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A Weaving Language — continued

   May the warp be the white light of morning,
   May the weft be the red light of evening,
   May the fringes be the falling rain,
   May the border be the standing rainbow.
   Thus weave for us a garment of brightness.

–  Native American Indian song [1]

In the first article on Painter’s weaving lan-
guage [2], we described nine of the 15 operators:

∗ repeat
# rotate
\ reverse
–> extend
~ interleave
< domain “upto”
> domain “downto”
| pattern palindrome
, concatenate

Of the six remaining operators, the “block”
operator, (operator symbol [ ]), probably is the
most important in weaving. The left operand is a
pattern. The right operand is a sequence of inte-
gers. Each character in the left operand is repeated
individually by the corresponding integer in the
right operand. For example,

1346 [ ]9231

expands to

111111111334441

Integers greater than 9 can be specified by enclos-
ing them in braces. For example,

1345[ ]12{10}3

expands to

1334444444444666

Here’s a procedure that implements this op-
erator:

procedure Block(p1, p2)
   local i, s, p3, counts

   counts := [ ]

   p2 ? {
      while s := tab(upto('{')) do {
         every put(counts, !s)
         move(1)
         put(counts, tab(upto('}')))
         move(1)
         }
      every put(counts, !tab(0))
      }

   if ∗p1 < ∗counts then p1 := Extend(p1, ∗counts)
   else if ∗counts < ∗p1 then { # extend list
      every i := seq() do {
         put(counts, counts[i])
         if ∗counts >= ∗p1 then break
         }
      }

   p3 := ""

   every i := 1 to ∗p1 do
      p3 ||:= repl(p1[i], counts[i])

   return p3

end

A list, counts, is used for holding the integers,
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since they may be more than one digit long. If this
were not the case, a string could be used with the
same code structure.

Permutation, indicated by perm (no operator
symbol) applies a permutation vector (right oper-
and) to a pattern (left operand). The pattern is
permuted in sections whose lengths are the lengths
of the permutation vector. The permutation vector
specifies the positions of the elements in a section.
For example, 4123 puts the fourth character of the
section first, the first second,  the second third and
the third fourth. Thus,

1346 perm 4123

expands to 6134.
In the case that the pattern is not the same

length as the permutation vector, the pattern is
extended to an integer multiple of the length of the
vector.

Here’s a procedure:

procedure Permute(p1, p2)
   local p3, chunk,  j

   j := ∗p1 % ∗p2
   if j ~= 0 then p1 := Extend(p1, ∗p1 + ∗p2 – j)

   p3 := ""

   p1 ? {
      while chunk := move(∗p2) do
         every p3 ||:= chunk[!p2]
      }

   return p3

end

The pattern box operator, pbox (no operator
symbol), like perm, has a left operand pattern and
a right operand permutation vector. The permuta-
tion vector is extended to the length of the pattern
and the permutation is applied. Here’s a proce-
dure:

procedure Pbox(p1, p2)
   local p3, i

   if ∗p2 ~= ∗p1 then p2 := Extend(p2, ∗p1)

   p3 := ""

   every i := !p1 do
      p3 ||:= p1[p2[i]]

   return p3

end

The template operator, :, provides for “sub-
articulation” of a pattern (left operand) by a “tex-
ture pattern” (right operand). The first character
(digit) in the template pattern is taken as the root.
The remaining digits in the template pattern are
taken with respect from their distance from the
root. For example, in the template patterns 342 the
root r, is 3 and the template is r, r + 1, r – 1. The
template is applied to each character in the pattern
with the character replacing the root. If this is
unclear, an example may help:

12345678:121

has the template r, r + 1, r and expands to

121232343565676787818

Note that values wrap around on the domain, so
that for the last character of the pattern, 8, r + 1
produces 1.

Here’s a procedure for this operator:

procedure Template(p1, p2)
   local p3, dlist, i, j, k

   dlist := [ ]

   every i := 1 to ∗p1 do
      put(dlist, p1[i] – p1[1])

   p3 := ""

   every j := 1 to ∗dlist do
      every i := 1 to ∗p2 do {
         k := p2[i] + dlist[j]
         if k > 8 then k –:= 8
         else if k < 1 then k +:= 8
         p3 ||:= k
         }

   return p3

end

The two remaining operators are related to
“upto” and “downto”, which were described in
the last article [2].

The ”updown”operator, <>, generates alter-
nating ascending and descending domain runs.
The first, ascending, run starts at the first character
of the left operand and goes to the first character of
the second operand. The second, descending, run
starts from there and goes to the second character
of the right operand, and so on, alternating be-
tween ascending and descending runs. For ex-
ample,
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1234<>5678

expands to

12345432345654345676545678

As in “upto”, tick marks can be used to indi-
cate domain cycles between runs.

Here’s a procedure:

procedure UpDown(p1, p2)
   local p3, i, ticks

   ticks := ""

   p2 ?:= {
      ticks := tab(many('\''))
      tab(0)
      }

   if ∗p1 < ∗p2 then p1 := Extend(p1, ∗p2)
   else if ∗p2 <  ∗p1 then p2 := Extend(p2, ∗p1)

   p3 := p1[1]

   every i := 1 to ∗p1 do {
      p3 ||:= Upto(p1[i], ticks || p2[i])[2:0]
      p3 ||:= Downto(p2[i], ticks || p1[i + 1])[2:0]
      }

   return p3

end

The “downup” operator,  ><, is like “updown”
except that the order is descending, ascending, … .

Comments

That’s it. It is interesting to note that weaving
language, as rich as it is, does not have operations
for some patterns that occur frequently in weav-
ing. Two missing ones are true palindromes and
the interleaving of more than two patterns.

