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From the Library

Most programmers enjoy writing programs
— at least some of the time. But not many program-
mers enjoy the inevitable debugging of a new
effort, not to mention the feeling on discovery of a
serious bug in a program written long ago.

Most programmers spend a lot of time debug-
ging. How debugging is done and how hard it is
depends on many things, not the least of which is
the programming language used. Generally speak-
ing, the higher the level of the language, the easier
debugging is. But both the nature of bugs and the
process of debugging are somewhat idiosyncratic
to the language. Some language features may in-
crease the likelihood of certain kinds of bugs. We’ve
discussed such aspects of Icon in past articles in the
Analyst.

Sometimes the most powerful and useful fea-
tures of a language are the ones that cause the most
trouble. Icon’s sophisticated data structures are a
case in point.

Data Structures

Icon’s use of pointer semantics for structures
makes it easy to do many things [1,2] and makes
some kinds of operations efficient. A structure
value, whether it’s a record, list, set, or table, is just
a pointer to (the memory address of) the block of
elements that comprise the structure. Consequently,
structure values are as compact as integers. The
assignment of a structure value to a variable is as
simple and as quick as the assignment of an inte-
ger. Icon’s facilities for displaying structure values
are limited, however. The function type(x) gives
you the type of x. For example if x is a list, type(x)
produces "list". That’s handy and not something
you can do in C, for example. You can get a little
more information with image(x). For a list, it pro-
duces something like "list_10(3)". The 10 indi-
cates that it’s the tenth list created since the begin-
ning of program execution. The 3 indicates the list
has three elements, but it doesn’t give a hint as to
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the nature of those elements, which might them-
selves be structures.

You can tell if two structures (pointers) are the
same or not. For example, for structures x1 and x2

x1 === x2

compares pointers and succeeds if and only if x1
and x2 are identical. This operation is no help at all
in determining if x1 and x2 are different structures
but with the same values.

You also can’t print a pointer, even though it’s
just a number. It’s not that there’s anything inher-
ently difficult about printing the numerical value
of a pointer. The problem is that garbage collection
may move the elements to which a structure points,
and hence change the pointer. If you were able to
get the numerical value of a pointer, you would not
be able to tell later on if it still pointed to the original
elements for that structure.

There’s also no direct way to show what the
elements of a structure are; that’s something you
have to write yourself.

In cases where the elements of structures are
pointers to other structures, debugging can be
difficult.

Help from the Library

When Icon itself doesn’t provide a facility you
need, the first place to look for help is in the Icon
program library. Several persons have contributed
library procedures that show the details of struc-
tures. The best of these are in ximage.icn, written
by Bob Alexander.

The procedure ximage(x) produces a string
that describes x. If x is a structure, it shows the
structure and its elements, and if an element is
itself a structure, it shows that structure and so on.
The result produced by ximage() resembles Icon
code and hence is easy for Icon programmers to
understand. Indentation and newlines are pro-
vided, so that if the result of ximage() is written,
the output is nicely formatted.

It’s easier to show what ximage() produces
than it is to describe it. Suppose a program contains
the following lines of code:

source := table()
basis := list(6, 0)
filter := list(10)
basis[1] := filter
basis[2] := basis

filter[3] := basis
source["basis"] := basis
source["filter"] := filter

Here’s what write(ximage(source)) produces:

T1 := table(&null)
   T1["basis"] := L1 := list(6,0)
      L1[1] := L2 := list(10,&null)
         L2[3] := L1
      L1[2] := L1
   T1["filter"] := L2

Several things about this output are worth noting.
One is that each structure is given a name (tag). The
first letter of the tag indicates its type, with the
number following producing a unique identifica-
tion. The value of each structure is shown in the
style of assignment  as a strucure-creation function
with its predominant element. (A table is shown
with its default value). For example, most of the
elements of basis (L1) are 0, while most of the
elements of filter (L2) are null. Only the elements
that are different from the predominant element
are shown below the structure. The result is a
compact but easily understood representation of
structures.

