
The Icon Analyst / 1

June 1995
Number 30

In-Depth Coverage of the Icon Programming Language

 In this issue …

Subscription Renewal … 1
The Versum Problem … 1
From the Wizards … 5
Bogus Expressions … 6
Dynamic Analysis … 6
Programming Tips … 12
What’s Coming Up … 12

Subscription Renewal

For many of you, this is the last in your
present subscription to the Analyst and you’ll
find a subscription renewal form in the center of
this issue. Renew now so that you won’t miss an
issue.

Your prompt renewal also helps us in plan-
ning and by reducing the number of follow-up
notices we have to send.

The Versum Problem

Recreational mathematics — mathematics for
the fun of it — is a popular activity for both ama-
teurs and professionals. Topics in recreational math-
ematics are wide-ranging: arithmetic, number
theory, geometry, topology, combinatorics, and
many subjects that don’t fall into any well-defined
category [1]. The immense popularity of Martin
Gardner’s long-running “Mathematical Games”
column in Scientific American and his many books
are testimony to how widespread interest is in
recreational mathematics.

In recent years, increasingly easy access to
personal computers has changed the character of
recreational mathematics by making it feasible to
carry out formerly impractically tedious and time-
consuming calculations.

In this article, we look at an unsolved problem
in number theory. Number theory may seem like a
strange topic for Icon, but this problem involves
string manipulation as well as arithmetic, and its
solution may lie in pattern matching. Here’s the
problem:

Take a positive integer, expressed in deci-
mal form. Reverse the order of its digits
from end to end, and add the result to the
original number. Continue this process to
see if you get palindromes — numbers that
read the same from left-to-right and right-
to-left. This is called the versum problem,
short for the reversal sum problem.

There is a long-standing conjecture that all
versum sequences contain palindromes. A stron-
ger conjecture is that all versum sequences contain
an infinite number of palindromes. The original
conjecture is based on the observation that palin-
dromes usually appear quickly. For example, start-
ing with 168, a palindrome occurs after only three
reversal-additions and others follow:

Renew
Now!

2 / The Icon Analyst

168

1029
10230
13431
26862
53724
96459

191928
1021119

10132320
12455421
24910842
49712784

 …
The versum sequence itself starts with the first
sum (1029 in this case), but we show the integer
that starts it for clarity.

A problem was discovered quickly, how-
ever. For some numbers, a palindrome does not
show up quickly. 196 is such a number:

196

887
1675
7436

13783
52514
94039

187088
1067869

10755470
18211171
35322452
60744805

111589511
227574622
454050344
897100798

1794102596
8746117567

16403234045
70446464506

130992928913
450822227944
900544455998

1800098901007
8801197801088

17602285712176
84724043932847

159547977975595
755127757721546

1400255515443103
4413700670963144
8827391431036288

17653692772973576
85191620502609247

159482241005228405
664304741147513356

1317620482294916822
3603815405135183953
7197630720180367016

13305261530450734933
 …

At the time the problem was first studied,
computations had to be done by hand and it was
assumed that if the process was continued long
enough, a palindrome would show up. More re-
cently, using computers the versum sequences for
196 and other “intractable” integers have been run
for millions of steps without producing a palin-
drome. Now the opinion of almost all persons who
have studied the versum problem is that there are
infinitely many versum sequences that do not con-
tain palindromes. So, if you’re interested in work-
ing on this problem, you’re probably more likely to
make headway by trying to show the original
conjecture is false.

It doesn’t take much to implement the com-
putation of versum sequences. Here’s a little pro-
gram that takes an integer on the command lineand
writes the integer and its versum sequence with
asterisks after palindromes. The program runs until
it is interrupted.

procedure main(args)

 i := (0 < integer(args[1])) |
 stop("∗∗∗ positive integer not provided")

 repeat {
 writes(i)
 j := reverse(i)
 if i == j then write("∗") else write()
 i +:= j
 }

end

This program shows the usefulness of large
integers, since the integers quickly exceed the lim-
its of native machine integers, as illustrated by the
sequence for 196 . The largest native integer for 32-
bit architecture is 2,147,483,647 and is exceeded by
the 18th value in this sequence. The thousandth
value has 411 digits; the numbers quickly get really
large by ordinary standards.

