
The Icon Analyst / 1

October 1994
Number 26

In-Depth Coverage of the Icon Programming Language

on the type of x. If x is a positive integer, ?x
produces a randomly selected integer in the range
1 to x. If x is 0, it produces a randomly selected real
number in the range 0.0 ≤ r < 1.0. If x is a string, it
produces a randomly selected one-character
substring. For structure types, ?x produces a ran-
domly selected element of the structure.

There are some details that are worth know-
ing. A real number is converted to an integer for the
purposes of random selection, while a cset is con-
verted to a string. In the case of a string that is given
as a variable, ?x produces a variable and a value
can be assigned to it. For example, if chars is a
string,

?chars := "xxx"

replaces a randomly selected character of chars by
xxx. Similarly, a value can be assigned to a ran-
domly selected element of a list or record. For
example, if grades is a list,

?grades := 0

sets a randomly selected element of grades to 0.
Random selection for a table is similar; the value
corresponding to a randomly selected key is set. A
randomly selected value of a set can be obtained,
but no variable is associated with an element of a

Random Numbers

Introduction

This is the first of a series of articles on random
numbers in Icon.

Almost every programming language has
some way of producing random numbers. Ran-
dom numbers are needed to model physical phe-
nomena that have random properties, to simulate
processes like demands for service, to provide
unbiased test data, to pick alternative computa-
tional paths to test algorithms fairly, and in many
games. We suspect random numbers are used
most often in game programs.

When we talk about random numbers in a
program, we’re not talking about numbers pro-
duced in a truly random fashion — that takes a
physical process, like the flip of a coin or the decay
of an unstable atom. Instead, we’re talking about
pseudorandom numbers, which are produced in a
deterministic fashion but that occur in a sequence
that has the statistical properties of a truly random
sequence. With that understanding, we’ll drop the
“pseudo” for the remainder of this article.

Random Selection in Icon

In Icon, the random selection operation ?x
produces a randomly selected value that depends

 In this issue …

Random Numbers … 1
Trivia Quiz … 3
Lindenmayer Systems … 4
Answers to the Trivia Quiz … 9
Cheap Tricks … 9
Programming Tips … 11
What’s Coming Up … 12

2 / The Icon Analyst

set, so a set cannot be changed by assignment to a
randomly selected element of it.

That may be all you need to know about
random numbers in Icon for most purposes. The
rest of this article explores what is going on behind
the scenes.

Random Sequences

It is important to understand that random
selection is based on a sequence of random num-
bers that is produced by a single random number
generator. Any random selection operation pro-
duces a new value in this sequence. This value then
is used in the selection. The values for Icon are in
the range of 0 to 231–1. This is the range of nonne-
gative integer values for most implementations of
Icon. The range of integers is larger on 64-bit plat-
forms, but it is never smaller, and the range of
random numbers is the same for all implementa-
tions of Icon. This allows programs to be trans-
ported between platforms without affecting the
behavior of random selection.

Icon’s random number generator is capable
of producing all the values in the range 0 to 231–1.
At the end of a sequence it repeats. It’s very un-
likely that any program will go through all pos-
sible values: 231–1 is a very large number,
2,147,483,647 to be explicit. On a Sparc IPX, it
would take weeks of steady computing to go
through the entire sequence, even with a program
that does nothing else.

The keyword &random is the current value in
the random sequence. The initial value of &ran-
dom is 0. The first few values in the sequence
starting at 0 are:

0
453816694
885666996
678165018

1096161928
905669982
656467580
170957890

1583830416
108920774

1539632324
295778538
721762584

1144737966
1333202828
1237514258

You’ll notice that the rightmost digits are anything
but random. This is a characteristic of the “linear
congruential” method Icon uses for random num-
ber generation. The leftmost digits, which are dis-
tributed more randomly, are used in selection.

&random sometimes is called the seed for
random-number generation, since it determines
where in the sequence subsequent random num-
bers start. For example, to get a sequence different
from the default one, you can assign a value other
than 0 to &random at the beginning of program
execution. Since the sequence is so long, however,
the effect is about the same as getting a different
sequence. For example, 10 is the 708,384,987th
value in the sequence. So if you start your program
with

&random := 10

the effect is virtually the same as if you were able to
use an entirely different random sequence. The
first few values starting at 10 are:

10
751550904

1327774926
760568108
228004146

1783119808
1841059382
440785524

2098334938
641898056
853581342
504440892

2097486594
1241501008
694516870

2094500484

Again, you’ll notice that the rightmost digits are
not random.

