 := tab(0)
 }

 # Write the program to look for solutions.

 write(output, "procedure main()")
 write(output, "write(output, ", image(form), ")")
 write(output, "write()")
 writes(output, "write(, ")
 every writes(output, image(!vars), ", \"\t\", ")
 write(output, "\"m\", ", "\"\t\", ", "\"n\")")
 write(output, "write()")
 write(output, "every n := 1 to ", limit, " do {")
 every c := !vars do
 write(output, "every ", c, " := 1 to n do {")
 write(output, "N := ", expr1)
 write(output, "D := ", expr2)
 write(output, "if (N % D) ~= 0 then next")
 write(output, "m := N / D")
 writes(output, "write(")
 every writes(output, !vars, ", \"\t\", ")
 write(output, "m,", "\"\t\", ", "n)")
 write(output, repl("}", *vars + 1) # close nestings
 write(output, "end")

 close(output)

 # Compile and execute evalcf.icn.

 system("icont –s evalcf –x")

 # Clean up.

 remove("evalcf.icn")
 remove("evalcf")

end

Here is the complete evalcf.icn for the ex-
ample input above, somewhat cleaned up to make
it easier to read:

procedure main()
write(output, "abcba")

write()
write(, "a", " ", "b", " ", "c", " ", "m", " ", "n")
write()
every n := 1 to 50 do {
every a := 1 to n do {
every b := 1 to n do {
every c := 1 to n do {
N := ((2 ∗ b + b ^ 2 ∗ c + 2 ∗ n + 4 ∗ a ∗ b ∗ n + 2 ∗ b ∗
c ∗ n + 2 ∗ a ∗ b ^ 2 ∗ c ∗ n + 2 ∗ a ∗ 0 + 2 ∗ a ^ 2 ∗ b
∗ 0 + c ∗ 0 + 2 ∗ a ∗ b ∗ c ∗ 0 + a ^ 2 ∗ b ^ 2 ∗ c ∗ 0))
D := (2 ∗ a + 2 ∗ a ^ 2 ∗ b + c + 2 ∗ a ∗ b ∗ c + a ^ 2 ∗
b ^ 2 ∗ c)
if (N % D) ~= 0 then next
m := N / D
write(a, " ", b, " ", c, " ", m," ", n)
}}}}
end

The output looks like this:

abcba

a b c m n

1 1 2 5 4
1 2 4 6 4
2 1 3 3 4
1 2 2 9 6
1 1 4 8 7
1 2 7 10 7
2 1 6 5 7

…
2 2 1 12 14
4 3 7 7 15
1 1 2 19 16
1 1 10 17 16
1 2 1 24 16
1 2 16 22 16
1 7 2 29 16

…
4 8 37 18 37
6 1 2 11 37
1 1 6 41 38
1 1 10 40 38
1 2 9 52 38
1 18 2 73 38
2 1 2 28 38
2 1 14 26 38
2 4 38 34 38
2 8 19 36 38
6 1 11 11 38
1 2 5 54 39
4 8 2 19 39
1 1 2 47 40
1 1 26 41 40
1 2 40 54 40

12 / The Icon Analyst 65

1 4 2 66 40
1 8 10 72 40
1 19 2 77 40
2 1 6 28 40
2 1 39 27 40
3 2 26 23 40
1 4 4 67 41

…

The question now is what to do with output
like this? It consists of many special cases. For
example, the palindrome 1, 1, 10, 1, 1 occurs for m
=17 and n = 16. Special cases, in themselves, aren’t
particularly interesting.

If, however, there is more than one solution
for the same palindrome, we can get general for-
mulas for n and m for that palindrome from the first
two solutions.