Another thing to think about is other do-
mains. Although some of Painter’s built-in weaves
use only four shafts and four treadles, and only the
labels 1, 2, 3, and 4, there is no way to restrict
domain runs to this subset. For example, 4<2 pro-
duces 4567812, not 412 as it would if the domain
could be restricted. Of course, 5678 does nothing.

The restriction to 8 shafts and 8 treadles is
more fundamental, since it limits the kinds of
things that can be woven. Many looms have more
than 8 shafts, and there usually are more treadles
than shafts. As mentioned in the last article on
weaving, more shafts and treadles could be handled
by extending the domain to include more labeling

characters. If the number of shafts and treadles is
not the same, the situation becomes more compli-
cated, especially for domain operations.

Next Time

In the next article on weaving, we’ll look at
ways of representing weaving specifications and
how patterns and structures in them can be made
evident. This will lead to weaving grammars.

References

1. Song of the Sky Loom, Tewa tribe.

2. “A Weaving Language”, Icon Analyst 51, pp.
5-11.

Quiz — Structures

With this issue of the
Analyst, we’re starting a
series of quizzes. We’ll
cover a variety of topics,
mostly about the Icon lan-
guage but also including
some other material from

past issues of the Analyst. We’ll use ornate illumi-
nated Qs like the one above to identify quizzes.

In general, we’ll provide answers in the sub-
sequent issue of the Analyst, but for those of you
who don’t want to wait, we’ll also put the answers
on the Web pages for the issues of the Analyst in
which the quizzes appear.

This quiz relates to various aspects of struc-
tures. The letters L, R, S, and T are used to identify
values of type list, record, set, and table, respec-
tively.

1. True or false:L[0] references the last element of
the list L.

2. True or false:L[i:j] produces a new list that is
distinct from L.

3. What is the difference between

every write(!L)

and

every write(get(L))
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4. What does put(L) do?

5. What do the following expressions do?

   every !L do
      put(L, get(L))

   every !L do
      push(L, get(L))

   every !L do
      push(L, pull(L))

   every !L do
      put(L, pull(L))

6. Write an expression that removes duplicate ele-
ments from L and puts the rest in sorted order.

7. True or false: All of these expressions reference
the second element of L:

L[2]
L["2"]
L['2']
L[2.2]

8. True or false: A record declaration must have at
least one field.

9. True or false: Two record declarations can have
the same field name only if it is in the same posi-
tion.

10. True or false:R.center and R["center"] are
equivalent.

11. True or false:R.1 can be used to reference the
first field of R.

12. copy(R) produces a record with the same type
as R.

13. True or false:  The expression

copy(R) === R

may succeed in some circumstances.

14. True or false:!S generates the elements of S in
random order.

15. Suppose ∗S didn’t work. How could you find
out how many elements there are in S?

16. Write a procedure that removes all the strings
in S.

17. set(L) produces a set consisting of the distinct

values in L.  What do set(R), set(S) and set(T) do?
What do list(S) and table(S) do?

18. True or false: All the keys in a table are distinct.

19. True or false: All the values in a table are
distinct.

20. Write a procedure that creates a set containing
the keys of table T.

21. key(T) generates the keys in table T and !T
generates the values. Why is key(T) more funda-
mental than !T?

22. True or false: key(T) generates the keys in T in
the same order as !T generates the values.

23. True or false: There is no limit to the number of
elements that a table can contain.

Pattern Forms Revisited

Pattern is born when one reproduces the intuitively
perceived essence. — Saetsu Yanaki [1]

When we introduced pattern forms as a way
of describing the structure of character patterns [2],
we started with only two pattern forms: repetition
and reversal. Later we added collation [3]. With
just a few pattern forms and no specific plans for
others, it seemed reasonable to chose the syntax to
make them easy to distinguish:

[s,i] repeat
<s> reverse
{s1,s2, …} collate

Pairs of bracketing characters are needed to
handle nesting. Square brackets, angular brackets,
and braces are natural and visually appropriate.
(You may recall we started with parentheses for
repetition and then decided to save them for more
conventional uses, such as grouping.)

The weaving language [4,5] opened the door
to a host of other pattern forms that not only are
useful in describing the structures of weaving speci-
fications but also other kinds of character patterns.
Of the 15 weaving operators, two, repetition and
reversal, are part of our original set, and the weav-
ing interleaving operation is a special case of colla-
tion. The explicit concatenation operator in the
weaving language is covered by implicit concat-
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enation in pattern forms. That leaves 11 operators
that are candidates for pattern forms. Of these, five
seem likely to be useful in other contexts:

–> extend
[ ] block
| pattern palindrome
perm permute
# rotate

On the other hand, to develop weaving gram-
mars in the fashion we developed versum delta
grammars [6] and image grammars [7], we would
need all 15 weaving operators cast as pattern forms.
But even with only five more pattern forms, the
syntax we used previously won’t work — the
ASCII character set has a paucity of bracketing
characters or even characters that reasonably might
be used as such. Given that the weaving language
has suggested useful new pattern forms, it’s also
likely that other specialized applications might
also. So we need a syntax that can accommodate
many pattern forms and is easily extensible.

Here’s what we came up with: one pair of
bracketing characters for all pattern forms (square
brackets) with different operator symbols between
the operands to distinguish  different pattern forms.

In the absence of a better set of operator
symbols, we’ve used those from the weaving lan-
guage, making only a few necessary changes. Here’s
the complete set (so far):

[s∗i] repeat
[s `] reverse
[s#i] rotate
[s1~s2~…] collate
[s1–>s2] extend
[s1+s2] block
[s|] pattern palindrome
[s1<s2] upto
[s1>s2] downto
[s1–s2] upto or downto
[s1?s2} permute
[s1%s2] pbox
[s1<>s2] updown
[s1><s2] downup
[s1:s2] template
[s1!s2] true palindrome

In the case of pattern forms that have only one
operand, it appears first. (These invite extension to
two operands; we’ll resist that temptation for now.)
The collation pattern form allows multiple oper-
ands; if there are only two, it corresponds to the
weaving interleave operation. The true palindrome
pattern form was added to complement the pat-
tern palindrome pattern form.