Since &random starts at 0, unless you change
it, a program will produce the same results of
random selection for the same data. This is, of
course, anything but random behavior, but it’s
handy when you’re developing and debugging a
program.

Programs that need to exhibit random behav-
ior can accomplish this in several ways. One is to
allow the user to specify an initial value for &ran-
dom as a command-line option. This allows the
user to get repeatable results that nonetheless may
be different from those for the default value of
&random.

The Icon Analyst / 3

Next Time

In the next article on random numbers, we’ll
look at methods by which random numbers can be
generated, the particular method used by Icon,
and how good it is.

You may have noticed that the values pro-
duced for &random starting at 0 and 10 are all
even. This is not just a property of the linear
congruential method Icon uses; it’s a story in itself,
which we’ll also cover in the next article.

Acknowledgment

Gregg Townsend provided valuable techni-
cal assistance with this article. Bob Alexander wrote
the original version of randomize(). Gregg
Townsend contributed to the present version.

Reference

1. The Icon Programming Language, second edition,
Ralph E. Griswold and Madge T. Griswold, Prentice
Hall, Englewood Cliffs, New Jersey, 1990, pp. 200-
205.

In other cases, you may want to set &random
so that it’s different every time a program is ex-
ecuted. Doing this is tricky; in fact, it’s theoretically
impossible, although it can be done so that the
chance of the same value for different executions of
a program is vanishingly small.

One method is to set &random from &clock,
which is the time of day. This assures that you’ll get
different values unless different program execu-
tions start at the same second of the day.

The value of &clock is a string of the form
"hh:mm:ss", where hh is the hour, mm the minute,
and ss the second. Thus, the seed could be set by

&random := &clock[1:3] || &clock[4:6] ||
 &clock[7:9]

An alternative approach is string scanning, but
there’s another, if less obvious method:

&random :=
 map("HhMmSs", "Hh: Mm:Ss", &clock)

This use of map() to delete characters from a string
is one of many unusual ways map() can be used.
See Reference 1.

Using just &clock to set &random reduces the
probability of the same value for different runs to
about 0.0000116, assuming all times are equally
probable. The probability is greater for typical use,
but still very small. You can do much better by
using randomize() in the Icon program library
(link randomiz; the file name is truncated to meet
the requirements of some operating systems). For
your amusement, here’s the procedure:

procedure randomize()
 static ncalls

 initial ncalls := 0

 ncalls +:= 1

 &random :=
 map("sSmMhH", "Hh:Mn:Ss", &clock) +
 map("YyXxMmDd", "YyXx/Mm/Dd",
 &date) + &time + 1009 ∗ ncalls

 return

end

Notice, among other things, that the value this
procedure produces depends on how many times
it has been called.

Trivia Quiz

When giving tests in the courses we teach, we
sometimes include “trivia” questions about ob-
scure matters. We only assign a point or two of
credit for such questions and assure students that
their performance on such questions will not affect
their course grades.

Despite these disclaimers, students often
spend a considerable amount of time and effort on
such questions. There is something about “trivia”
that fascinates some persons. We put the word
trivia in quotes, because many of the questions
relate to potentially useful information. But, then,
different persons have different ideas of what’s
trivial. No doubt, some of our students think all of
the material in a course is trivial from the point of
view of relevance to their interests and ambitions.

 Assuming you’re more interested in Icon
than some of our students, we thought we’d put a
“trivia” quiz in the Analyst. All the answers can be
found in previons issues of the Analyst. The an-
swers, with citations, are given on page 9. If you
like this silliness, let us know and we’ll do more.

4 / The Icon Analyst

procedure f(i)
 if i = (1 | 2) then return 1
 else return f(i – 1) + f(i – 2)
end

How many calls of f() does it take to com-
pute the 10th Fibonacci number?