Looking at the output above, we see that the
palindrome 1, 1, 10, 1, 1 occurs both for m1 =17 and
n1 = 16 and for m2 = 40 and n2 = 38. The difference
m2 – m1 is 23 and the difference n2 – n1 is 22. This
suggests formulas of the form

m = 23i + C
n = 22i + D

for suitable constants C and D.
For i = 1, m1 is 17 so C = –6. For i = 1, n1 is 16 so

D = –6 also (a coincidence or not?), so the conjec-
tured formulas for the palindrome 1, 1, 10, 1, 1 are

m = 23i – 6
n = 22i – 6

These formulas test out. In fact, we can prove that
they are correct.

Here’s a program that processes the output of
evalcf and produces general formulas for specific
palindromes:

link lists

global cmap
global form

procedure main()
 local names, namelist, vars, oldentry, entry, line
 local m, n, candidates, solutions, i

 form := str2lst(read()) | fail # list palindrome

 every i := 1 to ∗form do # make integers
 form[i] := integer(form[i]) # have correct type

 cmap := [] # variable coefficients

 every i := !set(form) do
 if not integer(i) then put(cmap, i)

 read() | fail # discard blank line

 names := read() | fail

 read() | fail # discard blank line

 namelist := [] # list of variables

 names ? { # no tab after "n"
 while put(namelist, tab(upto('\t'))) do
 move(1)
 }

 pull(namelist) # remove "m"

 vars := ∗namelist

 candidates := table() # table of solutions

 while line := read() do { # parse solutions
 entry := ""
 line ? {
 every 1 to vars do
 entry ||:= tab(upto('\t') + 1)
 m := tab(upto('\t'))
 move(1)
 n := tab(0)
 }
 put(\candidates[entry], m, n) | {
 candidates[entry] := [m, n]
 }
 }

 every entry := key(candidates) do {
 solutions := candidates[entry]
 if ∗solutions > 2 then solve(entry, solutions)
 }

end

procedure solve(entry, solutions)
 local delta, ndelta, mdelta, noff, moff, elist, count

 ndelta := solutions[4] – solutions[2]
 mdelta := solutions[3] – solutions[1]
 noff := solutions[2] – ndelta
 moff := solutions[1] – mdelta
 if noff >=0 then noff := "+" || noff
 if moff >=0 then moff := "+" || moff

 elist := []

 entry ? {
 while put(elist, integer(tab(upto('\t')))) do
 move(1)
 }

 writes(limage(lmap(form, cmap, elist)), "\t")

The Icon Analyst 65 / 13

 write("n=", ndelta, "∗i", noff, "; m=", mdelta,
 "∗i", moff)

 return

end

The procedures str2lst() and lmap() are from
the Icon program library module strings. The former
converts a string to a list of its characters. The latter
is the list equivalent of the built-in function map().

Here is the output for our example:

[2,1,1,1,2] n=21∗i–12; m=16∗i–9
[1,2,2,2,1] n=12∗i–6; m=17∗i–8
[1,1,4,1,1] n=10∗i–3; m=11∗i–3
[2,1,4,1,2] n=24∗i–3; m=17∗i–2
[1,1,12,1,1] n=26∗i–7; m=27∗i–7
[1,1,2,1,1] n=6∗i–2; m=7∗i–2
[2,1,2,1,2] n=15∗i–7; m=11∗i–5
[1,2,3,2,1] n=33∗i–19; m=46∗i–26
[1,1,10,1,1] n=22∗i–6; m=23∗i–6
[1,4,2,4,1] n=30∗i–20; m=49∗i–32
[1,1,8,1,1] n=18∗i–5; m=19∗i–5
[1,2,1,2,1] n=15∗i+1; m=22∗i+2
[2,1,3,1,2] n=39∗i–35; m=28∗i–25
[1,3,2,3,1] n=20∗i–12; m=31∗i–18
[1,2,4,2,1] n=21∗i–17; m=29∗i–23
[1,1,6,1,1] n=14∗i–4; m=15∗i–4
[2,1,6,1,2] n=33∗i–26; m=23∗i–18

Such results provide the basis for more gen-
eral formulas. For example, the palindrome 1, 1, c,
1, 1 occurs for c = 2, 4, 6, 8, 10, and 12:

c n m

2 6i – 2 7i – 2
4 10i – 3 11i – 3
6 14i – 4 15i – 4
8 18i – 5 19i – 5

10 22i – 6 23i – 6
12 26i – 7 27i – 7

It requires no great leap of faith to conjecture
that for

n = Ai + C
m = Bi + D

the constants are

C = D = –((c / 2) + 1)

It also seems safe to say that B = A + 1, nor does
it take much imagination to see that A = 2(c + 1) =
2c + 2.

