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tive, right-brained. This is the crux of the matter.
Certainly we use our left brain for problem solv-
ing, but how many of us think exclusively in terms
of if … then … else? Imagination, creativity, great
leaps of conception seem to originate in the induc-
tive, parallel-functioning right brain. And this is
precisely where SNOBOL4’s pattern-matching
abilities lie.

 SNOBOL4 still is in widespread use, and most
SNOBOL4 enthusiasts point to pattern matching as
its most attractive feature. Yet SNOBOL4 has sev-
eral problems that diminish its usefulness and turn
away potential users.

One of the problems with SNOBOL4 is funda-
mental and lies in the “marriage” of the two dis-
similar languages, L  and P. You have to think
differently to program in P than you do to program
in L . Shifting from one language to another is
distracting and leads to confusion and errors. Icon
tried to solve this problem by integrating string
scanning into an imperative context, but some
SNOBOL4 programmers who also know Icon still
tout the power of pattern matching with its declara-
tive flavor.

Another problem with SNOBOL4 lies in its
syntax, which relies on conditional gotos and labels
to control program flow in L . It has none of the
conventional control structures that are so useful
for formulating computation and guiding logical
thinking.

SNOBOL4 to Rebus

It is this second problem that Rebus attempts
to solve. The idea is simple: Provide a syntax similar
to Icon’s for a better structured L and translate
Rebus programs into SNOBOL4. This leaves the
pattern-matching powers of P intact (and does not
solve the L -P problem). Thus, Rebus has all the
power of SNOBOL4, but it is packaged differently.

For the most part, the L  component of Rebus
is like Icon, while its P component is like SNOBOL4,
with a few changes for syntactic consistency. Some

Lost Languages — Rebus

In the last issue of the Analyst, we described
SL5, the precursor to Icon. In this article, we’ll
describe another, but quite different “lost language”
— Rebus.

Rebus is a hybrid of SNOBOL4 and Icon. It has
a syntax that is similar to Icon’s but with the seman-
tics of SNOBOL4.

Background

SNOBOL4 is essentially two languages pack-
aged together. One of these languages is imperative
(“Do this, do that.”) in which control flow is sequen-
tial and computations are of an ordinary nature.
We’ll call this language L . The other language, for
pattern matching, is more declarative in nature
(“Here’s what it looks like, find something.”). We’ll
call this language P. P was novel when it was de-
signed in the 1960s and still is unusual compared to
most other programming languages. If you know
SNOBOL4, you’ll understand what we mean. If you
don’t, the following quotation will give you some
hints [1]:

Programming languages such as Pascal, Basic, C,
and assembler, with their if … then … else, repeat
… while mentality, are serial, sequential, plod-
dingly left-brained. [Pattern matching in]
SNOBOL4 seems to be parallel, associative, intui-
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aspects of the L  component of SNOBOL4 were
carried over to Rebus. For example, Rebus uses
SNOBOL4-style input and output, in which as-
signment to the variable output results in the
value being written, and use of value of input
causes a line to be read to supply that value.

There are lots of details that aren’t important
unless you’re writing Rebus programs [2]. A gen-
eral idea of what’s involved can be seen in Figures
1-3, which show the same program written in
SNOBOL4, Rebus, and Icon. To avoid a false im-
pression of differences, the SNOBOL4 program is
written with lowercase letters, although standard
SNOBOL4 requires uppercase ones.

At first glance, the three programs may not
appear to be very different. Compare the SNOBOL4
version to the Rebus version. Even if you don’t
know SNOBOL4, you can see the use of condi-
tional gotos and labels in the SNOBOL4 version,
while the Rebus version uses conventional control
structures. The Rebus version is somewhat shorter
than the SNOBOL4 version, partly because of other
syntactic conveniences that Rebus provides. The
Icon version, as expected, looks much like the
Rebus version.

