
The Icon Analyst / 1

April 1994
Number 23

In-Depth Coverage of the Icon Programming Language

The repeated alternation control structure causes
its argument co-expression to be repeatedly acti-
vated until it has no more results.

It’s worth remembering that |@C generates all
the results that the expression for C generates.

This procedure can be generalized to take an
arbitrary number of arguments:

procedure Galt(args)
 local C

 every C := !args do
 suspend |@C

end

For example, the result sequence for

Galt{1 to 3, !"abc", 4 to 5}

is {1, 2, 3, "a", "b", "c", 4, 5}.
It’s tempting to go one step further, replacing

every C := !args do
 suspend |@C

by

 suspend |@!args

 In this issue …

Programmer-Defined Control Operations … 1
Color in X-Icon … 5
Subscription Renewal … 7
Meta-Variant Translators …8
Programming Tips … 11
What’s Coming Up … 12

Programmer-Defined Control
Operations (continued)

In the last issue of the Analyst, we introduced
the concept of programmer-defined control opera-
tions and showed examples of how they could be
used to model existing control structures and to
implement new ones. We’ll continue in the same
vein here.

More Examples

Alternation: In the last article, we showed how alter-
nation could be written as a programmer-defined
control operation:

procedure Alt(args)
 local x

 while x := @args[1] do suspend x
 while x := @args[2] do suspend x

end

We commented there that this procedure could
be written more economically. Here’s a more com-
pact version that doesn’t even need a local variable:

procedure Alt(args)

 suspend |@args[1]
 suspend |@args[2]

end

2 / The Icon Analyst

This expression does not produce alternation,
however. When repeated alternation is applied to
@!args, !args suspends and is resumed, going on
to the next co-expression in args. It’s not until
every co-expression has been processed once that
repeated alternation starts over with the first co-
expression to produce its second result. In fact,
|@!args is a form of parallel evaluation, first pro-
ducing the first result for each co-expression, then
the second for each, and so on. Thus,

procedure Colseq(args)

 suspend |@!args

end

“collates” the sequences for its arguments. For
example, the result sequence for

Colseq{1 to 4, !"abc", 4 to 5}

is {1, "a", 4, 2, "b", 5, 3, "c", 4}.

Notice that when there are no more results for
one argument expression, the others keep going.
Generation only stops when there are no more
results for any argument expression, which causes
repeated alternation to fail.

Goal-Directed Evaluation: Programmer-defined con-
trol operations can help clarify goal-directed evalu-
ation. Here’s a procedure that models the opera-
tion expr1 + expr2:

procedure Add(args) # e1 + e2
 local e1, e2

 while e1 := @args[1] do {
 args[2] := ^args[2]
 while e2 := @args[2] do
 suspend e1 + e2
 }

end

This procedure illustrates that although the
addition of two values produces only one result, an
addition expression generates results if its argu-
ment expressions do. For example, the result se-
quence for Add{1 to 3, 10 | 100} is {11, 101, 12, 102,
13, 103}. The nested while loops show the last-in,
first-out aspect of goal-directed evaluation. All the
alternatives for the second argument expression
are produced before another alternative for the
first argument expression. And, for each alterna-
tive for the first argument expression, the second
argument expression is evaluated anew, as shown

by the refreshing of its co-expression.
Contrast this with parallel addition, which

generates the sums of corresponding alternatives
for each argument expression:

procedure ParaAdd(args)
 local e1, e2

 while (e1 := @args[1]) &
 (e2 := @args[2]) do
 suspend e1 + e2

end

Here the loop terminates when either of the argu-
ment expressions runs out of values. The result
sequence for ParAdd{1 to 3, 10 | 100} is {11, 102}.

Goal-directed evaluation applies in the same
way to the evaluation of the arguments of all
operators and functions. Ignoring additional op-
tional arguments and the handling of defaults, a
programmer-defined control operation for
find(expr1, expr2) has the same form as the pro-
grammer-defined control operation for expr1 +
expr2:

procedure Find(args)
 local e1, e2

 while e1 := @args[1] do {
 args[2] := ^args[2]
 while e2 := @args[2] do
 suspend find(e1, e2)

 }

end

Note that, unlike addition, find(e1, e2) itself may
generate a sequence of results. This procedure
illustrates that for any list of argument values, a
function that is a generator produces all the results
for those values before goal-directed evaluation
supplies any new argument values.