➸

➸

➸

The Icon Analyst / 3

Before going on, it’s worth examining this
program. Efficiency always is a concern in compu-
tations that run for many iterations, which cer-
tainly is the case here. It may not be obvious that
such a simple program could be made to run much
faster. The key to a faster program lies in recogniz-
ing that Icon converts types automatically to suit
the needs of operators. In this program there are
automatic conversions from integers to strings and
vice versa. This makes the program easy to write —
you don’t have to worry about doing the conver-
sions yourself. But in this convenience, there is a
problem that may not be evident. In the loop in the
preceding program i is an integer. writes(i) con-
verts the integer to a string to write it and then
reverse(i) converts it to a string again. At this point,
j is a string. In the next step, i is converted to a string
a third time for string comparison. (The use of
integer comparison instead would convert j from a
string to an integer.) Finally, j is converted to an
integer when it is added to i.

Obviously, some conversions are necessary.
The integer i must be converted to a string to
reverse it, and j must be converted to an integer to
add it to i. But the program can be rewritten to
avoid the other conversions. Is this worth doing? A
hint lies in the fact that conversion of a large integer
to a string is quadratic in the number of digits [2].
This doesn’t amount to much for “small” large
integers, but it’s a killer for ”really large” large
integers.

It doesn’t take much to revise the program to
avoid unnecessary conversions. One way is:

repeat {
 si := string(i)
 writes(si)
 sj := reverse(si)
 if si == sj then write("∗") else write()
 i +:= sj
 }

According to our argument, the elimination

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

of the two unnecessary conversions of i to a string
should result in increasingly improved perfor-
mance as the computation continues. Here are
timings in seconds for the versum sequence for 196
on the two versions of the program, run on an
Alpha 200 4/233:

iterations version 1 version 2
500 1.69 0.72

1000 12.36 4.87
These figures were obtained with storage re-

gions that were so large that no garbage collections
occurred. With the default 65KB region sizes, the
count of garbage collections was:

iterations version 1 version 2
500 4 2

1000 16 10
The timings, however, were not that much differ-
ent:

iterations version 1 version 2
500 1.91 0.81

1000 13.02 5.14
The reason that the extra garbage collections

didn’t have much effect on the timings is that when
a garbage collection occurs, all accumulated data
except the current strings are collectable. Garbage
collection does not even look at “garbage” (It might
better be called ”storage reclamation”, but the term
garbage collection is firmly imbedded in the jargon
of computing.) It’s the data that has to be saved that
takes time in the garbage-collection process. This
can be a very significant factor in programs that
produce large in-memory databases, but that’s not
the case here.

While we’re discussing efficiency, we should
mention that some Icon programmers think it’s
faster or somehow “safer” to perform explicit con-
versions, as in

i +:= integer(j)
That’s not faster; it’s actually a little bit slower,

since there’s a function call in addition to the
conversion, which has to be done in either case.

Another question concerns the comparison
that is used for testing for palindromes. The loop
might be cast as

repeat {
 si := string(i)
 writes(si)
 j := integer(reverse(si))

4 / The Icon Analyst

 if i = j then write("∗") else write()
 i +:= j
 }

This version shows no detectable difference in
running speed compared to the former one. Take
your pick.

But let’s get back to the versum problem. How
might you approach it using programs as tools?
Versum sequences might be analyzed for digit
frequencies, recurring patterns, and so forth. Give
the problem a try and let us know if you discover
anything interesting. If you are able to prove or
disprove the conjecture, you’ll be famous, at least
in among persons interested in recreational math-
ematics.

In addition to the conjectures posed above,
there are other questions you might consider:

(1) Are there any versum sequences that con-
tain an infinite number of palindromes?

(2) If not, what is the maximum number of
palindromes in a versum sequence and for what
starting values does it occur?