So we have the general formulas for the palin-
drome 1, 1, c, 1, 1:

n = (2c + 2)i – ((c / 2) + 1)
m = (2c + 3)i – ((c / 2) + 1)

Indeed, these prove out.
We could continue with other specific palin-

dromes with variable terms. For example, consider
the palindrome 2, 1, c, 1, 2. The results above give
us

c n m

1 21i – 12 16i – 9
2 15i – 7 11i – 5
3 39i – 35 28i – 25
4 24i – 3 17i – 2
5 ? ?
6 33i – 26 23i – 18

There is no solution for c = 5 even though
there is a solution for c = 6. Is there really no
solution for c = 5? Or is something else going on?

The problem is that our loop limit for n, 50,
was not large enough to net two solutions for c = 5.
If you look at the table above, you’ll see a different
pattern for c even and c odd. The multipliers for c
odd increase considerably faster than for c even.

In fact, it’s necessary to go to n = 101 to get the
second solution for c = 5. (We found this out by
using the brute-force method described earlier
[3].) Well, why not just increase the loop limit on n?

The number of iterations on the innermost
loop is kv+1 where k is the loop limit on n and v is the
number of different variables in the palindrome.
Thus, there are serious practical limits to how large
k can be made and there is no a priori way to
determine it for a particular objective.

Another problem is that as the number of
different variables in the palindrome gets larger,
the numerator and denominator expressions
quickly get more complicated. See Figure 4.

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

14 / The Icon Analyst 65

Figure 4. Continued Fraction for a, b, c, d, c, b, a

Of course, it’s not necessary to have the initial
coefficients all be different variables — or even all
be variables. Figure 5 shows the continued fraction
and solution for the palindrome 2, 1, c, 1, 2.

Figure 5. Continued Fraction for 2,1 c, 1, 2

We tried this continued fraction for a loop
limit of 200 for n. Here are the formulas we found:

c n m

1 21i–12 16i–9
2 15i–7 11i–5

3 39i–35 28i–25

4 24i–3 17i–2
5 57i–13 40i–9
6 33i–26 23i–18

7 75i–42 52i–29
8 42i–19 29i–13
9 93i–83 64i–57

10 51i–6 35i–4
11 111i–25 76i–17
12 60i–47 41i–32

13 129i–72 88i–49
14 69i–31 47i–21
15 147i–131 100i–89
16 78i–9 53i–6
18 87i–68 59i–46
20 96i–43 65i–29

22 105i–12 71i–8
24 114i–89 77i–60
26 123i–55 83i–37
30 141i–110 95i–74

It seems most likely that solutions for the
missing values of c exist, but that we just didn’t
extend the search far enough to get them.

Trying to find general formulas that cover the
specific ones shown above doesn’t look very prom-
ising. Perhaps breaking the cases down into odd
and even, or even further, would lead to results.
Try your hand at this using the methods described
in earlier articles. If you come up with any results,
let us know in time to include them in the last issue
of the Analyst, which will appear in June.

References

1. “Solving Square-Root Palindromes”, Icon Ana-
lyst 64, pp. 1-6.
2. “Continued Fractions for Quadratic Irrationals”,
Icon Analyst 61, pp. 9-15.

3. “Constant Square-Root Palindromes”, Icon
Analyst 63, pp. 1-7.