This programmer-defined control operation
can be generalized to handle any function of two
arguments:

procedure Fnc2(args)
 local fnc, e1, e2

 while fnc := @args[1] do {
 args[2] := ^args[2]
 while e1 := @args[2] do {
 args[3] := ^args[3]
 while e2 := @args[3] do
 suspend fnc(e1, e2)

The Icon Analyst / 3

 }
 }

end

Since the first argument of Fnc2{ } is the function
that is applied to the second and third arguments,
the subscripts for args are shifted accordingly.
Note that in this more general form, the expression
for the function can itself be a generator. Thus,

Fnc2{upto | find, s1, s2}

is the programmer-defined control operation ver-
sion of

(upto | find)(s1, s2)

See Reference 1 for remarks about this kind of
construction.

This approach to writing programmer-de-
fined control operations can be generalized to func-
tions with any number of arguments. Without
thinking just how this might be done, the general
approach should come to mind: recursion [2].

String Scanning: String scanning provides a much
more substantive example of modeling an existing
Icon control structure:

procedure Scan(args) # e1 ? e2
 local e1, e2
 local inner_pos, inner_subject
 local outer_pos, outer_subject

 while e1 := @args[1] do { # e1

 # save outer environment
 outer_subject := &subject
 outer_pos := &pos

 # set up inner environment
 &subject := e1
 &pos := 1

 # start out fresh for expr2
 args[2] := ^args[2]
 while e2 := @args[2] do { # e2

 # save inner environment
 inner_subject := &subject
 inner_pos := &pos

 # restore outer environment
 &subject := outer_subject
 &pos := outer_pos

 # suspend from scanning
 suspend e2

 # update outer environment
 outer_subject := &subject
 outer_pos := &pos

 # restore inner environment
 &subject := inner_subject
 &pos := inner_pos
 }

 # restore inner environment
 &subject := outer_subject
 &pos := outer_pos
 }

end

We won’t attempt to explain all the aspects of
string scanning, including the maintenance of scan-
ning environments, that this programmer-defined
control operation handles. See Reference 3 for a
detailed discussion, as well as a two-procedure
model of string scanning that does not use pro-
grammer-defined control operations. It’s worth
nothing that the basic structure of goal-directed
evaluation is the same for string scanning as it is for
functions and operations.

Result Selection: We’ll finish our examples of pro-
grammer-defined control operations with
Select{expr1, expr2}, which selects the results of
expr1 according to positions specified by expr2.
For example,

Select{!"abcde", 1 | 3 | 5}

generates the first, third, and fifth values gener-
ated by "!abcde" and has the result sequence {"a",
"c", "e"}. We’ll require that expr2 generate posi-
tive integers in increasing order:

procedure Select(args)
 local i, j, x

 j := 0
 while i := @args[2] do {
 while j < i do
 if x := @args[1] then j +:= 1
 else fail
 if i = j then suspend x
 else stop("selection sequence error")
 }

end

You might try your hand at rewriting Select{ } to
allow expr2 to produce positive integers in non-
decreasing order, so that

Select{!"abcde", 1 | 3 | 3 | 5}

4 / The Icon Analyst

would have the result sequence {"a", "c", "c",
"e"}.

Limitations of Programmer-Defined
Control Operations

As suggested at the end of the preceding
article on programmer-defined control structures,
there are limitations to what programmer-defined
control operations can do. In fact, if you’ve tried
using the programmer-defined control operations
shown in that article, you probably already have
stumbled across the major problem — the scope of
identifiers in co-expressions.

When a co-expression is created, it includes
copies of any local variables for the procedure in
which it is created. It’s necessary to copy local
variables, since a co-expression may survive the
call of the procedure in which it is created (for
example, a co-expression can be returned from the
procedure call in which it is created). In fact, every
co-expression created in a procedure has its own
copies of the procedure’s local variables. As a
result, although two co-expressions can have iden-
tifiers with the same names, these identifiers are
distinct. As a consequence, local variables cannot
be used to share data between co-expressions.

