
The Icon Analyst / 1

October 1995
Number 32

In-Depth Coverage of the Icon Programming Language

In the spirit of Icon, here’s a procedure that
generates the primary seeds for a given n:

procedure pvseeds(n)
 local first, last, first_terms, i, j

 first := 10 ^ (n – 1)
 last := (10 ^ n) – 1

 first_terms := set()

 every i := first to last do {
 j := i + reverse(i)
 if not member(first_terms, j) then {
 insert(first_terms, j)
 suspend i
 }
 }

end

It doesn’t take much more to keep track of equiva-
lent seeds and generate lists of them:

procedure eqvseeds(n)
 local first, last, first_terms, primaries, i, j

 first := 10 ^ (n – 1)
 last := (10 ^ n) – 1

 first_terms := set()
 primaries := table()

 every i := first to last do {
 j := i + reverse(i)
 if not member(first_terms, j) then {
 insert(first_terms, j)
 primaries[j] := [i]
 }
 else put(primaries[j], i)
 }

 primaries := sort(primaries, 3)

 while get(primaries) do # discard keys
 suspend get(primaries) # produce list

end

Notice that this procedure does not generate any
lists until all have been computed.

Equivalent Versum Sequences

As we mentioned in the last article on versum
sequences, different seeds may produce the same
sequence. Seeds that produce the same sequences
are said to be equivalent. Equivalence is important
if you’re exploring versum sequences, since some
computations, such as producing many terms in a
sequence, are time-consuming. Unnecessary com-
putation for equivalent seeds is well worth avoid-
ing.

In determining equivalent seeds, it is useful to
deal with n-digit seeds for different values of n,
rather than, say, dealing with all seeds in a numeri-
cal range, such as 1 to 999. There are seeds with
different numbers of digits that have equivalent
sequences. An example is 209 and 1100. There are,
however, few such equivalences and we’ll restrict
ourselves to equivalent n-digit seeds. This allows a
clean characterization, as we’ll show.

It’s useful to designate a representative seed
from a class of equivalent ones. The obvious choice
is the smallest one, which we call the primary seed
for the class.

We can find primary seeds easily enough
with a brute-force approach. All we have to do is
run though all n-digit seeds in numerical order and
keep track of the first terms in their versum se-
quences. If the first term is a new one, the seed is a
primary one; otherwise it’s not.

In this issue …

Equivalent Versum Sequences1
Vidgets ..6
From the Library9
Programming Tips11
What’s Coming Up12

2 / The Icon Analyst

Here’s what the lists look like for n = 2.

[10]
[11,20]
[12,21,30]
[13,22,31,40]
[14,23,32,41,50]
[15,24,33,42,51,60]
[16,25,34,43,52,61,70]
[17,26,35,44,53,62,71,80]
[18,27,36,45,54,63,72,81,90]
[19,28,37,46,55,64,73,82,91]
[29,38,47,56,65,74,83,92]
[39,48,57,66,75,84,93]
[49,58,67,76,85,94]
[59,68,77,86,95]
[69,78,87,96]
[79,88,97]
[89,98]
[99]

If the nature of equivalent seeds wasn’t already
evident, this example should be suggestive. If we
can understand why seeds are equivalent, we can
surely do much better than using the brute-force
approach, which quickly becomes impractical as n
gets large.

For n = 1, it’s obvious by inspection that all the
seeds produce different sequences, so all 1-digit
seeds are primary.

For n = 2, we’ve already shown the primary
seeds and their equivalents. Consider the seed 19.
Adding one to its first digit and subtracting one
from its last produces a equivalent seed: 19 + 91 =
100 and 28 + 82 = 100. We can continue this process
to get the equivalent seeds 19, 28, 37, 46, 55, 64, 73,
82, and 91. We have to stop there because another
step would produce a 3-digit number. If we start
with 18, on the other hand, we get the equivalent
seeds 18, 27, 36, 45, 54, 63, 72, 81, and 90, stopping
there because the next step would produce a nega-
tive number for the last digit. This approach gives
a systematic procedure for producing the 2-digit
seeds and their equivalents.

 You can treat this as a filter, if you like. Write
down all 2-digit seeds in numerical order, start
with the first, compute its equivalents (there aren't
any for the first seed), cross them out, and continue
with the next seed that hasn’t been crossed out, and
so on until you run out of seeds that haven’t been
crossed out. This process ensures that you’ll get all
the primary seeds and their equivalents and that
there’s nothing missing.