20. What units are used for angles in turtle
graphics?

1. How much allocated strorage does a
record with three fields take?

2. How much allocated storage does the
string literal "hello" take?

3. On IBM mainframes is the internal
representation of characters in EBCDIC or
ASCII?

4. Are find() and upto() matching func-
tions?

5. How large is a list value compared to
an integer value?

6. Is there any difference in the results of
evaluating stop() and exit()?

7. What environment variable is used to
locate files for the link declaration?

8. What does

suspend &fail
do?

9. Give an example of a run-time error
that cannot be converted to failure by error
conversion.

10. Give an example of expressions for
which

expr1 +:= expr2

and
expr1 := expr1 + expr2

are not equivalent.

11. When is it necessary to use a semicolon
to separate expressions in Icon?

12. What is the difference between an ex-
pression and a statement in Icon?

13. What is RTL?

14. What is a thread in MT Icon?

15. How is Rebus implemented?

16. What is the attribute that specifies the
distance bewteen the base lines of text
written to a window?

17. What is a stream in Seque?

18. What does the following expression
do?

&subject := &subject

19. Suppose the ith number in the Fibonacci
sequence is computed using

Anatomy of a Program —
Lindenmayer Systems (continued)

In the last issue of the Analyst, we described
Lindenmayer systems, which were invented to
characterize the development of plants by strings
of symbols and rewriting rules.

The original intent of L-systems was purely
formal. Of course, to determine if a string of sym-
bols describes a plant, it helps if you can “look at”
what the string represents. Early work was done
by hand, associating symbols with plant cells and
deciding what a string represented in terms of a
plant. A breakthrough came with the realization
that the symbols could be interpreted as simple
commands to draw pictures of plants.

Consider the following L-system:

X axiom
X ➛ F–[[X]+X]+F[+FX]–X replacement rules
F ➛ FF

This is the same L-system given in the previous
article, but with different symbols.

The choice of symbols is not arbitrary; instead
the symbols have meanings when considered as
drawing commands:

F move forward a specified length,
drawing a line

f move forward a specified length without
drawing a line

+ turn right a specified number of degrees

– turn left a specified number of degrees

[save the current position and direction

] restore the previously saved position
and direction

The symbol f is not used in the L-system above, but
it is needed in some others. The symbol X in the L-
system above is a marker that is ignored in draw-
ing.

The Icon Analyst / 5

– TLeft(angle)
[TSave()
] TRestore()

The program given in the previous article
simply writes the symbols that result from rewrit-
ing. With the interpretation of symbols as drawing
commands, it’s easy to convert that program into
one that draws. We need to add the length and
angle to the L-system parameters and interpret the
symbols using turtle procedures:

link turtle # turtle graphics package

procedure main()
 local rule, line, sym, new, axiom, gener, angle
 local length, keyword, value, allsyms, replace

 rule := table()

 allsyms := '' # initially empty cset

 while line := read() do
 line ? {
 if sym := tab(find("–>")) then {
 move(2)
 replace := tab(0)
 rule[sym] := replace
 allsyms ++:= replace
 }
 else if keyword := tab(find(":")) then {
 move(1)
 value := tab(0)
 case keyword of {
 "axiom": {
 allsyms ++:= value
 axiom := value
 }
 "gener": gener := value
 "angle": angle := real(value) |
 stop("∗∗∗ invalid angle: ", line)
 "length": length := integer(value) |
 stop("∗∗∗ invalid length: ", line)
 default:
 stop("∗∗∗ invalid keyword: ", line)
 }
 }
 else stop("∗∗∗ invalid specification: ", line)
 }

 if /axiom then stop("∗∗∗ no axiom")

 /length := 5 # defaults
 /gener := 4
 /angle := 90.0

 every sym := !allsyms do
 /rule[sym] := sym

The specified length is constant for a drawing
and determines its scale. The specified angle for
turns also is a constant for a drawing, and it plays
a fundamental role in the nature of the drawing.

All this is rather abstract. To make it concrete,
here’s what the L-system above produces for an
angle of 22.5° at 5 generations:

By the way, it’s a lot more fun to watch an L-
system being drawn than it is to look at the final
result.

You can imagine the excitement that resulted
from converting a string of apparently meaning-
less symbols into a drawing that looks very much
like a plant.