This has disastrous consequences for the loop-
ing control structures we’ve modeled, since data
sharing often is essential in such control structures.
Suppose, for example, that

every i := 1 to 10 do
 p(i)

is modeled by

Every{i := 1 to 10, p(i)}

Assuming i is a local variable, the two in-
stances of i here are distinct, since they reside in
two different co-expressions. Thus, incrementing i
in the first argument expression has no effect on i
in the second argument expression.

This problem can be overcome by using a
non-local identifier, either global or static:

static i
…

Every{i := 1 to 10, p(i)}

Needless to say, this is not an attractive solu-
tion. For this reason, programmer-defined control

operations are not suitable for actual use in control
structures in which argument expressions rely on
sharing data via variables.

Another limitation of programmer-defined
control operations is that they can’t handle control
structures that depend on the lexical context in
which they occur. For example,

create break

is syntactically incorrect, since the break is not in a
loop. Even if the create is in a loop, the co-expres-
sion containing the break could be exported out of
the loop, so this kind of construction is not allowed.
As a result,

While{s:= read(), if s == "stop" then break}

also is syntactically erroneous.

Conclusion

Despite some limitations, programmer-de-
fined control operations are useful for understand-
ing existing Icon control structures, experimenting
with new ones, and for some kinds of expression
evaluation, such as parallel evaluation, that other-
wise are not available in Icon.

You’ll find more examples in the Icon pro-
gram library. Look at pdco.icn and pdae.icn. But
you’ll learn a lot more if you try to write some of
your own. If you come up with programmer-de-
fined control operations that you think are inter-
esting, send them to us. If we get enough, we’ll
discuss them in a future article in the Analyst.

References

1. “Result Sequences”, Icon Analyst 7, pp. 5-6.

2. “Programming Tips”, Icon Analyst 13, pp. 10-
12.

3. “Modeling String Scanning”, Icon Analyst 6,
pp. 1-2.

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.

The Icon Analyst / 5

Color in X-Icon

Editors’ Note: Icon’s graphics facilities are being rede-
signed and we expect to release a new version of Icon
with these changes soon. This article, as well as previous
ones about graphics, describe what’s in Version 8.10.
When the new version comes out, be sure to check the
documentation for changes and new features.

Color Maps

If you get further into the use of color than just
using few different colors for identifying objects
and attracting attention to important situations,
you’ll run into one of the most troublesome aspects
of dealing with colors.

Most modern color monitors are capable of
displaying a very large number of different colors.
224 colors (nearly 17 million) are common. On the
other hand, the number of different colors that can
be displayed at any one time is usually very lim-
ited. This limit is determined by the number of
planes in the frame buffer used to drive the monitor.
One plane is provided for each bit associated with
a pixel on the screen. One bit, with one plane,
supports only one color — a bi-level, black-and-
white display. Color monitors typically have 8
planes, allowing 28 = 256 different colors to be
displayed at one time. The attribute depth gives
the number of planes used in the colormap. For
example if XAttrib(“depth”) returns 1, the display
is bi-level. If it returns 8, 256 different colors (or
maybe gray levels) are supported.

Because of the limited ability of the human
eye to distinguish between colors, a number such
as 256 is not as limiting as it might seem. Fairly
realistic pictures can be composed from 256 differ-
ent colors as long as there is a wide range of colors
from which to chose. The real problem comes from
the fact that the different available colors are shared
by all the applications that use the screen. This
includes colors your window system manager may
use to decorate the title bars, as well as images
belonging to other applications that are in the
background when your Icon program is running.

On most platforms, the colors that appear on
the screen are represented in a color map in which
different colors are allocated. Different applica-
tions that use the same color share an entry in the
color map. If the color map is full when a new color
is needed, Icon creates a virtual color map that

initially has only the colors your Icon application
needs and then allocates new colors in this virtual
color map. This usually causes the colors for im-
ages associated with other applications to “go
strange”, since they still reference the same places
in the color map, but the colors may have changed.

Even with a virtual color map, the limitation
on the number of different colors can become a
problem for applications that display images with
many colors, especially if the colors change.

The function XFreeColor(s1, s2, …) frees the
specified colors, allowing the corresponding en-
tries in the color map to be reused. Another way to
free colors is to close a window or completely erase
it.

Using Color

Color specifications can be used to select the
foreground and background colors when a win-
dow is opened and to change these colors using
XFg(), XBg(), and XAttrib().

When several different colors are used to
indicate different situations to identify different
kinds of objects, graphic contexts that differ only in
their foreground colors can be useful.