The result is 18 primary 2-digit seeds, as shown
by the first terms in the lists shown in the left
column. There are 90 2-digit seeds altogether, but
it’s only necessary to perform computations on
20% of them. But what about 3-digit seeds, 4-digit
seeds, and n-digit seeds in general?

We can compute the primary n-digit seeds
recursively (“when in doubt, recurse”). The method
depends on whether n is odd or even.

If n is odd, we take the primary seeds for n–1
(which is even), split them in the middle, and insert
0 and all the 1-digit primary seeds in each. For
example, for n = 3, we can take all the primary
seeds for n = 2

10
11
12
…
19
…
89
99

and insert in the middle of each 0 and all the 1-digit
primary seeds:

0
1
…
9

Thus, the seed 10 produces

100
110
120
…
190

and so on.
Note that every (n–1)-digit primary seed pro-

duces 10 n-digit primary seeds. Thus, there are 180
3-digit primary seeds.

If n is even, on the other hand, we take the
primary seeds for n–2 (which also is even), split

Icon on the Web

Information about Icon is available on the World
Wide Web at

http://www.cs.arizona.edu/icon/www/

The Icon Analyst / 3

them in half, and insert 00 and all the 2-digit
primary seeds:

00
10
11
…
99

Thus we get 19 n-digit seeds for every n–2 digit
primary seed.

Here’s a recursive generator that produces
the n-digit primary seeds:

procedure pvseeds(n)
 local i, lpart, rpart, h

 if n = 1 then suspend 1 to 9
 else if n = 2 then
 suspend (10 to 19) | (29 to 99 by 10)
 else if n % 2 = 0 then { # even
 h := (n –2) / 2
 every i := pvseeds(n – 2) do {
 i ? {
 lpart := move(h)
 rpart := tab(0)
 }
 suspend integer(lpart || ("00" | pvseeds(2)) ||
 rpart)
 }
 }
 else { # odd
 h := (n –1) / 2
 every i := pvseeds(n – 1) do {
 i ? {
 lpart := move(h)
 rpart := tab(0)
 }
 suspend integer(lpart || (0 | pvseeds(1)) || rpart)
 }
 }

end

This procedure illustrates the combination of
string processing and arithmetic that is needed in
dealing with versum sequences. Since pvseeds()
calls itself recursively, most results are used as
strings. We’ve chosen, for the sake of clarity, to use
integer values rather than string values and let
automatic type conversion produce strings as
needed. An alternative would have been to cast
values as strings. For example,

suspend 1 to 9

could have been written

suspend !"123456789"

or to use mixed integer and string values to mini-
mize type conversion.

Note that we didn’t carry the focus on integer
values to the point of replacing "00" by (0 || 0). We
were tempted, though.

It does make a difference what pvseeds()
returns at the top level. A program that calls
pvseeds() may expect an integer value and cer-
tainly not an integer in one case and a string in
another. That’s why the results of concatenation
are converted to integers before returning them —
even though it means more type conversion in
intermediate results. Another way of dealing with
this kind of situation is shown later in this article.

From the arguments above, we easily can
calculate the number of n-digit primary seeds,
which we designate by P (n):

P (1) = 9
P(2) = 18
P (n) = 10 × P (n-1) n > 2, odd
P (n) = 19 × P (n–2) n > 2, even

which has the closed form

P (1) = 9
P (2) = 18
P (n) = 180 × 19(n–3)/2 n > 2, odd
P (n) = 18 × 19(n/2)–1 n > 2, even

We prefer the recursive formulation, which
reveals the structure of the construction proce-
dure; the closed form only hints at it.

A simpler recursive formulation is

P (1) = 9
P(2) = 18
P(3) = 180
P (n) = 19 × P (n–2) n > 3

Downloading Icon Material

Most implementations of Icon are available for
downloading via FTP:

ftp.cs.arizona.edu (cd /icon)

4 / The Icon Analyst

Note that although 0 is not a versum seed, it
may appear in the interior of seeds in the form of
strings like "0", "00", "000", …. That’s the reason for

 if s = 0 then return s

before going to the general case. The numeric
comparison automatically converts strings of ze-
ros to the integer 0.