More insight into L-systems and the “plants”
they produce can be obtained by comparing suc-
cessive generations. The picture at the top of the
next page shows the first six generations for the L-
system above. The scale has been reduced and a
base line has been provided to make it easier to
compare the generations. Notice that the height
and width of the plants double with each genera-
tion. You may also detect some fractal characteris-
tics (self-similarities) in the successive generations.

Implementation
The commands used to produce such a draw-

ing are navigational in nature and have direct
correspondences in turtle graphics [1]:

F TDraw(length)
f TSkip(length)
+ TRight(angle)

6 / The Icon Analyst

Although L-systems were invented to model
plant development, they can be used to generate
many other kinds of figures, including some fractals
and tilings, as shown on page 8.

The Icon program library contains not only a
program, linden.icn, for writing and drawing L-
systems, but a collection of L-systems that include
the ones used to draw the pictures in this article.
See linden.dat.

Conclusion

There are many kinds of L-systems. The kind
we have described are context-free and determin-
istic — called 0L-systems in the literature. More
powerful L-systems are needed to describe plant
development more accurately and to model cer-
tain characteristics of plants. Unfortunately, these
more complicated L-systems are not as easy to
implement as 0L-systems and different approaches

 every sym := lgen(!axiom, rule, gener) do
 case sym of {
 "F": TDraw(length)
 "f": TSkip(length)
 "+": TRight(angle)
 "–": TLeft(angle)
 "[": TSave()
 "]": TRestore()
 }

 Event() # wait to dismiss window

end

procedure lgen(sym, rule, gener)

 if gener = 0 then return sym
 suspend lgen(!rule[sym], rule, gener – 1)

end

Note that symbols with no interpretation, such as
X, are ignored.

That’s all there is to it — a few additional lines
of code, and you can draw all kinds of interesting
“plants”, as shown on page 7. As you can see, some
of these pictures look more realistic than others.
Some are plantlike, but look like they might have
come from prehistoric times or another planet.
You’ll find more examples in several books on the
subject [2-4].

Downloading Icon Material

Most implementations of Icon are available for
downloading via FTP:

cs.arizona.edu (cd /icon)

The Icon Analyst / 7

Lindenmayer “Plants”

8 / The Icon Analyst

Other Lindenmayer Drawings

The Icon Analyst / 9

are needed. If you want to try your hand at these,
see Reference 2 or 3. We’d welcome the addition of
more capable L-system programs to the Icon pro-
gram library.

Although the more complicated kinds of L-
systems are not easy to implement, there are sev-
eral things that can be done to extend 0L-systems to
enable them to make more interesting drawings.

We’ll describe these, as well as a different
approach to implementing 0L-systems, in the fu-
ture articles on Lindenmayer systems.

References

1. “Turtle Graphics”, Icon Analyst 24, pp. 6-10.

2. Lindenmayer Systems, Fractals, and Plants,
Przemyslaw Prusinkiewicz and James Hana,
Springer-Verlag, New York, 1989.

3. The Algorithmic Beauty of Plants, Przemyslaw
Prusinkiewicz and Aristid Lindenmayer, Springer-
Verlag, New York, 1990.

4. The Science of Fractal Images, Hienz-Otto Peitgen
and Deitar Saupe, Springer-Verlag, New York,
1988, pp. 272-286.

8. Nothing (9, 1).
9.

x := "abc"
x[2] := (x := [] & "B")

(10, 11).
10. For a list of numbers L

?L +:= 1

and

?L := ?L + 1
(8, 7).
11. Never (2, 3).
12. Icon has no statements (11, 11).
13. RTL is a superset of C in which the Icon

run-time system is written (12, 5).
14. A set of co-expressions that share a pro-

gram state (14, 8-9).
15. By a variant translator that produces

SNOBOL4 code (18, 3).
16. leading (18, 6).
17. A stream is a data object that is capable of

producing a sequence of values (19, 1).
18. It sets &pos to 1 (20, 2).
19. 109 (21, 8).
20. Degrees (24, 7).