For example, an application that displays dif-
ferent kinds of Icon values might use different
colors to distinguish different types. A table of
graphic contexts provides an easy and quick way
to pick the appropriate color, as in

value := table()

value["integer"] := XBind(&window, , "green")
value["real"] := XBind(&window, , "blue")
value["cset"] := XBind(&window, , "brown")

...

write(value[type(x)], image(x))

Mutable Colors

Another problem with color arises if you want
to change all the pixels of one color to another
color. Even if you know where the pixels are, it may
be complicated and time-consuming to change
them.

Some color displays can dynamically change
the RGB values for color map entries and hence
change the displayed colors almost instantaneously.
Color map entries used in this way are called
mutable.

6 / The Icon Analyst

The function XNewColor() allocates a mu-
table color if one is available but fails if one isn’t.
XNewColor() returns a small negative integer that
represents this mutable color. This integer then can
be used in XFg() , XBg(), and XAttrib().
XNewColor(s) can be used to initialize the new
color, where s is a string specification for the color.

The function XColor(i, s) can be used to change
a mutable color, where i is a value produced by
XNewColor() and s is a color specification.

Monochrome Portability

Applications that are designed for color
screens can be ugly or unusable on monochrome
screens unless some attention is paid to portability.

On a bi-level screen, XColor() can only choose
black or white, and it returns whichever of these is
closest to the requested color. On a multi-level
monochrome screen, it chooses the closest gray.

Choosing black or white is about the best that
can be done for drawing lines or writing text, but it
doesn’t work very well for colors that cover large
areas. The Icon program library procedure
XShade(w, s) addresses this problem. On a color
screen, XShade() acts just like XFg(). On a bi-level
display, XShade() sets the graphic context to use
the halftone pattern that approximates the dark-
ness of the requested color.

The best results usually are obtained by de-
signing an application to consider at least two
types of displays: bi-level and color. A test such as

if XAttrib("depth") = 1 then ...

might be used.
Note that this approach groups gray-scale

displays with color displays — both have depths
greater than 1 — on the assumption that approxi-
mating colors with grays looks better than using
halftones.

Reading the Canvas

In some applications, you may need to know
the colors of pixels on the canvas. The function
XPixel(x, y, w, h) generates the pixel colors from
the specified rectangular area. Colors are gener-
ated starting in the upper-left corner of the rectan-
gular area, advancing down each pixel column
before going to the next. Pixel colors are repre-
sented by integers. Ordinary colors are nonnega-
tive integers while mutable colors are given by the

negative integers produced by XNewColor(). Or-
dinary colors are encoded in three eight-bit bytes.
The most significant byte is zero, followed by bytes
for the red, green, and blue components of the
color. The 8-bit color values are the most signifi-
cant bits of the regular 16-bit color values. Conse-
quently color precision may be lost. (The encoding
is a concession to efficiency and suffices for most
situations.)

Printing Color Images

One problem that plagues the use of color is
the need to produce printed copies of color images
for use in technical reports, dissertations, journal
papers, and so forth.

Although new technologies have lowered the
cost and increased the ease of color printing, it’s
still impractical for most of us. Color images often
are printed in black and white in hope of capturing
at least some sense of the distinctions that color
provides. Half-toning is used to convert colors to
different shades of gray.

The trouble with this is that radically different
colors may appear similar or even identical when
printed. See Figure 1.

Figure 1. Colors Printed as Grays

Ways of dealing with this problem are be-
yond the scope of this article, but if you expect to

The Icon Analyst / 7

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602) 621-8448

fax: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

…uunet!arizona!icon-project

and

© 1994 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Bright Forest Company
 Tucson Arizona

Subscription Renewal

For many of you, the next issue is the last in
your present subscription to the Analyst and
you’ll find a subscription renewal form in the
center of this issue. Renew now so that you won’t
miss an issue.

Because of the way that the budget for the
Icon Project is handled, we need to know soon
what to expect for our next fiscal year. Your prompt
renewal helps us plan.

Renew
Now!

print color images in black and white, you may
want to consider color selection in advance. An-
other possibility is to use an image-manipulation
application to convert colors to ones more suitable
for black-and-white printing when the time comes.