The second argument to vprimary_() deter-
mines whether the left digit goes to 1 (for the final
result) or to zero (for intermediate results that

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

and

© 1995 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

Can you find a method for producing primary
seeds that directly relates to this formulation?

Here’s an enumeration of the number of pri-
mary n-digit seeds and their ratio to the number of
all n-digit seeds (9 × 10n–1) for the first few values of
n:

n P (n) ratio

1 9 1.00000
2 18 0.20000
3 180 0.20000
4 342 0.03800
5 3420 0.03800
6 6498 0.00722
7 64980 0.00722
8 123426 0.00137

It’s obviously very worthwhile to compute versum
sequences only for primary seeds.

In order to deal with an arbitrary seed, we
need procedures to produce the primary seed given
any seed in its equivalence class:

procedure vprimary(s)

 return integer(vprimary_(s, 1))

end

procedure vprimary_(s, low)
 local h, mpart, lpart, rpart

 if ∗s < 2 then return s
 else if s = 0 then return s
 else {
 s ? {
 lpart := tab(2)
 mpart := tab(–1)
 rpart := tab(0)
 until (lpart = low) | (rpart = 9) do {
 lpart –:= 1
 rpart +:= 1
 }
 return lpart || vprimary_(mpart, 0) || rpart
 }
 }

end

The procedure vprimary() is a wrapper to
assure the values returned are integers. The proce-
dure vprimary_() does the actual computation,
which deals with strings. The wrapper avoids un-
necessary type conversion during recursive com-
putation.

Bright Forest Publishers
 Tucson Arizona

The Icon Analyst / 5

eventually appear in the interior of the final result).
Before going on, here are procedures to gen-

erate all the seeds in the equivalence class for a
primary seed (including the primary seed itself):

procedure eqvseeds(i)

 suspend integer(eqvseeds_(vprimary(i)))

end

procedure eqvseeds_(s)
 local mpart, lpart, rpart

 if ∗s < 2 then return s
 else if s = 0 then return s
 else {
 s ? {
 lpart := tab(2)
 mpart := tab(–1)
 rpart := tab(0)
 until (lpart > 9) | (rpart < 0) do {
 suspend lpart || eqvseeds_(mpart) || rpart
 lpart +:= 1
 rpart –:= 1
 }
 }
 }

end

Again, the procedure eqvseeds() is a wrap-
per to assure the values returned are integers.

In the last article we showed a program for
plotting the palindromes for seeds 1 through 999.
Here’s that procedure again for reference:

link wopen

procedure main()
 local i, x, input, line

 WOpen("canvas=hidden", "size=300,999") |
 stop("∗∗∗ cannot open window")

 every i := 1 to 999 do {
 input := open(i || ".pal") |
 stop("∗∗∗ cannot open file for seed ", i)
 while line := read(input) do {
 line ? {
 x := tab(many(&digits)) – 1
 }
 DrawPoint(x, i – 1)
 }
 close(input)
 }

 WriteImage("palimage.gif")

end

For comparison, here’s a program that does
the plot using equivalent seeds:

link eqvseeds
link pvseeds
link wopen

procedure main()
 local primary, equiv, input, x, line

 WOpen("canvas=hidden", "size=300,999") |
 stop("∗∗∗ cannot open window")

 every primary := pvseeds(1 to 3) do {
 input := open(name := primary || ".pal") |
 stop("∗∗∗ cannot open ", name)

 while line := read(input) do {
 line ? {
 x := tab(many(&digits)) – 1
 }
 every DrawPoint(x, eqvseeds(primary))
 }
 close(input)
 }

 WriteImage("palimage.gif")

end

This program only requires palindrome files for
primary seeds and is considerably faster than the
former one. The plot develops in a different order
from the former one, but the final result is the same.

Until now, when dealing with versum se-
quences, it was sufficient to read a file whose name
corresponded to the seeds, as in

6 / The Icon Analyst

Next Time

When we started this article, we thought we
could finish up versum sequences in this issue of
the Analyst. Instead, we kept finding new and
interesting problems and results.