Since every structure has a unique tag, pointer
loops present no problem. For example,

node1 := [ ]
node2 := [ ]
put(node1, node2)
put(node2, node1)
put(node2, node2)

write(ximage(node1))

produces

L1 := list(1)
   L1[1] := L2 := list(2)
      L2[1] := L1
      L2[2] := L2

In addition to ximage(), there is a procedure
xdump(x1, x2, …, xn) that applies ximage() to x1,
x2, …, xn in succession and writes the results to
standard error output. For example,

xdump("The basis:", basis)

writes

"The basis:"
L1 := list(6,0)
   L1[1] := L2 := list(10,&null)
      L2[3] := L1



The Icon Analyst / 3

   L1[2] := L1

to standard error output.
We have come to adding

link ximage

to most of our programs as a matter
of habit, using ximage() or xdump()
when we get into trouble with struc-
tures, as we invariably do in com-
plex programs.

Try it out; it can be a big help in
understanding complex structures
as well as in debugging them.

The Code

Generally speaking, we won’t
attempt to show code from the li-
brary; it often is too long to present
in the context of the Analyst. The
code for ximage() and xdump(),
however, is relatively short and
worth study.

Before going to the code, we’d
like to point out that much of the
value of ximage() is in its design. It
produces an elegant result and un-
less you’d already seen it, you might
not think of the approach that Bob
used. At least we didn’t; our ver-
sion of a procedure to display struc-
tures is in the library. We left it there
when Bob contributed his, in case
someone was relying on it. But ours
is not as nearly as good as Bob’s.

Even given the specification
for ximage(), writing such a proce-
dure is a challenging task that is
particularly difficult to do correctly.
It includes not just producing error-
free code, but also considering all
the possibilities that need to be
handled.

A listing of ximage() and
xdump(), shorn of the library header
and documentation, is shown op-
posite and on the next page. We’ve
removed a few blank comment lines
to get the whole listing on two pages.

We won’t attempt to describe
all the details; instead we suggest
that you read though the code your-

procedure ximage(x,indent,done)
   local i,s,ss,state,t,xtag,tp,sn,sz
   static tr

   #  If this is the outer invocation, do some initialization.

   if /(state := done) then {
      tr := &trace ; &trace := 0    # postpone tracing while in here
      indent := ""
      done := table()
      }

   #  Determine the type and process accordingly.

   indent := (if indent == "" then "\n" else "") || indent || "   "
   ss := ""
   tp := type(x)
   s := if xtag := \done[x] then xtag else case tp of {

      #  Unstructured types just return their image().

      "null" | "string" | "integer" | "real" | "cset" | "co–expression" |
         "file" | "procedure" | "window" | "external": image(x)

      #  List.

      "list": {
 image(x) ? {
    tab(6)
    sn := tab(find("("))
    sz := tab(0)
    }
 done[x] := xtag := "L" || sn

 #  Figure out if there is a predominance of any object in the
 #  list.  If so, make it the default object.
 #
 t := table(0)
 every t[!x] +:= 1
 s := [,0]
 every t := !sort(t) do if s[2] < t[2] then s := t
 if s[2] > ∗x / 3 & s[2] > 2 then {
    s := s[1]
    t := ximage(s,indent || "   ",done)
    if t ? (not any('\'"') & ss := tab(find(" :="))) then

  t := "{" || t || indent || "   " || ss || "}"
    }
 else s := t := &null

 #  Output the non–defaulted elements of the list.

 ss := ""
 every i := 1 to ∗x do if x[i] ~=== s then {
    ss ||:= indent || xtag || "[" || i || "] := " ||

  ximage(x[i],indent,done)
    }
 s := tp || sz
 s[–1:–1] := "," || \t
 xtag || " := " || s || ss

               }

      #  Set.

      "set": {
 image(x) ? {
    tab(5)
    sn := tab(find("("))
    }
 done[x] := xtag := "S" || sn
 every i := !sort(x) do {
    t := ximage(i,indent || "   ",done)
    if t ? (not any('\'"') & s := tab(find(" :="))) then

  t := "{" || t || indent || "   " || s || "}"
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self to understand Bob’s approach
and coding techniques. A few points
deserve note, however.