Conclusion

This concludes our discussion of color in Icon.
Although we’ve described all the features, we’ve
just scratched the surface of what’s involved in
using color.

There are many complications and lots of
effort and experience are needed to use color effec-
tively. But there also are many potential rewards,
not the least of which is the fun involved and the
satisfaction of getting really nice results.

8 / The Icon Analyst

Meta-Variant Translators

In an earlier issue of the Analyst [1], we
described variant translators, a system for con-
structing robust preprocessors for Icon programs.
The variant translator specification system makes
it easy to specify changes to programs, such as the
one for modeling string scanning [2]:

expr1 ? expr2 ➛ Escan(Bscan(expr1), expr2)
A single specification does the trick and works

regardless of the complexity of the expressions
involved:

Bques(x, y, z) "Escan(Bscan(" x ")," z ")"

Writing such specifications is fairly easy, once
you learn a few rules. However, if a variant trans-
lation is complicated, its specification may be te-
dious to construct and prone to error. Further-
more, such specifications aren’t feasible for spe-
cialized variant translations, such as for translat-
ing one procedure name differently from all other
procedure names. Such translations can be accom-
plished by using C functions, but the kind of code
that is needed is tedious to write, hard to modify,
and requires proficiency in C.

This article describes a higher-level approach
for producing variant translators, called meta-vari-
ant translators, that allows variant translations to
be written in Icon instead of C.

An ordinary variant translator translates an
Icon program into another Icon program, as shown
in Figure 1. To change the translation, it is neces-
sary to change the translation specifications and
build a new variant translator, vt, as indicated by
the asterisk.

A meta-variant translator translates an Icon
program into another Icon program, which is trans-
lated and linked with a library of code-generation
procedures, gen.icn, to produce the final Icon pro-
gram, as shown in Figure 2.

The standard version of gen.icn contains pro-
cedures that perform an “identity” translation, so
that the output is same to the input except for
layout. A variant translation is accomplished by
making changes to the code-generation procedures
in gen.icn, rather than by changing the variant
translator — that is, by using a variant gen.icn.
Note that changing the translation does not require
changing mvt.

Figure 3 shows a simple example of code
generation for identity translation. In the second
step, the output of the meta-variant translator is
combined with gen.icn. Representative procedures
from the standard version of gen.icn are shown in
Figure 4.

As shown there, the standard procedure for
translating scanning expressions is

vt*p.icn pt.icn icont pt

mvtp.icn pm.icn icont –x pt.icn icont pt

gen.icn*

Figure 2. Meta-variant translation

Figure 1. Variant translation

The Icon Analyst / 9

procedure Scan_(e1, e2)

 return "(" || e1 || " ? " || e2 || ")"

end

To get the variant translation for modeling string
scanning, it’s only necessary to change this proce-
dure to

procedure Scan_(e1, e2)

 return "Escan(Bscan(" || e1 || ")," || e2 || ")"

end

As another example, suppose you want a
variant translation to convert calls of map() to calls
of Map() so that you can trace the function map()
by providing a procedure Map() that does the
same thing. The declaration for Map() might be

procedure Map(s1, s2, s3)

 return map(s1, s2, s3)

end

The variant translation can be accomplished
by adding the line

procedure main()
 while line := read() do
 line ? process()
end

Input to mvt

procedure program()
Proc_("main",)
Reduce_(While_Do_(Asgnop_(":=",Var_("line"),
Invoke_(Var_("read"),Null_())),Scan_(Var_("line"),
Invoke_(Var_("process"),Null_()))),)
End_()
end

Output of mvt

procedure main()
while (line := read()) do (line ? process())
end

Result of Running the Output of mvt

Figure 3. Meta-variant identity translation

if s == "map" then s := "Map"

at the beginning of the procedure Proc_() as
shown in Figure 4.

It’s also necessary to get the procedure
declaration for Map() into the final pro-
gram. This can be done by adding the fol-
lowing lines to the beginning or end of
main() in gen.icn:

write("procedure Map(s1, s2, s3)")

write(" return map(s1, s2, s3)")

write("end")

An alternative approach, which is
more desirable in the case of more elabo-
rate variant translations of this type, is to
add

write("link libe")

at the beginning or end of main() in gen.icn
and provide the code to be linked with the
final program in libe.icn.