(3) Is there any correlation between the prop-
erties of an integer and the number or frequency of
palindromes in its versum sequence?

(4) Are all positive integers found in some
versum sequence?

(5) If not, what percentage of all integers are
found in some versum sequence?

It’s known that many versum sequences “con-
verge” in the sense that at some point they produce
the same value, after which all subsequent values
are the same. These are called versum tails.

(6) Do all versum sequences converge to the
same sequence?

(7) If not, is there a finite number of common
versum tails?

(8) If there are versum sequences that do not
contain palindromes, do they all have a common
tail?

It’s easy to ask hard, even intractable ques-
tions. While proofs may be hard to come by, much

Downloading Icon Material

Most implementations of Icon are available for
downloading via FTP:

ftp.cs.arizona.edu (cd /icon)

evidence can be gathered with fairly simple pro-
grams. You might try graphical representations of
versum sequences in studying these questions. Let
us know if you find something of interest.

We’ll have some “results” of our own in the
next issue of the Analyst, along with some other
things that are known about versum sequences.

References

1. A Bibliography of Recreational Mathematics: Vol-
ume 3, William L. Schaaf, National Council of Teach-
ers of Mathematics, Reston, Virginia, 1973.

2. “Large Integers”, Icon Analyst 4, pp. 5-6.

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (520) 621-6613

fax: (520) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

…uunet!arizona!icon-project

 ®

and

Bright Forest Publishers
 Tucson Arizona

© 1995 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Icon Analyst / 5

From the
Wizards

Sometimes initial-
ization is required be-
fore any one of a set of
procedures is used. An
example is the turtle
graphics package in
which a window and the
turtle state have to be set
up before any drawing
can be done.

One way to handle this kind of situation is to
require the user to call an initialization procedure,
TInit(), before using other procedures in the turtle
graphics package:

procedure TInit()

 if /T_win then {
 if /&window then
 WOpen("width=500", "height=500") |
 stop("can't open window")
 T_win := &window
 }
 T_stack := []
 T_x := WAttrib(T_win, "width") / 2 + 0.5
 T_y := WAttrib(T_win, "height") / 2 + 0.5
 T_deg := –90.0

 return

end
An approach that is more friendly to users is

to call TInit() in the initial clauses of the other
procedures, as in:

procedure TGoto(x, y)
 initial TInit()

 T_x := x
 T_y := y

 return

end
If nothing else is done, the first call of a

different turtle graphics procedure would call
TInit() in its initial clause, with disastrous results.

The most obvious thing to do is to put a
switch in TInit() to record that it has been called:

procedure TInit()
 static done

 if /done then done := 1 else return

 if /T_win then {
 if /&window then
 WOpen("width=500", "height=500") |
 stop("can't open window")
 T_win := &window
 }
 T_stack := []
 T_x := WAttrib(T_win, "width") / 2 + 0.5
 T_y := WAttrib(T_win, "height") / 2 + 0.5
 T_deg := –90.0

 return

end
A better method is to put the entire procedure

body for TInit() in an initial clause:

procedure TInit()

 initial {
 if /T_win then {
 if /&window then
 WOpen("width=500", "height=500") |
 stop("can't open window")
 T_win := &window
 }
 T_stack := []
 T_x := WAttrib(T_win, "width") / 2 + 0.5
 T_y := WAttrib(T_win, "height") / 2 + 0.5
 T_deg := –90.0
 }

 return

end
With this method, TInit() simply returns on every
call but the first.

But that’s not clever enough for an Icon Wiz-
ard. Look at this:

procedure TInit()

 TInit := 1

 if /T_win then {
 if /&window then
 WOpen("width=500", "height=500") |
 stop("can't open window")
 T_win := &window
 }
 T_stack := []
 T_x := WAttrib(T_win, "width") / 2 + 0.5
 T_y := WAttrib(T_win, "height") / 2 + 0.5
 T_deg := –90.0

 return

end

6 / The Icon Analyst

Since TInit() is a procedure, TInit is a global
variable. In previous articles we’ve mentioned the
hazards of accidentally assigning a value to a vari-
able that is the name of a procedure. But here it
serves a very useful purpose. By assigning 1 to
TInit, TInit() effectively wipes itself out. Any sub-
sequent calls to TInit() are equivalent to 1(), which
is faster than calling a procedure that just returns.
Granted, each turtle graphics procedure only in-
vokes TInit() once, so speed isn’t the issue. The
issue is the exercise of Icon wizardry.