Rather than fill up this issue with versum
sequences, we’ll continue in subsequent issues.

input := open(i || ".vsq") | …
while term:= read() do
 process(term)

This is a situation in which a generator simpli-
fies the code:

input := open(i || ".vsq") | …
every process(!input)

Now, however, we don’t have a file for every
seed. It’s simple enough to fix that:

input := open(vprimary(i) || ".vsq") | …

An alternative approach, which will prove
useful later, is to provide an envelope to hide the
details:

link vprimary

procedure vsterm(i)
 static input

 close(\input)

 input := open(vprimary(i) || ".vsq") |
 stop("∗∗∗ cannot find versum sequence for ", i)

 suspend !input

 close(input)

end

You may wonder about

close(\input)

at the beginning, since vsterm() closes input at the
end. The problem is that there is no guarantee that
vsterm() will get to the end, as is illustrated by

every write(vsterm(1001) \ 100)

It’s for this reason that vsterm() closes input before
opening it. (The nonnull test takes care of the first
time vsterm() is called.) This assures that at most
one file will be left open by the use of vsterm().
Incidentally, closing a closed file is not an error.

Vidgets

In the last issue of the Analyst, we described
Icon’s interface tools. These tools are what the user
sees and uses to communicate with a program that
has a visual interface.

When the user presses a button, selects an
item from a menu, or activates some other interface
tool, a corresponding procedure in the program is
called. Such procedures are called callbacks — they
are called as a result of user actions, not by the
program itself.

Icon’s interface tools are called vidgets (vir-
tual interface devices). The word is a pun on “wid-
get” and is used to avoid confusion with Athena
widgets [1].

Vidgets are implemented by Icon records. A
vidget record contains information about the vidget:
an identifying name, its type (such as button), its
location and size, and so on.

All vidgets on an interface are enclosed within
a “root” vidget. The root vidget accepts user events
(such as mouse presses) and identifies the vidget, if
any, on which the mouse cursor is positioned. If the
mouse cursor is on a vidget when an event occurs,
that vidget is activated. For example, if a mouse
button is pressed with the cursor on a slider vidget,
the callback for that vidget is called. If the event is
not appropriate for that vidget (such as a keypress
on a button), it is rejected by the vidget. See the
diagram at the top of the next page.

Callbacks from vidgets have the form:

cb(vidget, value)

The first argument identifies the vidget that pro-
duced the callback and the second argument gives
a value. The vidget argument is not always needed,
but it can be used to distinguish among different
vidgets that share the same callback procedure.
The value often is important, since in many cases it

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

The Icon Analyst / 7

indicates the nature of the user action.
For a toggle button, the value is null when the

toggle is turned off and 1 (nonnull) when it is
turned on. This makes testing of the state of a
toggle easy, as in

procedure pause_cb(vidget, value)

 if \value then … # stop display
 else … # continue display

 return

end

The callback value for a radio button is the
(string) label of the selected button, as in

procedure shape_cb(vidget, value)

 case value of {
 "disks": … # filled circle
 "rings": … # outline circle
 }

 return

end

User Interaction with an Application Through a Visual Interface

interface

quit

quit_cb(…) procedure main()
…
…
…

end

procedure quit_cb()
 save()
 exit()
end

…
…
…

program
stop

mouse

Since menus can have submenus, their call-
backs are lists whose first element is the text for the
item selected from the main menu, whose second
element is the text for the item selected from the
first submenu, and so on. If there are no submenus,
the callback value for a menu is a one-element list,
as illustrated by

procedure file_cb(vidget, value)

 case value[1] of {
 "snapshot @S" : … # take snapshot
 "quit @Q": … # shut down
 }

 return

end

Notice that the list element is the complete text for
the item selected.

The callback value for a text-entry field is the
text in the field at the time the user types return
with the I-beam cursor in the field. There is no
callback until the user types return.

The callback value for a slider or scroll bar is

8 / The Icon Analyst

and move its thumb to the corresponding position.

Vidget Fields

Vidgets have a number of fields that contain
attributes. Most of these fields are used for internal
purposes, but some provide useful information,
such as the location and size of a vidget on the
interface canvas. Except for lines, vidgets occupy a
rectangular area and have these fields:

vidget.ax x coordinate of the upper-left
 corner of the vidget

vidget.ay y coordinate of the upper-left
 corner of the vidget

vidget.aw width of the vidget

vidget.ah height of the vidget

Regions also have fields that give the “us-
able” area that can be drawn on without overwrit-
ing borders used for three-dimensional effects:

vidget.ux x coordinate of the upper-left
 corner of the usable area

vidget.uy y coordinate of the upper-left
 corner of the usable area

vidget.uw width of the usable area

vidget.uh height of the usable area

Next Time

At this point, the concepts of interface tools
and their implementation by vidgets must seem
somewhat abstract. We haven’t even told you how
to place a vidget on an interface.