Note that the use of multi-character operators
leaves the syntax open-ended with no limit to the
number of possible operators.

Adding these pattern forms removes more
characters from those available to name variables
in character grammars. The full set of pattern-form
meta-characters now is:

[ ] ∗ ` ~ + – > < | ! ? % # :

The additional meta-characters are not a ma-
jor loss for character grammars: They make poor
variable names anyway.

The following procedure shows how pattern
forms can be expanded into strings:

link strings
link weaving

procedure pfl2str(pattern)
   local result, expr1, expr2, op
   static symbols, optbl

   initial {
      symbols := '[ ]∗ `~–><+|#: !'

      optbl := table()

      optbl["∗"] := repl
      optbl["`"] := reverse
      optbl["#"] := rotate
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      optbl["<"] := Upto
      optbl[">"] := Downto
      optbl["–"] := UpDownto
      optbl["|"] := PatternPalindrome
      optbl["!"] := Palindrome
      optbl["+"] := Block
      optbl["~"] := Collate
      optbl["–>"] := Extend
      optbl["~"] := Interleave
      optbl[":"] := Template
      optbl["?"] := Permute
      optbl["%"] := Pbox
      optbl["><"] := UpDown
      optbl["<>"] := DownUp
      }

   result := ""

   pattern ? {
      while result ||:= tab(upto('[')) do {
         move(1)
         expr1 := pfl2str(tab(bal(symbols, '[', ']'))) |
            error()
         op := tab(many(symbols)) | error()
         expr2 := pfl2str(tab(bal(']', '[', ']'))) | error()
         result ||:= \optbl[op](expr1, expr2) | error()
         move(1)
         }
      if not pos(0) then result ||:= tab(0)
      }

   return result

end

The table optbl contains the functions and
procedures to be applied for the different pattern
forms. As usual, recursion is used to handle nest-
ing.

Unary suffix operators are treated as binary
operators with an empty right operand. If the right
operand is not empty, it is ignored except for
Palindrome(), in which the second argument pro-
vides the middle.

Collate() handles multiple operands  in an ad
hoc fashion:

procedure Collate(s1, s2)
   local slist

   slist := [s1] # s1 has been expanded

   s2 ? {
      while put(slist, pfl2str(tab(bal('~', '[', ']') | 0))) do
         move(1) | break
      }

   return multicoll(slist)

end

The procedure multicoll(), from the strings
module in the Icon program library, collates a list
of strings:

procedure multicoll(L)
   local result, i, j

   result := ""

   every i := 1 to ∗L[1] do
      every j := 1 to ∗L do
         result ||:= L[j][i]

   return result

end

Comments

It’s hard to imagine that an application for
analyzing character patterns, such as charpatt [8],
would support searching procedures for all the
pattern forms we now have. For synthesizing char-
acter patterns, however, they would provide valu-
able descriptive power. We’ve mentioned charac-
ter-pattern synthesis before; it’s still in our plans.

References

1. Connections: The Geometric Bridge Between Art and
Science, Jay Kappraff, McGraw-Hill, 1991, p. 167.

2. “Character Patterns”, Icon Analyst 48, pp. 3-7.

3. “Character Patterns”, Icon Analyst 49, pp. 1-6.

4. “A Weaving Language”, Icon Analyst 51, pp.
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8. “Analyzing Character Patterns”, Icon Analyst
50, pp. 1-7.

Downloading Icon Material

Implementations of Icon are available for down-
loading via FTP:

ftp.cs.arizona.edu (cd /icon)
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Graphics Corner — Transparency

The unicorns were the most recognizable magic the
fairies possessed, and they sent them to those worlds
where belief in magic was in danger of failing altogether.
After all there has to be some belief in magic — however
small — for any world to survive. — Terry Brooks [1]

The term transparency, as it is used with
respect to pixel-based images, is something of a
misnomer. There is no such thing as a transparent
pixel. Instead, so-called transparency is produced
by omitting some pixels when an image is drawn,
leaving what was on the canvas at those places
intact — to “show through”.

The GIF89a image format [2] allows one color
to be designated as “transparent”. When a GIF89a
image is read, pixels of this color simply are not
drawn.

Transparency is popular for Web graphics
because it allows images to overlay a background
without replacing it. Figure 1 shows an image
drawn on top of another, first without transpar-
ency and then with.

Figure 1. The Affect of Transparency

Icon can read GIF89a images, but it only can
write GIF87a images, which do not support trans-
parency. Many image processing programs, how-
ever, can convert from GIF87a to GIF89a and allow
the user to specify the color for transparency.

Icon’s image strings, on the other hand, do
support transparency and they provide a way to
use transparency without relying on pre-prepared
GIF89a files. The characters "~" and "\377" desig-
nate transparent pixels, provided these characters
do not designate colors in the palette used. Pop
Quiz 1: What palettes do not support transpar-
ency? See the end of this article for the answer.

The real question is, of course, what uses are
there for transparency aside from the one already
mentioned? As in other articles on image strings,
we won’t attempt to give a comprehensive answer
to this question. Instead, we’ll give some examples
to stimulate your imagination: Much graphics pro-
gramming depends on cleverness and a goodly
bag of gimmicks and tricks — or better, a meta-bag.

Masks

One use for transparency is masking — ob-
scuring parts of an image and letting other parts
show through. This is, of course, what a transpar-
ent GIF does to show an image over a background,
but the concept has more general applicability.