Supplementary Material

Supplementary material for this issue of the Analyst, including images and program material,
is available on the Web. The URL is

http://www.cs.arizona.edu/icon/analyst/iasub/ia65/

The Icon Analyst 65 / 15

The Morse-Thue Sequence

The Morse-Thue sequence is a binary fractal
sequence with many interesting properties. It be-
gins as

0, 1, 1, 0, 1, 0, 0, 1, …

This sequence was introduced in 1906 by the
Norwegian mathematician Axel Thue (pronounced
TOO) as an example of an aperiodic recursively
computable string of symbols. Later Marvin Morse

… proved that the trajectories of dynamic
systems whose phase spaces have a nega-
tive curvature everywhere can be com-
pletely characterized by a discrete sequence
of 0s and 1s — a stunning discovery [1].

(We quote because we don’t understand it well
enough to use our own words.)

Because of the importance of Morse’s discov-
ery, his name usually is listed first, although the
sequence sometimes is called the Thue-Morse se-
quence.

Constructing the Morse-Thue Sequence

There are many ways of constructing this
sequence. The one shown most often uses the sub-
stitution map

0 ➛ 01
1 ➛ 10

starting with the initial term 0.
This is just a simple L-System [2] and in the

notation we’ve used for L-Systems is

axiom:0
0 –> 01
1 –> 10

The problem with producing the Morse-Thue
sequence using an L-System is that each generation
produces a longer initial subsequence:

01
0110
01101001
0110100110010110
01101001100101101001011001101001

…

If we want a generator that can produce an

arbitrary number of terms, there’s no a priori limit
to the number of generations that will be required.
This can be handled by not limiting the number of
generations and using a postprocessor, but that’s
awkward.

Instead we can implement the substitution
map directly:

procedure mthue1()
 local s, t

 suspend s := "0"

 repeat {
 t := ""
 every c := !s do {
 t ||:= case c of {
 "0" : "01"
 "1" : "10"
 }
 }
 suspend !right(t, ∗t / 2) # new terms only
 s := t
 }

end

This approach requires understanding that
each iteration of the loop appends to the present
string and only the last half of the result is used.

This observation leads to another way to pro-
duce the Morse-Thue sequence. Start with 0 and
iterate the following process: Take the present
sequence and append its complement to it. (By
complementing, we mean replacing 0 by 1 and 1 by
0.)

It goes like this:

0
0, 1
0, 1, 1, 0
0, 1, 1, 0, 1, 0, 0, 1
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0

…
Here’s a procedure for this method:

procedure mthue2()
 local s, t

 s := "0"

 suspend s

 repeat {
 t := map(s, "01", "10")
 suspend !t

16 / The Icon Analyst 65

 s ||:= t
 }

end

A third method for producing the Morse-
Thue sequence is to write the nonnegative integers
in binary form:

0, 1, 10, 11, 100, …

Then replace every value by its digit reduction [3]
mod 2.

Here’s a procedure for this method:

procedure mthue3()

 suspend adr(exbase10(seq(0), 2)) % 2

end

The procedure exbase10() is from the Icon
program library module convert and converts its
first argument from base 10 to the base given in the
second argument. The procedure adr(), which per-
forms the additive digital reduction, is from the
Icon program library module numbers.

Before leaving the subject of implementing
the Morse-Thue sequence in Icon, we feel obli-
gated to show you this:

procedure mthue4()
 local i, s

 i := 0
 s := "0"

 suspend |((s[i +:= 1] |
 (s ||:= map(s, "01", "10"), s[i])) \ 1)

end

This procedure is from the module genrfncs
in the current release of the Icon program library.
It’s a variant of the append-complement method.