One is the use of two extra
arguments in ximage() in addition
to the one the user provides:  indent
and done . As you’d expect,
ximage() calls itself recursively. The
argument indent, which is null ini-
tially because it is omitted in the
top-level call, keeps track of the in-
dentation, which depends on the
level of recursion. The argument
done, also null initially, is a table
that contains the values and their
names (tags). The use of additional
arguments to pass on values and
make them accessible to all levels of
recursive calls is described in more
detail in Reference 3.

The main part of ximage() is a
case expression that handles differ-
ent types. The first case clause
handles unstructured types, for
which Icon’s built-in function im-
age() is used. The next case clauses
handle lists, sets, and tables. Records
present a special problem, since each
record declaration produces  a sepa-
rate type. Records can be handed in
the default clause, since all other
types are handled in previous case
clauses. (That’s why unstructured
types are handled in a previous
clause, rather than as an after-
thought in the default clause.)

The procedure xdump() takes
variable number of arguments and
applies ximage() to each one.

One thing about these proce-
dures that you should note is the
care that has been taken with fine
points. For example, ximage() turns
tracing off during its invocation and
restores it when it is done. The pro-
cedure xdump() goes to extra care
to return its last argument, follow-
ing the design of the functions
write() and writes(). xdump() even
is careful to return and not fail if it’s
called with no arguments.

    ss ||:= indent || "insert(" || xtag || "," || t || ")"
    }
 xtag || " := " || "set()" || ss
 }

      #  Table.

      "table": {
 image(x) ? {
    tab(7)
    sn := tab(find("("))
    }
 done[x] := xtag := "T" || sn

 #  Output the table elements.  This is a bit tricky, since
 #  the subscripts might be structured, too.

 every i := !sort(x) do {
    t := ximage(i[1],indent || "   ",done)
    if t ? (not any('\'"') & s := tab(find(" :="))) then

  t := "{" || t || indent || "   " || s || "}"
    ss ||:= indent || xtag || "[" ||

  t || "] := " ||
  ximage(i[2],indent,done)

                  }

 #  Output the table, including its default value (which might
 #  also be structured.

 t := ximage(x[[]],indent || "   ",done)
 if t ? (not any('\'"') & s := tab(find(" :="))) then
       t := "{" || t || indent || "   " || s || "}"
 xtag || " := " || "table(" || t || ")" || ss
 }

      #  Record.

      default: {
 image(x) ? {
    move(7)
    t := ""
    while t ||:= tab(find("_")) || move(1)
    t[–1] := ""
    sn := tab(find("("))
    }
 done[x] := xtag := "R_" || t ||  "_" || sn
 every i := 1 to ∗x do {
    name(x[i]) ? (tab(find(".")),sn := tab(0))
    ss ||:= indent || xtag || sn || " := " ||

  ximage(\x[i],indent,done)
    }
 xtag || " := " || t || "()" || ss
 }

      }

   #  If this is the outer invocation, clean up before returning.

   if /state then {
      &trace := tr                        # restore &trace
      }

   #  Return the result.

   return s
end

#  Write ximages of x1,x1,...,xn.

procedure xdump(x[])
   every write(&errout,ximage(!x))
   return x[–1] | &null
end
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Conclusions

We keep promoting the Icon program library
because we know it’s an excellent resource for Icon
programmers. The library contains a few gems like
ximage as well as some programs and procedures
that, well, are not so good. We’ll continue to ex-
plore the library in future issues of the Analyst,
presenting some of the most useful items.

For all the elegance of ximage(), you probably
would prefer a procedure that draws connecting
lines between structures, especially for platforms
that support graphics.