If you want to trace a generator, be
sure to use suspend instead of return; oth-
erwise your procedure won’t produce all
the results produced by the generator. For
example, for seq(), the procedure would be

procedure Seq(i1, i2)

 suspend seq(i1, i2)

end

In fact, it doesn’t hurt to use suspend for functions
that aren’t generators.

Conclusions

As described above, meta-variant translators
allow you to write variant translators in Icon. The
job is so easy that all kinds of things are worth
doing that you’d probably not consider with stan-
dard variant translators and C.

There are, however, a few potential problems
with meta-variant translators. Producing a trans-
lation, once you have gen.icn the way you want it,
is somewhat more complex and slightly slower
than for standard variant translators. The com-
plexity can be hidden in a script and the loss in
translation speed generally is insignificant, given
the amount of programming time that it takes to
craft a standard variant translator, as opposed to a
meta-variant one.

10 / The Icon Analyst

A more serious problem is the amount
of memory required to build the Icon pro-
gram that produces the final translation. As
illustrated in Figure 3, the output of mvt is
considerably larger than the input to mvt. If
the input to mvt is a large program, the
output is a huge one. It’s also necessary to
link gen.icn with the output of mvt, adding
to the size of the intermediate program. The
memory needed usually is not a problem on
platforms in the workstation class, but it
certainly can be on personal computers.

As mentioned above, it’s not necessary
to change mvt (a standard variant transla-
tor) to change the variant translation. This is
true as long as the input language is stan-
dard Icon. If the input language is different
from Icon, as say, in the variant translator
Seque for [3], then a different version of mvt
is needed. If the output language is different
from Icon, as it is in the translation of Rebus
to SNOBOL4 [4], then a considerably differ-
ent version of gen.icn may be needed.

Getting Meta-Variant Translators

The meta-variant translator system
described here is available by anonymous
FTP to cs.arizona.edu; cd /icon/meta and
get READ.ME to see what to do next.

References

1. “Variant Translators”, Icon Analyst 7,
pp. 2-5.

2. “Modeling String Scanning”, Icon Ana-
lyst 6, pp. 1-2.

3. “Lost Languages — Seque”, Icon Ana-
lyst 19, pp. 1-4.

4. “Lost Languages — Rebus”, Icon Ana-
lyst 18, pp. 1-4.

Downloading Icon Material

Most implementations of Icon are avail-
able for downloading electronically:

RBBS: (602) 621-2283

FTP: cs.arizona.edu (cd /icon)

main() calls program(), which is produced by the
meta–variant translation.

procedure main()

 program()

end

Declarations

procedure Proc_(s, es[]) # procedure s(v1, v2, ...)
 local result, e

 if ∗es = 0 then write("procedure ", s, "()")

 result := ""
 every e := !es do
 if \e == "[]" then result[–2:0] := e || ", "
 else result ||:= (\e | "") || ", "

 write("procedure ", s, "(", result[1:–2], ")")

 return

end

procedure End_() # end

 write("end")

 return

end
etc.

Expressions

procedure Asgnop_(op, e1, e2) # e1 op e2

 return "(" || e1 || " " || op || " " || | e2 || ")"

end

procedure Binop_(op, e1, e2) # e1 op e2

 return "(" || e1 || " " || op || " " || e2 || ")"

end

procedure Scan_(e1, e2) # e1 ? e2

 return "(" || e1 || " ? " || e2 || ")"

end

procedure Invoke_(e0, es[]) # e0(e1, e2, ...)
 local result

 if ∗es = 0 then return e0 || "()"

 result := ""
 every result ||:= !es || ", "

 return e0 || "(" || result[1:–2] || ")"

end

procedure Null_() # &null

 return ""

end

procedure While_Do_(e1, e2) # while e1 do e2

 return "while " || e1 || " do " || e2

end
etc.

 Figure 4. Standard code-generation procedures

The Icon Analyst / 11

Breaking Out of Loops

You know that you can get out of a loop by
evaluating break while inside the loop. This ap-
plies to any kind of loop: every-do, repeat, until-
do, and while-do.

Two Icon programmers, Ray Pereda and Paul
Abrahams, recently pointed out to us that the Icon
book barely mentions that break has an optional
argument. In looking through the book, we see
only two places where break is used with an
argument (one of which is rather amazing) and
these are buried in a sample program at the back of
the book [1].