We must have had a bad day at the Generator
Factory when we wrote this procedure. (Lest you
blame anyone else, this monstrosity is my work;
mea culpa. — reg)

Properties of the Morse-Thue Sequence

The Morse-Thue sequence is self similar, as
can be seen by striking out every even-numbered
value, which produces the original sequence:

0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, …

Among the fascinating properties of the

Morse-Thue sequence is that it is cube-free. This
means that it does not contain the subsequences 0,
0, 0 or 1, 1, 1. But cube-free is a more general
concept. In the jargon of combinatorics on words
[4], a word is any sequence of characters from the
alphabet being used (here, 0 and 1). Cube-free
applies to all words. For example, if

W = 1, 0, 1, 1, 0

(which is a word in the Morse-Thue sequence),
then W, W, W, or

1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0

does not occur in the Morse-Thue sequence.

Generalizing the Morse-Thue Sequence

The Morse-Thue sequence generalizes to bases
other than 2. Using the digit reduction and residue
method, it can be implemented like this:

procedure mthue3g(j)
 local i

 every i := seq(0) do
 suspend adr(exbase10(i, j)) % j

end

For example, the base-5 generalization of the
Morse-Thue sequence is

0, 1, 2, 3, 4, 1, 2, 3, 4, 0, 2, 3, 4, 0, 1, 3, 4, 0,
 1, 2, 4, 0, 1, 2, 3, 1, 2, 3, 4, 0, …

The procedure exbase10() can handle bases
up to 36, but letters are used for bases larger than
10.

The append-complement method can be gen-
eralized also:

link strings

procedure mthueg2(i)
 local s, t, sub, j
 static digits

 initial digits := &digits || &lcase || &ucase

 sub := digits[1+:i] | fail

 s := "0"

 suspend s

 repeat {
 t := ""
 every j := 1 to i – 1 do
 t ||:= map(s, sub, rotate(sub, j))

The Icon Analyst 65 / 17

 suspend !t
 s ||:= t
 }

end

Geometrical Interpretations of the Morse-
Thue Sequence

If we visualize 0 as a black square and 1 as a
white square, the Morse-Thue sequence appears
graphically as shown in Figure 1:

 …

Figure 1. The Morse-Thue Sequence

The steps for the append-complement method
of construction are shown in Figure 2.

…
Figure 2. Morse-Thue Sequence Construction

This can be extended to two dimensions by at
each step appending the complement both hori-
zontally and vertically [5]. Figure 3 shows the first
four iterations:

 1 2 3

4

Figure 3. Constructing The Morse-Thue Plane

Like the Morse-Thue sequence itself, the

Morse-Thue plane is fractal. And, despite the ap-
pearance of symmetry and regularity, there are no
repetitions. That is, no finite portion of the plane
can be tiled regularly to produce the whole plane.

Here’s a program that produces images of the
Morse-Thue plane:

link imrutils

procedure main(args)
 local imr1, imr2, imr3, imr4, win, i

 imr1 := imstoimr("1,g2,0")
 imr2 := imstoimr("1,g2,1")

 every i := 1 to 4 do {
 imr3 := imrcath(imr1, imr2) # horizontal
 imr4 := imrcopy(imr3)
 imr4.pixels := map(imr4.pixels, "01", "10")
 imr1 := imrcatv(imr3, imr4) # vertical
 imr2 := imrcopy(imr1)
 imr2.pixels := map(imr2.pixels, "01", "10")
 win := imropen(imr1)
 WriteImage(win, "mtsquare_" || i || ".gif")
 WClose(win)
 }

end

See Reference 6 for the procedures in the
module imrutils.

The geometric interpretation of the Morse-
Thue sequence extends to higher dimensions. Fig-
ure 4 shows a Morse-Thue cube.

Figure 4. A Morse-Thue Cube

Try visualizing a Morse-Thue tesseract and
higher-dimensional Morse-Thue cubes.

Other Applications of the Morse-Thue
Sequence

The Morse-Thue sequence has applications in

18 / The Icon Analyst 65

many areas.
The Morse-Thue plane provides the basis for

a variety of interesting weaves. Figure 5 shows a
weaving draft that was “drawn up” [7] from the
sixth iteration of the plane construction process
shown in the last section. Notice that the Morse-
Thue sequence appears in the threading and trea-
dling.