In the next article on visual interfaces, we’ll
start to describe how to build interfaces, using the
kaleidoscope application from the previous article
as an example.

The key to building interfaces easily is a vi-
sual interface builder that lets you create, place,
configure, move, and delete vidgets easily. And, of
course, it allows you to do it in a visual manner,
directly manipulating images of the interface tools
you want.

Reference

1. Volume 4: X Toolkit Intrinsics Programming Manual:
Standard Edition, third edition, Adrian Nye and
Tim O’Reilly, O’Reilly & Associates, Inc.,
Sebastopol, California, 1993.

the numerical value in the given range, as deter-
mined by the position of the thumb. A slider or
scroll bar can be configured in two ways: to pro-
vide callbacks as the user moves the thumb, or
“filtered” to provide a callback only when the user
releases the thumb. Filtering is appropriate when
only the final value is important, as in

procedure density_cb(vidget, value)

 density := value # set global variable

 return

end

Unfiltered callbacks may be needed when the
application needs to respond as the user moves the
thumb, as in scrolling an image.

The callback for a region is somewhat differ-
ent from the callbacks for other vidgets. The sec-
ond argument is the event produced by the user
and there are two additional arguments that indi-
cate where on the application canvas (not the
region) the event occurred:

 cb(vidget, e, x, y)

Note in particular that e is not a value associated
with the region vidget, as it is for other kinds of
vidgets; it is the actual event, such as a mouse press
or a character from the keyboard.

Labels and lines do not produce callbacks;
they provide decoration only.

Vidget States

Toggle buttons, radio buttons, text-entry
fields, sliders, and scroll bars maintain internal
states. The state of such a vidget is the same as the
last callback value it produced.

Since the callback values and the states are
the same, it usually is not necessary to ascertain
the state of a vidget. If it is necessary, the proce-
dure

VGetState(vidget)

produces the state.
The procedure

VSetState(vidget, value)

sets the state of the vidget to the given value. It
does this by producing a callback, as if the user had
produced it through the interface. For example,
VSetState() can be used to set the state of a slider

The Icon Analyst / 9

"10.0", and points is set to
"1000". A more sophisti-
cated program might issue
an error message for an in-
appropriate value, convert
the second and third argu-
ments to real and integer,
respectively, and provide
defaults for omitted argu-
ments.

Of course, command-
line arguments can be used
in any way you like. The use
above has the disadvantages
that the arguments must be
in a fixed order and there’s
only a hint in a call of what
they mean.

The standard format
that is used by the Icon pro-
gram library identifies op-
tions by name, with a prefix
– and follows the name by a
value, if any. The program
plot then might be called as

plot –s lemniscate –b 10.0 –p 1000

In this form, the options can be given in any order
and carry identification. (Multi-character option
names can be used also; we’ll come to that, but
we’ll stick to one-character names for now.)

It’s not that hard to write a preamble to a
program to handle named options. That’s not nec-
essary, however — the procedure options() in the
Icon program library takes care of almost every-
thing you might want.

Using options()

options(args, opts) processes command-line
options in the list args according to the specifica-
tions given in the string opts. It returns a table with
the option names as keys and with corresponding
values from the command line.

Using options(), the program plot might start
as follows:

link options

procedure main(args)

 opt_tbl := options(args, "s:b.p+")
 shape := opt_tbl["s"]
 bound := opt_tbl["b"]

“By God, for a minute there it suddenly all made sense!’
 Drawing by Gahan Wilson; © 1986

 The New Yorker Magazine, Inc.

From the Library

Editors’ notes: The cartoon above reminds us of the
state of the Icon program library. We hope you enjoy it
as much as we do.

We’ve chosen what we consider to be the most
useful procedure in the library to celebrate the cartoon.