We touched on this subject in a recent Ana-
lyst article [2] but hardly did it justice. We’ll correct
these omissions here.

The reason that you may not think about
using break with an argument is that the argument
is optional and defaults to the null value. Since
break accomplishes its function of transferring
control to the end of a loop without an explicit
argument, it may not be obvious what use an
argument could have.

In order to understand the function of an
argument to break, it may be helpful to think of the
execution of

break expr

as replacing the loop in which it occurs by expr as
if it were a dynamic macro expansion.

Thus, in

while … do { # outer loop
…

 while … do { # inner loop
 …
 break "break out of loop"
 …

 }
…

 }

the result of executing the break expression can be
pictured as

while … do { # outer loop
…
"break out of loop"
…

 }

This example illustrates why you may not
have thought of using an argument with break
even if you knew it was possible: Since a loop fails
when is terminates normally, it usually is written
as an isolated expression whose outcome is ig-
nored. So, in the case above, if break causes a loop
to produce a value, there’s nothing to use that
value.

A glance at the example above suggests a use,
however. Suppose you want to know if a loop is
terminated by break . You would write

write(&errout,
 while … do {

 …
 break "break out of loop"
 …

 }
)

If the loop terminates normally, it fails and nothing
is written. If, however, the break is evaluated,
break out of loop is written to standard error
output.

There are more generally useful forms of break
that you may have seen in programs but not thought
much about. For example, the argument of break
can be break or next. The expression break break
breaks out of two levels of loop, while break next
breaks out of the current loop and transfers control

Programming
Tips

12 / The Icon Analyst

to the beginning of the enclosing loop. These uses
are illustrated in the diagrams below. You may
find the macro expansion analogy useful in under-
standing these examples.

while … do { outer loop
 …
 while … do { inner loop
 …
 break break
 …
 }
 …
 }

while … do { outer loop
 …
 while … do { inner loop
 …
 break next
 …
 }
 …
 }

You’ll even see expressions like break break
break in some programs. (Every time we see this,
we’re reminded of the first line of one of Alfred
Lord Tennyson’s poems: “Break, break, break, on
thy cold gray stones, O sea!”) You’re not likely to
see very long strings of breaks, since loops rarely
are nested many levels deep. If they are, it’s hard
for human beings to grasp the structure. But there’s
no limit to what a program that writes a program
may do in this regard.

As mentioned above, most uses of break do
not have arguments that supply an explicit loop
value. Normally, for the reasons mentioned, the
default null value doesn’t cause any problems. If,
however, a program relies on the failure of a loop,
whether or not it terminates normally, you can
assure this by using

break &fail

Incidentally, Dave Hanson introduced us to
the idea of viewing conditional expression evalua-
tion as a kind of dynamic macro expansion. At the
time, we were considering the semantics of Icon’s

if expr1 then expr2 else expr3

Originally, expr2 and expr3 were limited to one

result. The question was asked “Why perform this
gratuitous limitation?” One person said ”Some-
thing bad might happen if expr2 or expr3 could be
generators.” This seemed vague to others of us,
especially since none of us could point to an actual
example where generation would cause a prob-
lem. But we had nagging doubts and no really
strong argument for the usefulness of generators in
this situation.

Dave suggested that we view the control struc-
ture as a macro, so that

if expr1 then expr2 else expr3

is “replaced” by expr2 or expr3, depending on
whether expr1 succeeds or fails. Viewed that way,
limitation seemed unnatural and we removed it.
Nothing bad happened. And, although rarely used,
there are situations in which generators in the arms
of a selection expression are both natural and use-
ful [3].

References

1. The Icon Programming Language, second edition,
Ralph E. Griswold and Madge T. Griswold,
Prentice Hall, Englewood Cliffs, New Jersey, 1990,
pp. 318-321.

2. “Programming Tips — Scanning Lines of a File”,
Icon Analyst 19, pp. 10-12.

3. “Programming Tips — Exploiting Expression-
Based Syntax”, Icon Analyst 11, p. 11.

What’s Coming Up

In the next issue of the Analyst, we’ll con-
clude the series of articles on graphics with a
discussion of image files. In addition, we’ll have an
article on turtle graphics, which are based on a
navigational view of drawing. And we’ll start a
new feature that describes some of the more useful
programs and procedures in the Icon program
library.