Some time ago, before Icon had graphics fa-
cilities, Roger Hayes, a student in one of our classes
on string and list processing, produced a package
for diagramming structures with connecting lines
represented by dashes and vertical bars. It was
cleverly done, but hopelessly difficult to under-
stand except for the simplest cases. More recently,
Song Liang wrote a structure visualization pack-
age as a class project [4]. It provides a window for
each structure, and allows scrolling for structures
with many elements. It does not, however, show
any connections between structures.

There are serious problems with diagram-
ming structures with connecting lines. Laying out
an arbitrary graph in an understandable way is an
essentially intractable problem. If there are hun-
dreds or thousands of structures, or if a structure
has thousands of elements that point to other struc-
tures, there’s no way to fit everything on the screen
at one time. And even if that were possible, the
display probably wouldn’t be understandable.

There are various approaches to working
around these problems, such as miniaturization,
facilities for navigating through “structure space”,
“fish-eye views” that enlarge areas of interest, and
so on. But these are research problems that have
been and will continue to be topics of research and
many doctoral dissertations.

Still, it would be nice to have something that
is useful for simple cases. Any takers? Bob?
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Anatomy of a Program —
Lindenmayer Systems

One of the advantages of using Icon is that
many programming tasks are easy — easy enough
to warrant undertaking projects you might not
want to try in a lower-level language, such as C.
This is particularly true of problems related to
formal languages, which often depend heavily on
string manipulation.

In an earlier Analyst, we described how to
produce recognizers for context-free languages
[1]. Here we’ll look at a different kind of formal
grammar that was developed by Aristid
Lindenmayer, a Hungarian botanist.

A Formalism for Plant Development

Lindenmayer’s interest was in formal models
of plant development. In his system, each plant cell
is represented by a symbol (character), and the
development of a plant goes through a series of
“generations” in which each symbol is replaced by
other symbols according to precisely defined rules.

A model of a primitive alga has two kinds of
cells, which can be represented by C and D (the
actual characters used are irrelevant). The rules for
replacement are:

1. Every C is replaced by DC.
2. Every D is replaced by C.

If we start with CD (the “axiom”), we get CDC,
the original C being replaced by CD and the origi-
nal D being replaced by C. In subsequent genera-
tions, CDC is “rewritten” as CDCCD, then
CDCCDCDC, and so on.

Formal grammars like this are called
Lindenmayer systems, or L-systems for short. For
simple plants, at least, L-systems can be quite
successful in characterizing development, and
much work has been done on the subject [2-4]. Not
surprisingly, such a simple view of plant develop-
ment has its limitations. Nonetheless, it’s suffi-
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ciently interesting to see what can be done with a
little programming.

It’s worth pointing out before going on that
there is a fundamental difference between L-sys-
tems and context-free grammars, although the two
look similar. In a context-free grammar there may
be several possible replacements for a nonterminal
symbol, at each rewriting only one nonterminal
symbol is replaced, and replacing every possible
nonterminal symbol in all possible ways leads to
many strings. In an L-system, there is no distinc-
tion between terminal and nonterminal symbols
(or every symbol can be thought  of as a nonterminal
symbol), there is only one possible replacement for
a symbol, and every symbol is replaced at each
rewriting (generation). These different rules are
what give L-systems their descriptive power. This
may seem contradictory, since there are so many
more possible strings in context-free grammars.
But all the possibilities in a context-free grammar
make it impossible to exclude “unwanted” strings
[5]. For example, if the rules given earlier are
applied as context-free replacements, CD leads to
two new strings, CCD and CC. At the next step there
are five strings, CDCD, CCDD, CCC, CCD, and CDC,
and so on. It’s possible to construct a context-free
grammar that includes the same strings that an L-
system produces, but such a context-free grammar
inevitably includes many more strings than the L-
system does.

A Program for L-Systems

It’s easy to write an Icon program to produce
the result after a given number of generations for a
specific L-system. (It’s just as easy to produce the
results of each generation, but the result at a spe-
cific generation usually is what’s of interest.)