Our familiar unicorn, taken from a GIF image
as shown in Figure 2, provides an example.

Figure 2. Unicorn Silhouette

Suppose you want to decorate the unicorn to
make it more interesting, perhaps “painting” it
with a numerical carpet [3].

The first thing to realize is that the unicorn is
black on a white background. That makes it easy to
separate the unicorn from the background. The
next step is to get an image string for the unicorn.
This can be done by reading the unicorn GIF image
into a window and using Capture() from the Icon
program library module gpxop to produce an im-
age string.
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The form of a call is Capture(p, x, y, w, h),
where p is the desired palette and x, y, w, and h
specify the rectangular area to capture. The palette
defaults to c1 and the rectangle to the entire win-
dow. Since the unicorn image is bi-level grayscale
(“black and white”), the appropriate palette is g2.
The code to get the image string might look like
this:

link graphics
link imrutils

…

   WOpen("image=unicorn.gif") |
      stop("∗∗∗ no unicorn")
   unicorn := imstoimr(Capture("g2"))

The module graphics includes gpxop as well
as the procedures commonly needed in graphics
programming — linking graphics is something
you generally should do for programs involving
graphics. The module imrutils contains the proce-
dures for manipulating image strings as records
[4].

In order to decorate the unicorn, we need to
replace black pixels by the decoration and leave the
white pixels alone. In the g2 palette, "0" stands for
black (and "1" for white, although it’s not necessary
to know that). If you didn’t know the character for
a color, you can get it as in this example:

black := PaletteKey("g2", "black")

To create the unicorn mask, we change the
black pixels “transparent” ones:

unicorn.pixels := map(unicorn.pixels, black, "~")

Next we want to replace the unicorn by the
desired decoration:

ReadImage("carpet.gif")

We’ll assume that the carpet image is the same size

as the unicorn image. Pop Quiz 2: What happens if
this is not the case?

The resulting canvas is shown in Figure 3.

Figure 3. A Numerical Carpet

The last step is to draw the image string for the
transparent unicorn:

drawimr(0, 0, unicorn)

The non-transparent white pixels in the im-
age string replace corresponding pixels of the car-
pet. The result, a finely attired unicorn, is shown in
Figure 4. To see the full-colored splendor of this
beast, visit the Web site for this issue of the Ana-
lyst. Figure 5 shows the unicorn in two other garbs.

Figure 4. Unicorn Adorned with a Carpet

      

 Figure 5. Other Unicorn Adornments

Pop Quiz 3: What happens if you draw the
unicorn mask over a totally black window? Over a
totally white one?

Image Transitions

A more sophisticated form of masking can be
used to provide a gradual transition from one

Back Issues

Back issues of The Icon Analyst are
available for $5 each. This price includes
shipping in the United States, Canada,
and Mexico. Add $2 per order for airmail
postage to other countries.
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image to another. The basic idea is to overlay a
series of increasingly obscuring masks for the new
image on top of the old image.

In the example shown here, a circular “shut-
ter” of the new image gradually closes over the old
image. The images for the masks can be made by
drawing successively larger filled circles over the
center of the new image. The color for the circle
must be one not present in the new image, since the
transparency is obtained by mapping pixels in the

circle color to transparent pixels. In this case, white
is not used in the image:

   $define Increment 5

   WOpen("image=carpet.gif", "fg=white") |
      stop("∗∗∗ no carpet")

   w := WAttrib("width") / 2
   h := WAttrib("height") / 2

   masks := [ ]

   every r := 0 to 2 ∗ w  by Increment do {
      FillCircle(w, h, r)
      push(masks, imstoimr(Capture())
      }

Notice that the image strings are pushed onto the
list, leaving the last one as the first on the list. The
reason for this is that they will be applied in reverse
order to their creation.

Figure 6 show the first six and last six of the
images.

…

Figure 6. The Images for Masks

The masks then can be created by making the
circles transparent:

white := PaletteKey("c1", "white")
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every mask := !masks do
   map(mask.pixels, white, "~")

The image strings for the masks are succes-
sively overlaid on the new image:

every DrawImage(0, 0, !masks) do
   WDelay(Pause)

 Figure 7 shows the first six and last six images
in the transition from the unicorn to the carpet.

…

Figure 7. Shuttering the Unicorn

Practical Problems

Capture() is slow; it has to process every pixel
in the rectangle to which it is applied. Capture(), in
fact, is too slow to use in real time for any but tiny
rectangles. Image strings for transparent effects
generally need to be prepared in advance.

Image strings also are bulky. This suggests
the use of compression techniques. For masks, a
method of representing differences between suc-
cessive image strings might be effective.

Incidentally, there are other methods for ef-
fecting transitions between images. If all the areas
involved are rectangular, CopyArea() is much faster
and easier to use than image strings and transpar-
ency.

Answers to Pop Quizzes

1. The only palette that does not support transpar-
ency is g256, which assigns all 256 characters to
shades of gray. It’s worth noting that "~" is used for
colors in a number of the larger palettes. It there-
fore might be prudent to use "\377" for transpar-
ency, since it works for all palettes except g256.
Pop Quiz 4: How can you determine the transpar-
ency characters supported by a palette?

2. If the carpet image is smaller than the canvas, it
is positioned at the upper-left corner of the win-
dow. If there are parts of the unicorn silhouette that
fall beyond this, they are not changed. If the carpet
image is larger than the canvas, parts that fall
beyond the left and bottom edges of the canvas are
clipped. The unicorn, however, is fully decorated.

In some situations, it may be necessary to make
adjustments to the decorating image to get the
desired effect.

3. If you draw the unicorn mask over a totally black
canvas, you get the original unicorn image. If you
draw it over a totally white canvas, you just get a
totally white canvas.