Cheap Tricks

You can have a lot of fun writing clever expressions
in Icon — while making your code hard to under-
stand. We’re not sure where we stand on this;
we’ve both encouraged and discouraged such “idi-
omatic” programming in Icon. The problem is
particularly difficult when teaching Icon. Students
can learn a lot about Icon by writing clever but

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

Answers to the Trivia Quiz

The places in the Analyst where you can find
more material about the answers are given with
the issue and page numbers following the answer.
In some cases, you may have to dig a little to see
how the answer is derived.

1. 48 bytes (4, 9).
2. None; string literals are included in the

icode file produced when an Icon program is trans-
lated (4, 8). The situation for the compiler is similar.

3. There is one implementation of Icon for
IBM mainframes that uses EBCDIC and another
that uses ASCII (3, 3).

4. No, only tab() and move() are matching
functions (3, 5).

5. All Icon values are the same size (6, 3).
6. Yes; stop() writes a line to standard error

output but exit() doesn’t (6, 11).
7. IPATH for the Icon interpreter (7, 9); LPATH

for the Icon compiler (7, 11).

10 / The Icon Analyst

opaque expressions, yet we want to encourage
clear, readable coding techniques.

For the Analyst, we feel safe in at least show-
ing examples of clever ways to use Icon; you have
to make your own decisions about style. We titled
this short article Cheap Tricks because we didn’t
want to dignify what follows as a programming tip
or something from the wizards.

The case in point involves calling the same
function with different argument lists in succes-
sion. This situation occurs fairly often in graphics
operations involving symmetry, as in

plot(figure, x + i, y + j)
plot(figure, x + i, y – j)
plot(figure, x – i, y + j)
plot(figure, x – i, y – j)
plot(figure, x + j, y + i)
plot(figure, x + j, y – i)
plot(figure, x – j, y + i)
plot(figure, x – j, y – i)

Many graphics functions take an arbitrary
number of argument sets so that multiple draw-
ings can be done in one call. If our hypothetical
plot() supported this, the eight calls above could be
replaced by

plot(
 figure, x + i, y + j,
 figure, x + i, y – j,
 figure, x – i, y + j,
 figure, x – i, y – j,
 figure, x + j, y + i,
 figure, x + j, y – i,
 figure, x – j, y + i,
 figure, x – j, y – i
)

For this article, we’ll suppose plot() does not
provide this capability. What can be done, then, to
do the plotting with a more compact expression?
It’s tempting to write

every plot(figure, x + (i | – i | j | –j),
 y + (i | –i | j | –j))

but this produces 16 calls — half of which are not
wanted.

You can limit the argument lists to the desired
ones by using

every plot(figure, x + (i | –i), y + (j | –j))
every plot(figure, x + (j | –j), y + (i | –i))

It seems, though, that there should be a way to
do this with one every. Another temptation is

every plot(
 (figure, x + (i | –i), y + (j | –j)),
 (figure, x + (j | –j), y + (i | –i))
)

This expression, however, does not do what’s
intended. The two arguments of plot() are mutual
evaluation expressions. A mutual evaluation ex-
pression produces its last argument. So,

(figure, x + (i | –i), y + (j | –j))

produces y + j and

(figure, x + (j | –j), y + (i | –i))

produces y + i. The resulting call of plot() is

plot(y + j, y + i)

which is hardly what’s wanted, not to mention
there would be 15 more erroneous calls because of
the every.

If you’re intent on being clever, don’t give up.
It is possible to do this in a single every loop. The
trick is list invocation:

every plot ! (
 [figure, x + (i | –i), y + (j | –j)] |
 [figure, x + (j | –j), y + (i | –i)]
)

You can be sure a casual reader of code like
this will not understand it or what you had in
mind. This reminds us of a system programmer in
the early days of computing at Bell Labs who wrote
totally bogus code that was overwritten by the
correct code when the program started execution.
(This was before the days of “pure” code. In fact,
the machine language in use then required code to
be overwritten even to perform common opera-
tions.)

There’s more wrong with this approach than
obscurity. A list is created for each set of arguments
— eight lists in all every time the expression is
evaluated. That adds up to a lot of storage alloca-
tion, plus the time that may be spent in garbage
collection as a result. These problems can be miti-
gated somewhat by using records instead of lists,
since records take less space than lists. (Version 9 of
Icon is required to use records in invocation.) Some-
thing like this will do:

record args(x, y, z)
...