Command-Line Arguments

When Icon is run from the command line,
arguments are passed to the main procedure in the
form of a list of strings, one string for each argu-
ment. This is the main way in which information is
passed to a program that is run from the command
line. For example, if a program that is named plot
begins with

procedure main(args)

 shape := args[1]
 bound := args[2]
 points := args[3]

…
and plot is called as

plot lemniscate 10.0 1000

shape is set to "lemniscate" and bound is set to

10 / The Icon Analyst

 points := opt_tbl["p"]
…

The option string consists of letters for the
option names followed by a type flag. The flag ":"
indicates the option value must be a string, "."
indicates a real number, and "+" indicates an inte-
ger.

If an option appears on the command line, its
value in the table is the result of converting to the
specified type. Otherwise, it’s the null value.

An option that does not take a value can be
specified also. In this case, no type flag is specified.
If such an option is given on the command line, its
value in the table returned by options() is 1 (and
hence nonnull); otherwise it’s null. An example is

link options

procedure main(args)

 opt_tbl := options(args, "s:b.p+t")
 shape := opt_tbl["s"]
 bound := opt_tbl["b"]
 points := opt_tbl["p"]
 if \opt_tbl["t"] then &trace := –1

…

Here, the command line option –t turns on tracing
in plot.

A test for a table value being null can be used
to set defaults, as in

link options

procedure main(args)

 opt_tbl := options(args, "s:b.p+t")
 shape := \opt_tbl["s"] | "circle"
 bound := \opt_tbl["b"] | 1.0
 points := \opt_tbl["p"] | 100
 if \opt_tbl["t"] then &trace := –1

…

Multi-character option names are supported.
They must be preceded in the option string by a –
to distinguish them from single-character option
names.

For the example we’ve been using, this might
take the form

link options

procedure main(args)

 opt_tbl := options(args,
 "–shape:–bound.–points+–ttrace")
 shape := opt_tbl["shape"] | "circle"
 bound := opt_tbl["bound"] | 1.0

 points := opt_tbl["points"] | 100
 if \opt_tbl["t"] then &trace := –1

…

where a command-line call might be

plot –shape lemniscate –bound 10.0 –point 1000

Many other features are supported by options().
The most important ones are:

• Options can appear in any order in the
options string and on the command line.

• Blanks between single-character option
names and the corresponding values are optional
on the command line.

• If a command-line argument begins with an
@, the subsequent string is taken to be the name of
a file that contains options, one per line.

• options() removes option names and their
values from the argument list, leaving anything
else for subsequent processing by the program.

• The special argument –– terminates option
processing, leaving the remaining values in the
argument list.

• options() normally terminates with a run-
time error if an option value cannot be converted to
the specified type or if there is an unrecognized
option on the command line.

• If a third procedure-valued argument is
supplied in a call of options(), that procedure is
called in case of an error instead of terminating
execution.

Conclusion

Some effort is required to become familiar
with options(), and some effort is required to incor-
porate it in a program. The results are well worth
it. Not only will your programs conform to the
standard used in the Icon program library, but all
the details of processing and error checking will be
taken care of for you.

A beneficial side-effect is that once the option
mechanism is part of a program, it’s easy to add
new options and increase program functionality.
In fact, the use of the options mechanism often
suggests useful functionality.

Acknowledgments

The procedure options() was conceived and
implemented by Bob Alexander. Gregg Townsend
contributed additional features.

The Icon Analyst / 11

Keeping Track of Structures

Icon’s data structures provide convenient
ways for organizing and accessing collections of
values. Since Icon data structures are created at
run-time in Icon and are first-class values, there is
more flexibility during program execution than in
most programming languages.

More programmers probably use Icon for its
data structures than for any other reason. None-
theless, data structures often cause problems in
program design and development: which kind of
structure to use for a particular task (such as ma-
nipulating graphs), how much space they require,
how fast access is, and so on.

Questions related to these matters are among
the most frequent ones that we get. Unfortunately,
there rarely are simple answers, although we’ve
made some suggestions and given some size and
speed comparisons among alternatives in previ-
ous issues of the Analyst. We’ll continue to do this
in future issues.