4. Here’s a procedure that generates the transpar-
ency characters, if any, in palette p:

procedure transchar(p)

   suspend !('~\377' –– PaletteChars(p))

end

Although this procedure is a generator, it can be
used to get just one transparency character, as in

tchar := transchar(p) |
      stop("∗∗∗ no transparency character")

References

1. The Black Unicorn, Terry Brooks, Turtleback,
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2. Encyclopedia of Graphics File Formats, James D.
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Animation — Mutable Colors

Animation creates new apparent realities from sheer
imagination. — Gary Chapman [1]

Some kinds of animation can be created not
by changing shapes but by changing their colors.
To do this effectively requires mutable colors.

A mutable color is one whose color value can
be changed at will, say from green to red. When the
color value changes, all canvas pixels of that mu-
table color change, virtually instantaneously. For
example, if several circles are filled with a mutable
color, the color of all of them can be changed
without redrawing the circles.

The function NewColor(s) obtains a mutable
color and returns a small negative integer that
identifies it. If s is specified, the mutable color has
that color value initially. NewColor() fails if a mu-
table color is not available; we’ll have more to say
about that later.

A mutable color can be used in place of an
ordinary color specification. For example,

stoplight := NewColor("green") |
   stop("∗∗∗ cannot get mutable color")
Fg(stoplight)
FillCircle(100, 100, 20)

gets a mutable color, changes the foreground color
to it, and then fills a small circle, which is green
initially.

The function Color(i, s) changes the mutable
color identified by i to the color value given by s.
For example,

Color(stoplight, "yellow")

changes the color of the circle from green to yellow.
The simplest way to use mutable colors to

produce the illusion of motion is to design a path
for the motion and draw shapes along the path,
using a succession of mutable colors. Then the
colors can be changed along the path in a way that
appears to be motion.

A Marquee

An example is the familiar marquee, in which
lights around the edge of a display are turned on and
off in a sequence that makes it look like the lights are
moving. Figure 1 illustrates the idea schematically.
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Figure 1. Marquee Layout

The squares represent lights and are numbered
in rotation. At any time, all the lights with the same
number are on or off together. Think of the lights
with the same number as being wired in parallel.  By
starting with the lights in a “panel” in one state and
then shifting this state one light clockwise, the lights
appear to move clockwise around the marquee.  The
number of panels, the number of lights in a panel,
the space between them, and so on are configuration
parameters.

Here’s a program that produces a marquee
using mutable colors.

link graphics

# Parameters for the display

$define BackGround "black"
$define LightColor "yellow"

$define LightWidth 10 # width of light
$define LightHeight 10 # height of light
$define Lights 5 # lights in a panel
$define Offset 5 # space between lights
$define Hpanels 5 # horizontal panels
$define Vpanels 2 # vertical panels
$define Gap 1 # number lights off

Supplementary Material

Supplementary material for this issue of the Analyst — including color images, animations,
program material, and Web links — is available on the Web. The URL is

http://www.cs.arizona.edu/icon/analyst/iasub/ia52/
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$define Pause 50

$define Space  (LightWidth + Offset)
$define Wcount (Hpanels ∗ Lights + 1)
$define Hcount (Vpanels ∗ Lights + 1)
$define Width ((Wcount ∗ Space) + Offset)
$define Height ((Hcount ∗ Space) + Offset)

procedure main()
   local x, y, colors, color

   WOpen("size=" || Width || "," || Height,
      "bg=" || BackGround) |
         stop("∗∗∗ cannot open window")

   #  Get mutable colors and make them the
   #  background color initially.

   colors := [ ]

   every 1 to Lights do
      put(colors, NewColor(BackGround)) |
         stop("∗∗∗ cannot not get mutable color")

   #  Assign mutable colors to lights, top row left to
   #  right, bottom row right to left.

   y := 0
   x := 0

   every 1 to Wcount do {
      Fg(color := get(colors))
      put(colors, color)
      FillRectangle(x + Offset, y + Offset,
         LightWidth, LightHeight)
      FillRectangle(Width – LightWidth – (x + Offset),
         Height – LightHeight – (y + Offset), LightWidth,
             LightHeight)
      x +:= Space
      }

   #  Right side top to bottom, left side bottom to top.

   x := Width – Offset – LightWidth
   y := Space + Offset
   every 1 to Hcount do {
      Fg(color := get(colors))
      put(colors, color)
      FillRectangle(x, y, LightWidth, LightHeight)
      FillRectangle(Offset + Width – LightHeight –
         (x + Offset), Height – LightWidth – y,
            LightHeight, LightWidth)
      y +:= Space
      }

   # Run the marquee.

   until WQuit() do {
       every Color(colors[1 to Lights – Gap], LightColor)
      every Color(colors[Lights – Gap to Lights],

         BackGround)
      WDelay(Pause)
      put(colors, get(colors)) # rotate the colors
      }

end

The many defined constants allow the mar-
quee to be configured in different ways. The con-
figuration here uses five lights per panel as in the
layout shown in Figure 1, but there are five panels
horizontally and two vertically. At any time, four
lights in a panel are on and one off (Gap). Inciden-
tally, if the distance between lights (Offset) is set to
0, individual lights are not evident and entire
panels “flow” around the periphery of the canvas.

Figure 2 shows in miniature six stages of the
marquee, the last being the same as the first. To get
a better idea of the animation, visit the Web page
for this issue of the Analyst.

    

    

Figure 2. Successive Marquee Images

Try configuring the program in various ways
to see how it affects the animation.