The Icon Analyst / 11

every plot ! (
 args(figure, x + (i | –i), y + (j | –j)) |
 args(figure, x + (j | –j), y + (i | –i))
)

This is, if anything, more obscure than the list
version.

Okay, you’ve seen it. Now forget it.

result of the last expression in the procedure that
was evaluated, as some other programming lan-
guages do. This choice has some merit, but since an
Icon procedure can return, fail, or suspend, things
get murky. For example, what should happen if the
last expression is a generator? Should it generate
all its values or return just the first one? This
alternative also has the disadvantage of making it
hard to understand what some procedures do,
since the last expression evaluated may not be the
last physical expression in the procedure (con-
sider, for example, an if-then-else expression).

A third possibility, and one that was chosen
for early versions of Icon, is to return a null value
if control flows off the end of a procedure. This is a
reasonable choice and the null value is the obvious
value to return if none is specified.

A fourth possibility, and the one chosen for
later versions of Icon, is to have the procedure fail
if control flows off its end. The argument for this
choice is that if a procedure doesn’t explicitly re-
turn a value, it should not return any value at all,
which fits nicely with Icon’s concepts of success
and failure.

We can think of other possibilities, such as a
command-line option to the Icon translator to
change the treatment of returns or a directive for
doing this that could be included in the program
itself. We don’t think these are good ideas, but
there’s not much chance of changing Icon at this
point in its life in any event.

Either the third or fourth possibility men-
tioned above can lead to bugs. If the null value
were returned, a procedure that generates a se-
quence of values would have to provide and ex-
plicit fail after generating all its results to avoid
returning an extra, spurious null value.

On the other hand, with the present scheme,
a procedure that is used only for side effects and
computes no value fails unless an explicit return is
provided. And the problems this can lead to are
what this tip is about.

Consider this procedure:

procedure error(message)

 write(&errout, "***", message)

end

Here, the procedure serves as a wrapper to sim-
plify producing diagnostic messages. It doesn’t
compute a value and doesn’t return one — it just
lets control flow off the end, resulting in failure.

Programming
Tips

Returns from Procedures

This is the second of three tips on ways to
avoid bugs in your Icon programs. It starts with a
question on language design: What should happen
when control flows off the end of a procedure
without an explicit return, fail, or suspend?

One possibility is to treat this situation as an
error. This is, in some sense, the safest choice, but
it runs contrary to Icon’s philosophy that favors
ease of programming over error checking and
rigidity.

Another possibility would be to return the

12 / The Icon Analyst

Ordinarily, the fact that such a procedure fails
doesn’t cause any problems. Because no value is
expected, such a procedure usually is called in
places where success and failure are not important,
and the failure goes undetected.

Sometimes, however, this goes awry. Con-
sider the following code:

 while line := read() do
 filter(line)

…
procedure filter(line)

 if line ? {
 # analysis of line to see if it should
 # be written
 }
 then write(line)

end

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602) 621-8448

fax: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

…uunet!arizona!icon-project

and

© 1994 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Bright Forest Company
 Tucson Arizona

Since control flows off the end of filter() whether or
not it writes a line, it fails. That isn’t a problem,
since the outcome of an expression in a do clause is
ignored.

But now suppose you observe that the loop
above can be written more compactly as

 while write(filter(read()))

This looks perfectly reasonable, but only one line is
read, since the failure of the first call of filter()
terminates the while loop.

The cause of a problem like this may be hard
to locate — especially in the context of a large
program, or when someone who did not write the
original program tries to improve it.

The solution is simple: Just add a return at the
end of filter():

procedure filter(line)

 if line ? {
 # analysis of line to see if it should
 # be written
 }
 then write(line)

 return

end

You’ll save yourself a lot of grief if you make
it a practice always to put a return at the end of a
procedure that does not have a value to return.

What’s Coming Up
In the next issue of the Analyst, we’ll have an

article on the static analysis of Icon programs.
We’ll also have another tip on how to avoid bugs in
Icon programs.

We’re also working on the next articles on
random numbers and Lindenmayer systems.