Figure 5. A Morse-Thue Weave

We have other ideas for using the Morse-
Thue sequence as the basis for weaving. We’ll
include one of these in the next issue of the Ana-
lyst.

The Morse-Thue sequence also has been used
in graphic design and in music composition [8-10].

The Fibonacci sequence is the only sequence
that has more interesting, almost magical proper-
ties than the Morse-Thue sequence. Perhaps we
should bring the two together.

References

1. Fractals, Chaos, Power Laws: Minutes from an Infi-
nite Paradise, Manfred Schroeder, Freeman, 1991,
pp. 264-269.

2. “Anatomy of a Program — Lindenmayer Sys-
tems”, Icon Analyst 25, pp. 5-9.

3. “Sigma Quest”, Icon Analyst 62, pp. 6-8.

4. Combinatorics on Words: Progress and Perspectives,
Larry J. Cummings, ed., Academic Press, 1983.

5. Gnomon: From Pharaohs to Fractals, Midhat J.
Gazalé, Princeton, 1999, pp. 223-224.

6. “Graphics Corner — Fun with Image Strings”,
Icon Analyst 50, pp. 10-13.

7. “Drawups”, Icon Analyst 56, pp. 18-20.

8. Mazes for the Mind: Computers and the Unexpected,
Clifford A. Pickover, St. Martin’s Press, 1992, pp.
71-77.

9. MusiNum — The Music in the Numbers, Lars
Kindermann, http://bfws7e.informatik.
uni-erlangen.de/~kinderma/musinum/
musinum.html

10. Recursion: A Paradigm for Future Music?, Nicho-
las Mucherino, http://www-ks.rus.uni-stuttgart.
de:/people/schulz/fmusic/recursion.html

Profile Drafting

Profile drafting [1-4] is a simple but powerful
tool for designing weaves. The basic idea in profile
drafting is to use a level of abstraction above indi-
vidual threads and instead think of patterns of
blocks, where a block consists of an unspecified
sequence of threads.

For example,

A B A C A B A

is a profile sequence based on three blocks, A, B,
and C. To get a conventional threading sequence,
a sequence of integers is assigned to each block.
Think of the blocks as being macros and the spe-
cific integer sequences as being their definitions.

For example, if A is 1, 3, 2, 4; B is 2, 3, 2, 3, 2, 3;
and C is 4, 1, 3, 2, then the profile sequence above
gives the threading sequence

1, 3, 2, 4, 2, 3, 2, 3, 2, 3, 1, 3, 2, 4, 4, 1, 3, 2,
 1, 3, 2, 4, 2, 3, 2, 3, 2, 3, 1, 3, 2, 4

See Figure 1.

Figure 1. A Threading Sequence

On the other hand, if A is 1, 2, 3, 4; B is 3, 2, 1,
4; and C is 3, 2, 1, then the threading sequence is

1, 2, 3, 4, 3, 2, 1, 4, 1, 2, 3, 4, 3, 2, 1, 1, 2, 3,
 4, 3, 2, 1, 4, 1, 2, 3, 4

See Figure 2.

Figure 2. Another Threading Sequence

The Icon Analyst 65 / 19

The Icon Analyst

Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

Editors

The Icon Analyst is published six times a
year. A one-year subscription is $25 in the United
States, Canada, and Mexico and $35 elsewhere.
To subscribe, contact

Icon Project
Department of Computer Science
The University of Arizona
P.O. Box 210077
Tucson, Arizona 85721-0077
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon–analyst@cs.arizona.edu

and

 Bright Forest Publishers
 Tucson Arizona

© 2001 by Ralph E. Griswold, Madge T. Griswold,
and Gregg M. Townsend

All rights reserved.

Although the two threading sequences are
quite different, they have the same underlying
pattern.