Worms

A path of lights can be laid out in many ways.
Figure 3 shows “worms” that enter at the top left
and exit at the bottom right, flowing around a path
in the process.
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Figure 3. Path Layout

Here’s a program for the worms.

link graphics

$define BackGround "black"
$define LightColor "yellow"
$define Side 15 # worm width
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$define Length 5 # units per worm
$define Pause 50 # animation delay
$define Gap 1 # units between worms
$define Lights 5 # lights in segment

$define Width (10 ∗ Side) # width of window
$define Height (5 ∗ Side) # height of window

global colors

procedure main()
   local x, y, unit, loci, locus, i

   WOpen("size=" || Width || "," || Height,
      "bg=" || BackGround) |
         stop("∗∗∗ cannot open window")

   #  Get mutable colors.

   colors := [ ]

   every 1 to Lights do
      put(colors, NewColor(BackGround)) |
         stop("∗∗∗ cannot get mutable color")

   # Array of locations.

   loci := [
      [[1, 1], [2, 5], [3, 1], [6, 3], [8, 4], [10, 1]], # 1
      [[1, 2], [3, 5], [4, 1], [6, 4], [8, 3], [10, 2]], # 2
      [[1, 3], [3, 4], [5, 1], [6, 5], [8, 2], [10, 3]], # 3
      [[1, 4], [3, 3], [6, 1], [7, 5], [8, 1], [10, 4]], # 4
      [[1, 5], [3, 2], [6, 2], [8, 5], [9, 1], [10, 5]] # 5
      ]

   # Assign mutable colors to locations.

   every i := 1 to Length do
      every locus := !loci[i] do
         light ! push(locus, i)

   # Run the worms.

   until WQuit() do {
       every Color(colors[1 to Length –- Gap], LightColor)
       every Color(colors[Length – Gap + 1 to Length],
          BackGround)
       WDelay(Pause)
       put(colors, get(colors)) # rotate colors
       }

end

# Create grid.

procedure light(color, r, c)

   Fg(colors[color])

   FillRectangle(Side ∗ (r – 1), Side ∗ (c – 1),
      Side, Side)

   return

end

Figure 4 shows six frames of the animation,
the last being the same as the first. It’s difficult to
visualize this animation from the snapshots. See
the real thing on the Web page for this issue of the
Analyst.

     

     

Figure 4. Snapshots of the Worm

The way the path is specified in this program
deserves comment. The array loci has a row of
coordinates for each mutable color. The coordi-
nates, as lists, provide arguments for light(). The
color itself is pushed onto locus before light() is
invoked.

The problem with this representation of the
path is that constructing it is tedious and error
prone. This is the reason we did not give the worms
more room to run, which would have produced a
more interesting animation. What comes to mind
then you think of paths? Turtle graphics  [2], per-
haps? We’ll come back to this subject in a future
Analyst.

Expanding Rings

A “path” for animation need not be along a
line. For example, it can propogate away from a
point, as in this program, which produces an ex-
panding ring:

link graphics

$define Size 200
$define Incr 5

procedure main()
   local colors, radius, n, n_old, numbers, count

   WOpen("size=" || Size || "," || Size, "bg=black") |
      stop("∗∗∗ cannot open window")

   colors := [ ]

   #  Set up the rings.

   every radius := Size / 2 to 0 by –Incr do {
      push(colors, n := NewColor("black")) |
         stop("∗∗∗ cannot get mutable color")
      Fg(n)
      FillCircle(Size / 2, Size / 2, radius)
      }
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   number := ∗colors
   count := 0

   #  Animate.

   put(colors, n_old := get(colors))

   until WQuit() do {
      put(colors, n := get(colors))
      Color(n, "orange")
      Color(n_old, "black")
      n_old := n
      WDelay(100)
      count +:= 1
      if count % number = 0 then # start over
         every Color(!colors, "black")
      }

end

Figure 5 shows an expanding ring.

      

      

      

Figure 5. An Expanding Ring

Rotors

A path also can be circular, as illustrated by
this program, which animates several randomly
sized and placed rotors that revolve in unison.

link graphics

$define ForeGround "black"
$define BackGround "white"

$define Blades 12
$define Pause 40
$define Size 400
$define Height 400

$define Width 400
$define Blade (&pi / Blades)

global colors

procedure main()
   local color

   WOpen("size=" || Size || "," || Size, "fg=" ||
      ForeGround, "bg=" || BackGround) |
         stop("∗∗∗ cannot open window")

   colors := []

   # Get mutable colors.

   every 1 to Blades do
      put(colors, NewColor(BackGround)) |
         stop("∗∗∗ cannot get mutable color")

   # Create rotors

   every 1 to 15 do
      rotor(?Width, ?Height, ?(Size / 2))

   # Animate.

   color := colors[1]

   until WQuit() do {
      Color(color, BackGround)
      put(colors, color := get(colors))
      Color(color, ForeGround)
      WDelay(Pause)
      }

end

#  Create a rotor.

procedure rotor(x, y, r)
   local color, off

   off := ?0 ∗ &pi

   every color := 1 to Blades do {
      Fg(colors[color])
      FillCircle(x, y, r, off + color ∗ Blade, Blade)
      FillCircle(x, y, r, off + color ∗ Blade + &pi, Blade)
      }

   Fg(ForeGround)
   DrawCircle(x, y, r)

   return

end

Each rotor has 12 blades. By using mutable
colors for the blades, the appearance of motion is
obtained by changing the colors of blades in oppo-
sition, two visible (black) and the rest “invisible”
(white). Note that some rotors appear to be on top
of others. This is because they were drawn after the
others. The parts of the rotors in the background
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that were not drawn over continue to revolve —
the result is what you’d expect to see if they were
real rotors, some in front of others in the line of
sight, except that background rotors do not show
through the “invisible” blades.

Figure 6 shows 12 frames of the animation.
Note that revolution is clockwise.