The ideal way to understand structures would
be a visualization of program execution that showed
how many structures there are, how big they are,
how they are related, and so forth. This is a difficult
problem. An Icon program may create thousands
of data structures, they may be large in size, and
the number of interconnections between them can
be enormous. Finding ways to represent such in-
formation visually in a manner that is useful is in
itself a daunting task. The design and implementa-

tion of such a tool remains in our “job jar”.
In this programming tip, we’ll describe some-

thing much simpler, but which provides informa-
tion about structure usage that may help you de-
cide among alternatives and get a better under-
standing of what’s going on in programs that use
a lot of structures.

Suppose, for example, that you suspect a pro-
gram is creating more lists than you think it should
be. Or suppose you want to know how many sets
are being created for representing a large directed
graph.

If you have a handle on the most recently
created structure, this information is easy to get.
Every structure has a serial number. Each kind of
structure and each different record type has a
separate sequence of serial numbers that start with
1 and is incremented as new structures are created.

The serial number of a structure can be ob-
tained from its string image. For example, if the
value of coordinates is a list,

write(image(coordinates))

might produce something like

list_34(507)

The type appears at the beginning, in this case
indicating a list. The serial number follows a sepa-
rating colon. In this case, the value of coordinates
is the thirty-fourth list created since the beginning
of program execution. The value in parentheses is
the number of list elements.

That’s fine if you can identify the last list
created, but if lists are created by procedures (even
library procedures), you may have no way of know-
ing, at a particular point in program execution,
what the most recently created list is.

If you’re willing to create another list to find
out how many have been created so far, all you
have to do is

write(image([]))

The newly created list shows a serial number one
greater than the last list created. Such expressions
can be used for other kinds of structures.

Getting the serial number is easy, but a
“helper” procedure is worth having:

procedure serial(x)

 image(x) ? {
 tab(integer(upto('_')) + 1) | fail

Programming
Tips

12 / The Icon Analyst

 return integer(tab(many(&digits)))
 }

end

Note that this procedure may give incorrect results
if given an inappropriate value like the string
"whatever_3". There are ways of making this pro-
cedure more robust, which we’ll leave to you.

You might wonder why there isn’t a built-in
function to do this. Whenever there’s a possibility
for a new function, we have to weigh its usefulness
against the increase in the size of Icon’s computa-
tional repertoire, the size of Icon’s run-time sys-
tem, the additional documentation, and so forth. In
this case, we decided that a function serial() would
not be used often enough to justify its being built -
in — especially since it’s so easy to write in Icon.
However, we do have a built-in version that we use
for work on dynamic program analysis and visual-
ization.

Now for a bit of wizardry. Here’s a procedure
that gives the serial number of the last structure of
a specified type:

procedure created(type)

 return serial(proc(type)()) – 1

end

For example, created("table") gives the serial num-
ber of the most recently created table.

proc(type) converts the type name to a func-
tion that creates structures of that type. For ex-
ample, proc("list") produces the function list. This
function is then applied to an empty argument list
to create a structure. (If type is not the name of a
structure type, ”bad things” may happen. Again,
we’ll leave it to you to patch things up. Take care,
though: It’s not trivial.) The resulting serial num-
ber is decremented to give the number of the last

previously created structure of that type. Since the
newly created structure is not assigned to a vari-
able, its existence is transient and it can be garbage
collected.

Cautions:
• created(type) increments the serial number

of that type as a side effect.
• The serial number of the most recently cre-

ated structure tells you nothing about how many
structures of that type still exist. Some, even all,
may have been garbage collected.

There’s also a small wrinkle in the serial num-
ber for lists. If the main procedure has an argu-
ment, as in

procedure main(args)

a list for args is automatically created for com-
mand-line arguments and has the serial number 1.
If you want to take this into account,

args(main)

returns the number of arguments for the proce-
dure main. If it’s greater than zero, a list was
created before program execution began.

What’s Coming
Up

We’d planned to
have another article
on the dynamic analy-
sis of Icon programs
in this issue of the
Analyst. Between
moving to a new plat-
form and some unex-
pected difficulties, we
didn’t make it. We’ll
try once again for the

next issue.
In the next issue of the Analyst, we’ll con-

tinue with versum sequences, this time looking at
versum sequences that are not equivalent but merge
at some point. Using mergers, we’ll show that the
amount of data needed to represent versum se-
quences can be reduced dramatically.

We’ll also continue our series of articles on
programs with visual interfaces, describing how
to design and build interfaces.