A table is the obvious way to represent the
rules, as in

   rule := table()

   rule["C"] := "CD"
   rule["D"] := "C"

Code to produce gener generations is simple:

   current := "CD" # axiom

   every 1 to gener do {
      new := ""
      every new ||:= rule[!current]
      current := new
      }

   write(current)

Of course, what we really want is a program
to read in an L-system and produce the result of a
specified number of generations. To do this, we
need a syntax for describing L-systems. We’ll use
one in which the axiom and the number of genera-
tions are given by a name followed by a colon and
the value, while  a replacement rule is given with
"–>" separating the symbol to be replaced from its
replacement. The L-system given above for five
generations looks like this:

axiom:CD
gener:5
C–>CD
D–>C

Code to read in such an L-system is relatively
simple, Here’s one version:

while line := read() do
   line ? {
      if sym := tab(find("–>")) then {
         move(2)
         rule[sym] := tab(0)
         }
      else if keyword := tab(find(":")) then {
         move(1)
         value := tab(0)
         case keyword of {
            "axiom": axiom := value
            "gener": gener := value
            default:
               stop("∗∗∗ invalid line: ", line)
            }
         }
      else stop("∗∗∗ invalid line: ", line)
      }

Putting this together with the rewriting loop given
earlier is all that’s needed for a complete program.

There’s another aspect of L-systems that we
haven’t mentioned: There may be symbols for
which there are no replacement rules. Such sym-
bols don’t represent cells, but they are needed to
model some kinds of plant development. A sym-
bol for which there is no replacement rule is left
unchanged during replacement (or replaced by
itself, if you prefer). For example, if the axiom is
CXD, the replacement rules given earlier produce
CDXC for the first generation.

Symbols for which there are no replacement
rules complicate the program a bit. Two possibili-
ties are (1) recognize a symbol that is not in the
table of replacements in the rewriting loop and
replace it by itself, or (2) put each such symbol in
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Downloading Icon Material

Most implementations of Icon are available for
downloading via FTP:

cs.arizona.edu (cd /icon)

the table of replacements with itself as its value.
For the first alternative, it’s easy enough to

recognize a symbol for which there is no replace-
ment, since subscripting the table with it produces
the default null value of the table. The rewriting
loop can be done as follows:

   every 1 to gener do {
      new := ""
      every sym := !current do
         new ||:= (\rule[sym] | sym)
      current := new
      }

The alternative approach of putting all sym-
bols in the table before rewriting is more attractive,
at least from the point of view of efficiency, but it’s
also more complicated to program. As it turns out,
the little bit of extra work in the rewriting loop
doesn’t matter much, but we’ll show how to get
replacements of all symbols in the table anyway.
The idea is simply to keep track of all symbols in
the axiom and replacement rules while the L-
system is being read, and add “identity” replace-
ments for which there are no replacement rules
before starting the rewriting:

rule := table()

allsyms := '' # initially empty cset

#  Read L-system and get all symbols.

while line := read() do
   line ? {
      if sym := tab(find("–>")) then {
         move(2)
         replace := tab(0)
         rule[sym] := replace
         allsyms ++:= replace
         }
      else if keyword := tab(find(":")) then {
         move(1)
         value := tab(0)
         case keyword of {
            "axiom": {
               allsyms ++:= value
               axiom := value
               }
            "gener": gener := value
            default:
               stop("∗∗∗ invalid line: ", line)
            }
         }
      else stop("∗∗∗ invalid line: ", line)
      }

# Now add identity replacements for all
#  symbols not in the table.

every sym := !allsyms do
   /rule[sym] := sym

Since the operator that tests for a null value returns
a variable if its argument is a variable, an assign-
ment can be made in the same expression as the
test.

Now the original rewriting loop can be used
without testing every symbol to see if there’s a
replacement for it.