    

    

    

    

Figure 6. Revolving Rotors

See Reference 3 for another example of rota-
tion using mutable colors.

Color Wheel

As a final example, here is a program that
produces a rotating color wheel for a palette:

 link graphics

$define Palette "c1"
$define Pause 10

procedure main()
   local color, colors, mutants, alpha, theta, i

   WOpen("size=400,400", "bg=black") |
      stop("∗∗∗ cannot open window")

   colors := [ ]
   mutants := [ ]

   chars := PaletteChars(Palette)

   # Get the mutable colors.

   every put(colors, color :=
      PaletteColor("c1", !PaletteChars(Palette))) do
         put(mutants, NewColor(color)) |
            stop("∗∗∗ cannot get mutable color")

   alpha := 2 ∗ &pi / ∗colors
   theta := 0.0

   #  Draw the wheel.

   every 1 to ∗ colors do {
      put(mutants, color := get(mutants))
      Fg(color)
      FillCircle(200, 200, 200, theta, alpha)
      theta +:= alpha
      }

   #  Run the animation.

   until WQuit() do {
      put(colors, color := get(colors))
      every i := 1 to ∗colors do
         Color(mutants[i], colors[i])
      WDelay(Pause)
      }

end

Figure 7 shows six frames of the animation.

   

   

   

Figure 7. Revolving Color Wheel
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Comments

The main value of mutable colors in anima-
tion is that the color value of all pixels in a mutable
color — however many there are — can be changed
at once and with no detectable delay. For example,
the arrangement of pixels in the animated rotors is
quite complex, but the animation works at the
same speed regardless of the size or number of
rotors — or even how big the canvas is. There is
only one other method of doing such an animation
with standard hardware that does not produce
unacceptable visual artifacts. We’ll describe that
method in the next article on animation.

Doing a complicated animation using mu-
table colors requires significant planning and in-
vestment in setting up the canvas. And, of course,
not all kinds of animation are possible using mu-
table colors.

Mutable colors can be used to provide a vari-
ety of effects besides the illusion of motion. In the
next Analyst, we’ll show a use of mutable colors
that has nothing to do with animation.

The Limitations of Mutable Colors

Not all graphics systems support mutable
colors, and when they do, they typically only work
for monitors in 8-bit mode (256 colors) or less. Most
UNIX systems support mutable colors with moni-
tors in 8-bit mode, but mutable colors do not work
properly in Windows Icon.

Incidentally, if you have a (non-Icon) applica-
tion that requires setting your monitor to 8-bit
mode, it’s a good bet that the application uses
mutable colors.

The number of mutable colors that are avail-
able is limited by colors used for other purposes. If
no other colors are used, it’s possible to get 254
mutable colors (black and white are reserved). In a
VIB application, the maximum number of mutable
colors that can be obtained is 252.

If a mutable color is not available, NewColor()
fails; it is important to check for this to ensure an
application does not malfunction.

It’s wise to design applications with these
limitations in mind and not to use mutable colors
for applications that need to be portable to  differ-
ent kinds of platforms.

Exercises

Here are some things you might try using

mutable colors.

1. Design marquees that are not rectangular —
perhaps circular, oval, or polygonal.

2. Provide multi-colored lights for the marquee
animation given in this article.

3. Modify the worm animation to provide multi-
colored worms.

4. Modify the rotor animation so that the user can
control the speed and direction of rotation.

5. Modify the rotor animation to have blades of
several different colors.

6. Design a visual amusement in which the lights
on a panel change colors randomly.

7. Modify the expanding rings animation to have
multiple rings of different colors. Find colors that
suggest an explosion.

8. Simulate  a projectile shot from a gun traveling
under the influence of gravity in a vacuum. Pro-
vide controls for a user to specify the angle of the
gun and the initial velocity.

9. Write a program to trace a path along a plane
curve. See the module curves in the Icon program
library.

10. Design an interactive game in which the user
tries to click on an erratically moving shape. Pro-
vide a scoring scheme and levels of difficulty.

11. Design a labyrinth and animate a light travers-
ing it.

12. Design a maze and track the mouse position
with a light as the user tries to find the way out.

13. Write a procedure similar to DrawImage() that
works with mutable colors.
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From the Library — PostScript
Graphics

I have never known any distress that an hour’s reading
did not relieve. — Montesquiou [1]

Image Quality

One of the problems with producing graphic
images in windows is that windows are composed
of finite-sized, discrete pixels. For this reason, it’s
not possible to draw a diagonal line or other non-
rectangular shape precisely. The result of approxi-
mating such a shape is “jaggies”, as illustrated in
Figure 1.

Figure 1. Screen Image

How good a non-rectangular shape looks
depends on the angles involved and the pixel size.
Figure 1 corresponds to pixels that are 1/72nd of
an inch on a side. See the side-bar on Resolution on
the next page.

Figure 2 shows a portion of the image with the
pixels enlarged about eight times.

Figure 2. Enlarged Screen Image

 The irregular “blobs” are the renditions of
circles that are supposed to be four pixels in diam-
eter. It’s clear you can’t come close to the desired
shape, although as Figure 1 shows, if the pixels are
small enough, the visual appearance is at least
reasonable.

Although Figure 1 conveys the information it
represents fairly well, it’s crude and unacceptable
for most forms of publication. Now compare Fig-
ures 1 and 2 with Figures 3 and 4, which are
rendered in PostScript [2-4].

Figure 3. PostScript Image
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Figure 4. Enlarged PostScript

PostScript represents shapes by their geo-
metrical description and renders them using “vec-
tor” graphics. PostScript graphics can be scaled by
arbitrary amounts without loosing quality. The
practical limit is the resolution of the device on
which they are rendered. The Analyst is printed
on a 600 dpi laser printer, which gives adequate
quality for a publication of its type.