Pity the C or Pascal programmer who reads
the code.

Bogus Expressions

In past issues of the Analyst, we’ve men-
tioned programming pitfalls and expressions that
simply are bogus [1]. Here are a few more bogus
expressions that we’ve accumulated:

1. write(&error, …)

2. ||expr

3. every &time()

4. return := expr

5. every 1 to i to {
 expr

 }

The first expression presumably should use
&errout, not &error. The value of &error is an
integer, with is prepended to the line written to
standard output.

In the second expression, the second repeated
alternation simply is redundant. This expression
does the same thing as

|expr
The third expression “calls” the value re-

turned by &time. This value is an integer, usually
greater than 1, in which case &time() simply fails
without doing anything.

The fourth expression is something that re-
cently victimized us. You might think it’s syntacti-
cally incorrect, but it isn’t. Icon is an expression-
based language, return is an expression, just as
much as

x := expr

is. Consequently, in evaluating the left-hand side
of the assignment expression, return is evaluated,
and the procedure returns before the right-hand
side of the assignment is evaluated. Since return
itself has no argument, the null value is returned.

In the fifth expression, the second to presum-
ably was accidentally written instead of do. Again,
you might think the expression would be syntacti-
cally erroneous, but it isn’t. It parses as

every ((1 to i) to {expr})
The first to expression provides the left argu-

ment for the second to expresssion.The expression
inside the braces provides the right argument to
the second to expression. If the expression in
braces doesn’t produce an integer, a run-time error
occurs. If it does produce an integer, nothing much
happens except that expr is evaluated several times.
We’ll leave it to you to figure out how many.

Reference

1. “Bogus Expressions”, Icon Analyst 9, pp. 1-2.

Dynamic Analysis

This is the third in an ongoing series on the
dynamic analysis of Icon programs — what goes
on when programs execute.

Expression Activity

In the last issue of the Analyst, we showed
summaries of expression activity for two of our 11
test programs, but we didn’t have the space for a
listing of the composite activity for all the pro-
grams. It’s given on the next two pages.

The Icon Analyst / 7

name calls returns suspends failures resumps removals

e1[e2] 673957 673955 0 2 0 0
e1 := e2 597356 597356 0 0 0 0
e1 == e2 265588 13829 0 251759 0 0
e1 + e2 256275 256275 0 0 0 0
/e 144006 49022 0 94984 0 0
e1 – e2 143450 143450 0 0 0 0
\e 138438 44503 0 93935 0 0
writes() 135579 135579 0 0 0 0
e1 = e2 131433 49198 0 82235 0 0
?e 101646 101646 0 0 0 0
e1 === e2 91709 41484 0 50225 0 0
∗e 91672 91672 0 0 0 0
find() 70809 0 5319 65491 1 5318
write() 67277 67277 0 0 0 0
e1 > e2 64183 19211 0 44972 0 0
e1 || e2 57600 57600 0 0 0 0
iand() 56867 56867 0 0 0 0
e1 <– e2 53526 0 53526 53526 53526 0
ishift() 53236 53236 0 0 0 0
ord() 48028 48028 0 0 0 0
get() 47651 46793 0 858 0 0
type() 41481 41481 0 0 0 0
tab() 39094 0 39094 7 7 39087
map() 36549 36549 0 0 0 0
e1 :=: e2 35701 35701 0 0 0 0
char() 33256 33256 0 0 0 0
right() 31940 31940 0 0 0 0
e1[e2:e3] 31174 31174 0 0 0 0
repl() 29611 29611 0 0 0 0
upto() 29445 0 24902 4544 1 24901
e1 >= e2 28858 18540 0 10318 0 0
e1 ~== e2 25521 24980 0 541 0 0
e1 < e2 24491 8616 0 15875 0 0
–e 21714 21714 0 0 0 0
many() 20983 17076 0 3907 0 0
put() 20074 20074 0 0 0 0
e1 to e2 by e3 19314 0 203830 19310 203826 0
ior() 18959 18959 0 0 0 0
e1 ||| e2 18077 18077 0 0 0 0
reads() 15122 15119 0 3 0 0
!e 14557 0 268958 11167 265568 3388
member() 14136 1356 0 12780 0 0
+e 12544 12544 0 0 0 0
move() 12121 0 11681 440 0 11681
e1 –– e2 11200 11200 0 0 0 0
e1 ∗ e2 9865 9865 0 0 0 0
ixor() 7730 7730 0 0 0 0
any() 5470 1963 0 3507 0 0
[...] 4786 4786 0 0 0 0
left() 2983 2983 0 0 0 0
push() 2802 2802 0 0 0 0