There’s a middle ground between the two
possibilities discussed above: Don’t fill in the table
after reading the L-system, but add a symbol for
which there is no replacement to the table when
that symbol is first encountered during rewriting:

every 1 to gener do {
   new := ""
   every sym := !current do
      new ||:= (\rule[sym] | (rule[sym] := sym))
   current := new
   }

A Problem

So far, so good; any of the three approaches to
handling symbols for which there are no replace-
ment rules will work, and the program can read in
and generate the result for any well-formed L-
system.

There’s a lurking problem, however. For L-
systems of interest, the strings for successive gen-
erations get longer and longer. For the simple L-
system that we’ve been using as an example, the
strings do not grow in length very rapidly. But for
most L-systems, they do. Consider this one:

gener:2
axiom:A
A–>BCDDAEFAEFBDFBAECA
B–>BB

The second-generation for this string is:
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That’s all there is to it, except to use writes() to
write the symbols on one line as they are gener-
ated:

every writes(lgen(!axiom, rule, gener))
write() # terminate line

We’re rather proud of the recursive generator
shown above. We developed it while improving a
rather ancient L-system program in the Icon pro-
gram library. It’s worth noting, however, that
there’s nothing magical going on. After develop-
ing our procedure, we discovered that Steve
Wampler had used a very similar technique in his
version of an L-system program. You’ll also find
similar recursive generators in other Icon pro-
grams.

We wish we had a deep understanding that
would enable us to describe how to arrive at such
a procedure in a methodical and mechanical way.
We don’t, but we’re working on it. Our advice in
the meantime is to “think generators” and “think
recursion”. Better yet, think “recursive genera-
tors”.

The Complete Program

So far, we’ve shown bits and pieces of pro-
grams. So that you can see a complete program,
here’s the one that generates symbols one at a time:

procedure main()
   local rule, line, sym, new, axiom, gener
   local allsyms, replace, keyword, value

   rule := table()

   allsyms := '' # initially empty cset

   while line := read() do
      line ? {
         if sym := tab(find("–>")) then {

BBCDDBCDDAEFAEFBDFBAECAEFBCD
DAEFAEFBDFBAECAEFBBDFBBBCDDA
EFAEFBDFBAECAECBCDDAEFAEFBDFB
AECA

and the 10th-generation string has over six million
characters. That would exceed the capacity of many
computers. This problem, in fact, limited early
work on L-systems.

An Alternative Approach

There is a solution to this problem, and an
elegant one. It requires a bit of insight and leads to
an interesting coding technique.

The insight is that it’s possible to go through
all the generations for the first symbol of the axiom
before going on to the second and subsequent
symbols. Then each symbol in the last generation
can be written before going on to the next. Of
course, replacing any symbol may produce several
symbols, but only the first of these is carried to the
last generation, while the other symbols are (con-
ceptually) prepended to part of the string that has
not yet been processed.

Using this approach, there is no need for
concatenation and no strings build up in memory.

Most of the time when we come across “an
interesting coding technique” in Icon, it involves
generators or recursion, or both [6]. It’s fairly easy
to imagine generating the symbols; how to gener-
ate them in the right order is less obvious. Rewrit-
ing for a specified number of generations is done
iteratively in the examples presented earlier. With
a more complex requirement, it is easier to use
recursion. Here’s a recursive procedure for gener-
ating the symbols in the order needed:

procedure lgen(sym, rule, gener)

   if gener = 0 then return sym
   suspend lgen(!rule[sym], rule, gener – 1)

end

The current symbol is sym, rule is the table, and
gener is the number of generations remaining to be
done.

When gener reaches 0, the current symbol is
returned, ending the recursion. Otherwise, lgen()
is called recursively for each symbol in the replace-
ment for the current one, but with one less genera-
tion to go. (This formulation assumes there are
replacements in the table for all symbols, but it’s
easy enough to recast it for the case where that’s
not true.)
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be expressed by drawing operations — drawing
operations for which turtle graphics [8] are ideally
suited.