Most PostScript graphics are produced by
applications such as Adobe Illustrator <1> and
Macromedia Freehand <2>. Since PostScript is a
language (a page-description language, to be pre-
cise), it’s possible to create graphics by writing
directly in PostScript, but doing that is so tedious
that few do it — and with the tools available, there
is no need for it.

Creating PostScript Graphics

This article is about creating PostScript graph-
ics in Icon, not by writing in PostScript but rather
by using a package in the Icon program library that
emulates Icon’s graphic operations. This package
automatically creates PostScript that corresponds
to graphics function calls. This does not affect what
appears on the screen; it is the same with or with-
out PostScript emulation.

All that’s necessary to use this facility is link-
ing psrecord from the library and adding proce-
dure calls to control the emulation. At its simplest,
it might look like this:

Resolution

There is considerable confusion about the
meaning of the word resolution as it applies to
computer-related devices and images. This is
due in part to misuse of the term.

The most notable misuse is to describe
monitor resolution in terms of the number of
pixels it displays, as in a 1024 × 768 screen.
Resolution, rather, should be measured in the
size of the pixels, as in 75 pixels per inch (ppi).
(Since pixels are so small, ppi is easier to deal
with than, say, 0.01333".) This is the way that
printer resolution is given, as in 300 dots per
inch (dpi) — you’ll not see printer resolution
listed as, say, a 4975 × 6375 page.

Another confusion results from describ-
ing the size of an image by its pixel dimensions,
as in a 750 × 375 image. How much area an
image covers when displayed on a monitor
depends on the size of the pixels. At 75 ppi,
such an image covers an area of 10" by 5". At
150 ppi, it covers 5" by 2.5".

Adding to the confusion is the fact that
image resolution can be set for the purpoes of
printing. For example, the resolution of an
image might be set to 150 dpi, 300 dpi, or 600
dpi. This does not affect the number of pixels it
contains. Instead, the higher the dpi, the smaller
the image is when printed. Such settings do not
affect the printer but only the interpretation of
pixels. Within the limitations of a printer, speci-
fying higher resolution for pixel-based images
not only produces smaller images but also
“crisper” looking ones. Here, for example, is
the same image printed at four different reso-
lutions:

25 dpi

50 dpi

100 dpi

200 dpi
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   # open a window…

   PSEnable() # start PostScript emulation
…

   # create graphics image
…

   PSDone() # terminate the emulation

The enabling procedure has two optional ar-
guments: PSEnable(window, file). The window
defaults to &window (a window must be opened
before PSEnable() is called), and the file to which
PostScript is written defaults to xlog.ps. There are
other procedures to provide more control; see
psrecord.icn.

The output is “encapsulated” PostScript and
can be imported without modification into most
word processing and desktop publishing programs,
which is what we did to produce the PostScript
graphics shown in this article.

Here’s a complete example:

link graphics
link psrecord

procedure main(args)
   local i, j, k, angle, incr, xpoint, ypoint
   local size, radius, xc, yc

   i := integer(args[1]) | 20

   size := 300
   radius := size / 4
   xc := yc := size / 2

   WOpen("label=design", "width=" || size, "height=" ||
       size) | stop("∗∗∗ cannot open window")

   PSEnable("design.ps") # enable PostScript

   angle := 0.0
   incr := 2 ∗ &pi / i

   every j := 1 to i do {
      spokes(xc + radius ∗ cos(angle),
         yc + radius * sin(angle), radius, i, angle)
      angle +:= incr
      }

   WriteImage("design.gif") # produce pixel image

   PSDone() # terminate PostScript

end

procedure spokes(x, y, r, i, angle)
   local incr, j

   incr := 2 ∗ &pi / i

   every j := 1 to i do {

      DrawLine(x, y, x + r ∗ cos(angle),
         y + r ∗ sin(angle))
      angle +:= incr
      }

   return

end

Figures 5 and 6 show the GIF and PostScript
graphics produced by this program.

Figure 5.  Pixel Rendering

Figure 6.  PostScript Rendering

Although both forms of rendering produce
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What’s Coming Up

Computers are useless. They can only give you answers.
— Pablo Picasso

In the next Analyst, we’ll continue the series
of articles on weaving, focusing on how weaving
specifications can be represented.

We’ll have answers to the quiz in this issue
and follow up with a quiz on expression evalua-
tion. We also plan to have results from a program-
ming problem posted to icon-group.

For the Graphics Corner, we’ll describe an
application that uses mutable colors to allow the
users to change the colors in an image.

We’ll also be starting a series of articles on
generators and sequences — one that may occupy
pages of the Analyst for some time.

There are a few other things we’ve been hold-
ing onto, including a somewhat whimsical article
on digit patterns in large prime numbers. If space
permits, we’ll include it.

attractive results, the difference in quality should
be apparent. And the PostScript version could be
scaled to cover the side of a barn without loss of
quality.

Caveats

The emulation of Icon’s graphics facilities by
psrecord is imperfect. Not all graphics facilities
are supported (CopyArea() is an example) and
some produce crude approximations (for example,
DrawCurve() produces straight line segments in
PostScript).  For details on such matters, see the
program documentation and attend to its admoni-
tion “… psrecord works best for programs de-
signed with it in mind”.

Despite its limitations, psrecord can be used
to produce high-quality graphics from Icon pro-
grams, as illustrated by the examples in this ar-
ticle. Give it a try.
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Links

1. Adobe Illustrator (Macintosh and Windows):
   http://www.adobe.com/prodindex/illustrator/main.html

2. Macromedia Freehand (Macintosh and Win-
dows):
   http://www.macromedia.com/software/freehand/

Icon on the Web

Information about Icon is available on the World
Wide Web at

http://www.cs.arizona.edu/icon/