Composite Expression Activity for All Test Programs (continued on next page)

8 / The Icon Analyst

name calls returns suspends failures resumps removals

center() 1925 1925 0 0 0 0
read() 1453 1450 0 3 0 0
nonterm() 874 874 0 0 0 0
string() 702 702 0 0 0 0
e1 ++ e2 562 562 0 0 0 0
pos() 437 430 0 7 0 0
=e 124 0 43 82 1 42
table() 84 84 0 0 0 0
pull() 57 50 0 7 0 0
procrec() 24 24 0 0 0 0
e1 ~= e2 23 1 0 22 0 0
e1 / e2 18 18 0 0 0 0
integer() 17 16 0 1 0 0
e1 % e2 16 16 0 0 0 0
action() 10 10 0 0 0 0
copy() 9 9 0 0 0 0
open() 8 5 0 3 0 0
list() 8 8 0 0 0 0
where() 7 7 0 0 0 0
close() 7 7 0 0 0 0
trim() 7 7 0 0 0 0
seek() 5 5 0 0 0 0
e1 <= e2 4 2 0 2 0 0
sort() 3 3 0 0 0 0
charset() 3 3 0 0 0 0
pop() 2 1 0 1 0 0
.e 2 2 0 0 0 0
set() 2 2 0 0 0 0
~e 2 2 0 0 0 0
exit() 1 0 0 0 0 0
remove() 1 1 0 0 0 0

total 3916241 3011303 607353 820514 522930 84417

Composite Expression Activity for All Test Programs (concluded)

How should one interpret such data? Recall
our former admonition that our test programs
aren’t representative of all Icon programs. We
already pointed out that iiencode.icn performs
many bit operations on integers. So does another
test program, press.icn. On the other hand, few
programs in the entire Icon program library per-
form these operations at all. Consequently, the
number of calls of functions like iand() are skewed.
The same thing is true of reversible assignment. It’s
used extensively in the two test programs for the n-
queens problem, but not elsewhere in the test
programs.

The entry that surprised us was the one at the
top. We had no idea that subscripting would be the
most-used operation. (We guessed assignment,
which is second.) If we’d been asked in advance

about subscripting, we probably would have
guessed it would come out somewhere in the top
25%.

The extensive use of subscripting is not the
result of one or two programs; it comes out first or
second in most of the test programs and in none
ranks below fifth.

Note that e1[e2] includes string, list, table,
and even record subscripting. Our analysis does
not tell us how subscripting is divided among
these types. (We can get that information using
other tools, and plan to do that later.)

We also find it interesting that only 2 of the
673,957 evaluations of e1[e2] failed. But we don’t
know how to interpret this. (Note that subscripting
a table never fails. Perhaps this gives a hint about

The Icon Analyst / 9

what to expect when subscripting is broken down
by type.)

If you’re puzzled by functions in the sum-
mary that you don’t recognize — nonterm(), for
example — these are record constructors.

We leave you to ponder the rest of the sum-
mary. Let us know if you see anything that appears
unusual or particularly interesting.