We’ll explore this subject in the next issue of
the Analyst. For now, we’ll leave you with the
image below.
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            move(2)
            replace := tab(0)
            rule[sym] := replace
            allsyms ++:= replace
            }
         else if keyword := tab(find(":")) then {
            move(1)
            value := tab(0)
            case keyword of {
               "axiom": {
                  allsyms ++:= value
                  axiom := value
                  }
               "gener": gener := value
               default:
                  stop("∗∗∗ invalid line: ", line)
               }
            }
         else stop("∗∗∗ invalid line: ", line)
         }

   if /axiom then stop("∗∗∗ no axiom")
   /gener := 5 # default

   every sym := !allsyms do
      /rule[sym] := sym

   every writes(lgen(!axiom, rule, gener))
   write() # terminate line

end

procedure lgen(sym, rule, gener)

   if gener = 0 then return sym
   suspend lgen(!rule[sym], rule, gener – 1)

end

Conclusion

Aside from the claim that L-systems can be
used to model the development of simple plants,
the results produced by our program are just strings
of essentially meaningless symbols — the result of
applying replacement rules to the axiom in a fixed
way. In fact, many L-systems have nothing to do
with plants and can be entirely arbitrary.

Lindenmayer himself originally consider L-
systems only as a formal approach to plant devel-
opment. Two of his graduate students [7] had an
idea that turned out to have startling ramifications:
using the strings produced by L-systems to actu-
ally draw the plants being modeled.

Their method involved interpreting specific
symbols as having graphical meaning that could
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From the Wizards

In an earlier article in this feature [1], we
showed how a case expression could be used to
select an expression to evaluate depending on
whether a number was less than, equal to, or
greater than another. That is, of course, just a
special case of using comparisons in case expres-
sions. Here we’ll show how you can select an
expression depending on the range into which it
falls.

Suppose, for example, that you want to assign
letter grades based on test scores. The conventional
approach looks like this:

if score > 92 then grade := "A"
else if score > 80 then grade := "B"
else if score > 62 then grade := "C"
else if score > 50 then grade := "D"
else grade := "F"

Since if-then-else returns the selected ex-
pression, this can be written more compactly as

grade :=
   if score > 92 then "A"
   else if score > 80 then "B"
   else if score > 62 then "C"
   else if score > 50 then "D"
   else "F"

There is an alternative formulation takes ad-
vantage of the fact that a selector in a case expres-
sion can succeed or fail:

grade := case score of {
   (score > 92) & score: "A"
   (score > 80) & score: "B"
   (score > 62) & score: "C"
   (score > 50) & score: "D"
   default: "F"
   }

Case selectors are
evaluated in or-
der. If score is
greater than
92, the first se-
lector suc-
ceeds, the con-
junction pro-
duces score,
which matches
the case value,
and the result of
the case expres-

sion is "A". If score is not greater than 92, the case
selector fails, the next case selector is evaluated,
and so on.

We grant that this kind of construction is a bit
contrived. But it suggests some of the things that
can be done by exploiting the evaluation of expres-
sions in case selectors.

Reference

1. “From the Wizards”, The Icon Analyst 18, p. 4-
12.

Local Identifiers

A lot of attention is paid to debugging; per-
haps not enough is paid to avoiding problems in
the first place. This is the first of three program-
ming tips that can help you prevent bugs in your
Icon programs.

Icon takes a permissive attitude toward scope
declarations. If you don’t declare an identifier that
you use in a procedure, its scope defaults to local,
provided that there is no global declaration for it.

This saves keyboarding and works well most
of the time. When it doesn’t work, the kinds of bugs
that result can be serious and sometimes difficult
to track down.

Consider this simple program:

procedure main()

   every write(words())

end

procedure words()

   while line := read() do {
      line ? {
         while tab(upto(&letters)) do {
            word := tab(many(&letters))

Programming

Tips
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            suspend word
            }
         }
      }

end

The identifiers line and word in words() are
undeclared locals. No problem. But suppose that
you transpose two letters when keyboarding this
program and enter

  suspend wrod

instead of

  suspend word

If you don’t notice your mistake, words() will gen-
erate a sequence of null values and the program
output will consist of blank lines.