Actual profile drafting usually focuses on a
particular kind of weave and the details of what
kinds of sequences can be assigned to the blocks to
produce acceptable threading sequences. This has
the effect of obscuring the generality of the con-
cept, and descriptions of profile drafting in the
weaving literature often make the concept appear
more difficult than it is. As we say, “think macro”.

We won’t attempt to get into the details of
specific kinds of weaves and their requirements,
such as overshot, which requires the threading
sequence to have alternating parity [5].

Instead, we’ll look at how profile drafting can

be implemented. This will illustrate some impor-
tant aspects of pointer semantics in Icon [6].

Suppose we have three blocks, A, B, and C.
We can start with these blocks being empty lists:

A := []
B := []
C := []

For variety (and to make the figures easier to
lay out) consider the profile sequence

A B A B A B C

We can represent this by a list of lists (a packet
sequence [7]):

P := [A, B, A, B, A, B, C]

Figure 3 illustrates the data structures dia-
grammatically.

P

C

B

A

Figure 3. Data Structures for a Profile Draft

If we flatten P, we get the empty sequence
because A, B, and C are empty. Now suppose we
put values in A, B, and C:

put(A, 1, 3, 2, 4)
put(B, 2, 3, 2, 3, 2, 3)
put(C, 4, 1, 3, 2)

Figure 4 on the next page shows the result.
Now if we flatten P, we get

1, 3, 2, 4, 2, 3, 2, 3, 2, 3, 1, 3, 2, 4, 2, 3, 2,
 3, 2, 3, 1, 3, 2, 4, 2, 3, 2, 3, 2, 3, 4, 1, 3, 2

See Figure 5.

Figure 5. The Resulting Threading Sequence

20 / The Icon Analyst 65

What’s Coming Up

The best book on programming for the layman
is “Alice in Wonderland’’; but that’s because
it’s the best book on anything for the layman.

— Alan Perlis
You’d think by the time we’d finished this

penultimate issue of the Analyst that we’d know
what was going to be in the final issue.

Actually, we do but we’re not going to tell
you. Or maybe we don’t but don’t want to admit it.

But we will tell you that there’s not going to be
anything unusual. We’ll just try to finish up as
many recent loose ends as we can.

We can “undefine” A, B, and C by removing
their values:

while get(A)
while get(B)
while get(C)

This results in empty lists for A, B, and C, while
not changing the data structures themselves. The
situation again is as shown in Figure 3. The blocks
can now be given different values with the same
profile sequence in effect.

We can generalize the concept of profile draft-
ing by allowing blocks to contain other blocks, as in

E := []
F := []
G := []

and then doing something like

put(A, E, F, E)
put(B, G, E, G)
put(C, F, E, F)

and finally assigning values to E, F, and G. We
won’t attempt to diagram the data structures, but
you might try sketching them for yourself.

There are all kinds of possibilities here, in-
cluding bad ones, such producing loops for which
the flattening process does not terminate.

As far as we know, no weaver has attempted
multilevel profile drafts. We think it’s an interest-
ing idea, although it remains to be shown that it can
produce weaves that cannot be produced more
easily by other methods.

References

1. Designing with Blocks for
Handweavers, Doramay
Keasbey, AltaVista Publica-
tions, 1993.

2. Playing with Blocks, Erica
Voolich, The Cross Town
Shuttle, 1977.

3. Weaves and Pattern Draft-
ing, John Tovey, B. T.
Batsford, 1969, pp. 41-64.

4. Designing for Weaving: A
Study Guide for Drafting, De-
sign and Color, Carol Kurtz,
Hastings House, 1981, pp.
33-39.

5. “Name Drafting”, Icon Analyst 57, pp. 11-14.

6. “Pointer Semantics”, Icon Analyst 6, pp. 2-8.

7. “Packet Sequences”, Icon Analyst 63, pp. 7-9.

Figure 4. An Instantiated Profile Draft

P

C

B

A 1 3 2 4

4 1 3 2

2 3 2 3 2 3