Storage Allocation

Storage allocation in a programming language
like Icon is a fascinating subject and one of consid-
erable importance in many programs [1-5].

Here are summaries of allocation for the two
programs we’ve focused on in previous articles.
The types listed are internal ones, used by Icon.
The remaining columns give the number of alloca-
tions, the number of bytes allocated, the average
number of bytes per allocation, and the percentage
of total allocation for each type.

type allocs bytes aver pct

string 9548 64988 6.80 96.54
list element 23 1204 52.34 1.78
substring tv 22 440 20.00 0.65
list 21 420 20.00 0.62
table 2 128 64.00 0.19
hash header 2 80 40.00 0.11
table-element tv 2 56 28.00 0.08

total 9620 67316 7.00

csgen.icn

substring tv 37632 752640 20.00 97.55
string 441 18900 45.00 2.44

total 38052 771540 20.28

iiencode.icn

If you’re not familiar with Icon’s implementa-
tion, some of the types listed above may seem
cryptic. Lists, sets, and tables have multiple com-
ponents that are differentiated internally. For ex-
ample, every list has a header block (list in the
summaries above) and one or more blocks for list
elements (list element). The situation for sets and
tables is similar. The notation tv is an abbreviation
for “trapped variable”, a mechanism that Icon uses
to handle assignments to string and table
subscripting expressions. Trapped variables are
transient and almost always collected in a subse-
quent garbage collection. Hash headers are used
for both sets and tables. Since csgen.icn uses no

sets, we can tell that the hash headers are for tables,
but in programs that use both sets and tables,
there’s no way to tell from our analysis how they
are divided. If we lump the internal types into
categories that correspond to source-language
types, and rename hash header to set or table, the
summaries become:

type allocs bytes aver pct

string 9570 65428 6.83 97.19
list 44 1624 36.90 2.41
table 4 184 46.00 0.27
set or table 2 80 40.00 0.11

csgen.icn

string 38073 771573 20.26 100.00

iiencode.icn

In these two programs, strings dominate stor-
age allocation. (The fact that iiencode.icn allocates
only strings is somewhat unusual and tells a lot
about what kind of program it is.)

Finally, here are the two forms of the total
allocation for all 11 test programs.
Internal types:

type alloc bytes aver pct

string 276175 6119800 22.15 41.54
substring tv 239831 4796620 20.00 32.56
list element 23870 2109856 88.38 14.32
table-element tv 23520 658560 28.00 4.47
cset 11764 470560 40.00 3.19
list 22853 457060 20.00 3.10
table element 2313 64764 28.00 0.43
record 911 22408 24.59 0.15
hash header 155 13848 89.34 0.09
co-expression 5 10000 2000.00 0.06
table 93 5952 64.00 0.04
refresh 5 1180 236.00 0.00
set element 17 340 20.00 0.00
set 2 112 56.00 0.00
file 5 100 20.00 0.00
real 2 32 16.00 0.00

total 601521 14731192 24.48

Refresh blocks (refresh) are associated with co-
expressions.

Source-language types:

type allocs bytes aver pct

string 516006 10916420 21.15 74.11
list 46723 2566916 54.93 17.42
table 25926 729276 28.12 4.95
cset 11764 470560 40.00 3.19
record 911 22408 24.59 0.15
set or table 155 13848 89.34 0.09
co-expression 10 11180 1118.00 0.07

10 / The Icon Analyst

set 19 452 23.78 0.00
file 5 100 20.00 0.00
real 2 32 16.00 0.00

In the totals for all test programs, strings still
dominate the allocation, but diversity is more evi-
dent. We also can see that we didn’t pick a test
program that does much real (floating-point) com-
putation, since every real computation results in
allocation of a block for a real number (real). The
farther we proceed with our analysis, the more we
realize how unrepresentative our test set is.

Garbage Collection

Garbage collection often is as much of a con-
cern as storage allocation.