You’ll probably figure out the cause of this
particular bug easily enough, but perhaps not until
you’ve translated and run the program and exam-
ined the output.

This kind of problem is easily caught by using
the –u option for the Icon translator. For example,
if the program file is named wordlist.icn, the fol-
lowing will do:

icont –u wordlist

If you make the typing error mentioned above,
the linker will produce the following output:

Translating:
wordlist.icn:
  main
  words
No errors
Linking:
wordlist.icn: "line": undeclared identifier, procedure words
wordlist.icn: "word": undeclared identifier, procedure words
wordlist.icn: "wrod": undeclared identifier, procedure words

Your attention probably will be attracted to
the appearance of both word and wrod in the mes-
sages, and you’ll be able to correct your program
before running it.

We recommend that all local identifiers be
declared, even though Icon doesn’t require it. This
suppresses linker warning messages so any warn-
ing message means you’ve either forgotten to de-
clare a local identifier or you have a local identifier
you didn’t expect. Sure, it takes a bit of extra work.
In the case above, a line of the form

local line, word

is needed at the beginning of the procedure words().

But it’s not that much work, and making it a habit
can save you a lot of time in the long run. (We
personally think the design of Icon is in error on
this point and that, at least, the –u option to icont
should have been the default. You can arrange that
yourself with a simple script.)

There are subtler points about local identifi-
ers. In the procedure words() given above, read,
tab, upto, and many also are undeclared identifiers.
Since they are the names of functions, global decla-
rations for them are implicit and their interpreta-
tion within the procedure is what you expect.

The other side of the coin is that you can
accidentally use the name of a function as an iden-
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What’s Coming Up

In the next issue of the Analyst, we’ll have
another article on Lindenmayer systems, this time
showing how to use turtle graphics to produce
drawings from L-systems.

We have articles in the works on random
numbers, symbolic mathematics, and string invo-
cation. One of these probably will appear in the
next Analyst.

We’ll also have another tip on how to avoid
bugs in Icon programs.

program:

table := table()

That doesn’t even cause a problem if table() is not
called again.

When you write Icon programs, you learn to
avoid local identifiers that are the names of func-
tions. But there are some functions that are rarely
used and that make inviting names for local iden-
tifiers. You may have seen this in some of our
programs:

procedure main(args)

But there is a function args(). Fortunately, it’s not
used often and procedure parameters are auto-
matically declared to be local. Nonetheless, we’ve
tried to use args as a parameter name and as a
function in the same procedure. You can imagine
what happened.

We should mention one subtle point before
ending this tip. If you want undeclared local iden-
tifiers in library procedures to get warning mes-
sages during linking, you need to use –u when you
translate the procedures to get ucode, as in

icont –u –c wordlib

tifier that’s intended to be local. This can get you in
big trouble. Consider

procedure count()

   tab := 0

   every words() do # tabulate words
      tab +:= 1

   return tab

end

Here tab is used to keep a count of the words. Since
tab is not declared to be local and tab is a function,
the use of tab in this procedure refers to the global
identifier. Assigning 0 to it wipes out the initial
function value it had. When words() is called, the
use of tab there refers to the global variable, but it’s
value is zero, not the expected function. All hell
breaks loose, since

tab(upto(&letters))

is equivalent to

0(upto(&letters))

This expression is perfectly legal, if somewhat
meaningless. If an integer is applied to an argu-
ment list, it selects the argument following that
position. As is usual in Icon, a nonpositive specifi-
cation is taken relative to the end of the list. Here,
0 means the argument after the last one, and the
expression simply fails.

Consider the consequences in words(). The
while loop in string scanning immediately fails, no
words are generated, and count() always returns
0. This may be baffling, indeed.

The problem here would have been avoided if
tab had been declared local in count(). Then it
could have been used in count() without affecting
the value of tab in words().

You might argue that using tab as a local
identifier is bad practice. Indeed it is. But it’s an
easy mistake to make. We’ve even seen this in a
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