The number of garbage collections a program
performs depends to a large extent on the sizes of
its storage regions. In the current implementation
of Icon, there are two types of regions, one for
strings and another for blocks. (In previous imple-
mentations, there was a static region for the alloca-
tion of co-expressions. Now co-expressions are
managed using C’s malloc() and free() functions.)

It’s worth noting that trapped variables are
allocated in the block region, as are all internal
types except strings proper and co-expressions.
There is more allocation in the block region than in
the string region for the all the test programs,
despite the fact that the total allocation attributable
to strings amounts to about three-fourths of all
allocation. It’s the substring trapped variables,
which are allocated in the block region, that make
the difference. (Recall the dominance of
subscripting in expression activity.)

Initially there is one region of each type, but
more regions are created if needed. The default
size for both types of regions is 65 KB. The sizes can
be changed prior to program execution by setting
the environment variables STRSIZE and BLKSIZE.
(The two need not be the same.)

The total number of garbage collections for all
11 programs with the default 65 KB sizes is:

string region 76
block region 123

The region designation refers to the region in
which allocation was attempted, but there was not
enough room left. Both string and block regions
are processed during a garbage collection, regard-
less of which one triggered the collection.

If the regions sizes are changed to 2 MB, there
are many fewer garbage collections:

string region 2
block region 1

So, assuming you have enough RAM, it’s
worth setting the region sizes higher. Or is it? That
depends on how much time is spent in garbage
collection and that, in turn, depends to a large
extent on the way a program uses data.

Here are the figures on the total amount of
execution time on a Sparc workstation for all 11
programs:

65 KB regions: 371.998 seconds
2 MB regions: 372.149 seconds

Do not infer from these figures that the pro-
grams actually ran a trifle slower with 2 MB re-
gions; timings vary as much as 10% from run to run
even on a lightly loaded system. But, apparently,
the region sizes made little difference. As men-
tioned in the first article in this issue of the Ana-
lyst, large region sizes do improve execution speed
for programs that keep a lot of data in memory,
such as databases. None of our test programs has
this characteristic; another indictment of our
choices.

A Monitoring Program

So far, we’ve shown the results of dynamic
analysis, but we’ve not shown how we got them.

In an earlier article in the Analyst [6], we
showed the general form of monitoring programs
and a few simple examples. The monitoring pro-
grams for getting information about expression
activity and storage allocation are not much more
complicated than those. In fact, the bulk of the code
in such programs involves the formatting of the
output.

The program on the next page is the one we

Icon on the Web

Information about Icon is available on the World
Wide Web at

http://www.cs.arizona.edu/icon/www/

The Icon Analyst / 11

link evinit
link evnames
link numbers
link options

$include "evdefs.icn"

global highlights, alloccnt, alloctot, collections, output

$define Col1 18
$define Col2 13

procedure main(args)
 local i, cnttotal, tottotal, cnt, tot, totalcoll, opts, item

 opts := options(args, "o:")
 output := open(\opts["o"], "w") | &output

 EvInit(args) | stop("∗∗∗ cannot load program") # initialize interface

 alloccnt := table(0) # count of allocations
 alloctot := table(0) # total allocation

 while EvGet(AllocMask) do {
 alloccnt[&eventcode] +:= 1
 alloctot[&eventcode] +:= &eventvalue
 }

 write(output, "\n", # write column headings
 left("type",Col1),
 right("number",Col2),
 right("bytes",Col2),
 right("average",Col2),
 right("% bytes",Col2), "\n"
)

 alloccnt := sort(alloccnt, 4) # get the data

 cnttotal := tottotal :=0

 every tottotal +:= !alloctot

 while cnt := pull(alloccnt) do {
 cnttotal +:= cnt
 item := pull(alloccnt)
 tot := alloctot[item]
 write(output, # write the data
 left(abname(item), Col1),
 right(cnt, Col2),
 right(tot, Col2),
 fix(tot, cnt, Col2, 2),
 fix(100.0 ∗ tot, tottotal, Col2, 2)
)
 }

 write(output, "\n", # write totals
 left("total:", Col1),
 right(cnttotal, Col2),
 right(tottotal, Col2),
 fix(tottotal, cnttotal, Col2, 2)
)

end

procedure abname(code) # abbreviate event name
 local result

 result := evnames(code)

 result ?:= tab(find(" allocation"))
 result ?:= {
 tab(find("trapped variable")) || "tv"
 }

 return result

end

Monitor for Storage Allocation

used for getting information about
allocation.

The –o command line option
is used so that the output of the
monitoring program can be writ-
ten to a specified file and not mixed
with the output of the program
being monitored. Two tables are
used to keep track of the number
of allocations and the total alloca-
tion, both by allocation type. The
procedure abname() converts the
names associated with events, pro-
duced by evnames(), and abbre-
viates them to improve the ap-
pearance of the output. The out-
put shown earlier was modified
slightly to fit the constraints of the
Analyst’s layout.

What Else?

We’ve barely touched the
possibilities for dynamic analy-
sis. We have results for string con-
struction, numerical computation,
structure use, string scanning, and
the Icon virtual machine itself [5].
In addition, there are many ways
of looking at the data that we’ve
not tried yet, including software
visualization. We’ll probably all
get tired of the subject before we
run out of material.

References

1. “Memory Monitoring”, Icon
Analyst 1, pp. 7-10.

2. “Memory Monitoring”, Icon
Analyst 2, pp. 5-9.

3. “Memory Utilization”, Icon
Analyst 4 pp. 7-10.

4. “String Allocation”, Icon Ana-
lyst 9 pp. 4-7.

5. “Program Visualization”, Icon
Analyst 16 pp. 1-8.

6. “Monitoring Icon Programs”,
Icon Analyst 15, pp. 6-10.

12 / The Icon Analyst

Reversible
Assignment

Reversible assign-
ment rarely is used in
Icon programs. In the
Icon language book, it
is described in the con-
text of string scanning
and in a program that
produces solutions of
the 8-queens problem.

There are more
“everyday” situations
in which reversible as-

signment can be useful. The basic idea is to use
reversible assignment to make a tentative assign-
ment to a variable, subject to the success of some
subsequent computation. (That’s the situation in
the examples of reversible assignment in string
scanning in the Icon language book, but the context
in the examples makes reversible assignment ap-
pear to be something special for string scanning.)

A more general kind of use occurs in the
common situation where a value assigned to a
variable must satisfy certain conditions. For ex-
ample, the value assigned to a variable that repre-
sents a size may only be valid if it’s a positive
integer. In this case, a check needs to be made to
prevent assignment of an invalid value, perhaps
provided interactively by a user.

Consider a situation where the size of a rect-
angle (perhaps a window) is being set and the size
is changed only if both the width and height speci-
fications are valid:

 temp1 := getwidth()
 temp2 := getheight()
 if valid(temp1) & valid(temp2) then {
 width := temp1
 height := temp2
 }
 else error()

By using reversible assignment, the tempo-
rary variables and separate assignments can be
avoided:

 (width <– valid(getwidth()) &
 height <– valid(getheight())) | error()

If the value produced by getwidth() is not
valid, the assignment and the compound expres-
sion fail. If, however, the value produced by

getwidth() is valid, it is assigned to width. If the
value produced by getheight() is not valid, no
assignment is made to height, but backtracking
causes the value previously assigned to width to
be restored to what it was originally. The second
assignment could be regular assignment, since no
value is assigned to height if valid() fails, but we
left it as reversible assignment for generality.

For the case of testing for a nonnegative inte-
ger value, the assignment expression can be writ-
ten without the use of a separate procedure, as in:

width <– (0 < integer(getwidth()))

This expression makes use of the fact that a com-
parison operation produces the value of its right
operand.

In the more general formulation, you can also
use:

valid(width <– getwidth())

If valid() fails, its argument is resumed, which
reverses the assignment to width.

Programming
Tips

What’s Coming Up

We have more articles on dynamic analysis in
the works. One of them probably will appear in the
next issue. We’ll also have another article on the
versum problem.

With the next issue, we’ll start a series of
articles on building visual interfaces for Icon pro-
grams.