Although Rebus doesn’t attempt to address
the L -P problem, it’s worth noting how patterns
are used in the SNOBOL4 and Rebus versions of
the program, as compared to Icon’s string scan-
ning. In the SNOBOL4 and Rebus versions, wpat is
assigned a pattern value. This pattern is a small P
program that is created during program initializa-

function main()

      letter := &lcase || &ucase
      wpat := break(letter) & span(letter) . word
      count := table()

      while text := input do
         while text ?– wpat do
            count[word] +:= 1

      if result := sort(count) then {
         output := "Word count:"
         output := ""
         i := 0
         repeat output := rpad(
            result[i +:= 1,1],15) || lpad(result[i,2],4)
         }
      else output := "There are no words"

   end

Figure 2. Rebus Word-Counting Program

 procedure main()

      letter := &lcase ++ &ucase
      count := table(0)

      while text := read() do
         text ? while tab(upto(letter)) do
            count[tab(many(letter))] +:= 1

      result := sort(count, 3)

      if ∗result > 0 then {
         write("Word count:\n")
         while write(left(get(result), 15),
            right(get(result),4))
         }
      else write("There are no words")

   end

Figure 3. Icon Word-Counting Program

tion and subsequently is used to analyze the string
text, find a word in it, and delete all but the
remaining portion. The point is that wpat is cre-
ated in one place and subsequently used in an-
other. In the Icon version of this program, conven-
tional string scanning is used, in which scanning
expressions operate directly on text.

Discussion

Why didn’t Rebus take over, at least in the
SNOBOL4 programming community? Part of the
reason lies in the fact that Rebus doesn’t offer that
much of an advantage over SNOBOL4. And to use
Rebus, a SNOBOL4 programmer has to make an

letter = "abcdefghijklmnopqrstuvwxyz"
+ "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

wpat = break(letter) span(letter) . word
count = table()

read text = input :f(sort)
findw   text wpat = :f(read)
count[word] = count[word] + 1

+ :(findw)
sort result = sort(count) :f(nowords)

output = "Word count:"
output =
i = 0

print i = i + 1
output = rpad(result[i,1],15)

+ lpad(result[i,2],4) :s(print)f(end)

nowords output = "There are no words"
end

Figure 1. SNOBOL4 Word-Counting Program
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investment in learning a new syntax and convert-
ing existing programs.

From an Icon programmer’s point of view,
there’s not only learning a new syntax, but also the
semantics of SNOBOL4. Icon also has many fea-
tures that SNOBOL4 lacks, including a more pow-
erful expression-evaluation mechanism and a more
extensive function repertoire.

Another strike against Rebus lies in the way it
is implemented. A pre-
processor (actually an
Icon variant translator
[3]) translates Rebus
source code to
SNOBOL4 source code,
which then runs under
SNOBOL4. Using a pre-
processor makes the
implementation easy,
but it adds another
“layer”. The layer can
be hidden in a script,
but it’s still there, and
both the preprocessor
and SNOBOL4 are
needed to run Rebus.

P r e p r o c e s s o r s
also create problems in
relating run-time errors
to the source program,
both in nature and in
location. The prepro-
cessor for Rebus goes
to some lengths to
handle the location
problem, as is illus-
trated in Figure 4,
which shows the actual
SNOBOL4 program
produced from the Re-
bus program in Figure
2 (white space has been
adjusted to improve
readability). Errors are,
however, still reported
in SNOBOL4 terms,
which can be discon-
certing for a Rebus pro-
grammer. And, as you
can see, there’s some
overhead for error han-
dling.

Rebus also was never given extensive sup-
port or much publicity. These days even an out-
standingly good programming language doesn’t
stand much of a chance without promotion.

Conclusions

If Rebus had a “native” implementation (a
major undertaking) and had been aggressively
“marketed”, it might have been developed a fol-

DEFINE("MAIN()","NOMAIN_")

line_ = 1; DEFINE("MAIN()") :(L.9)
MAIN

line_ = 2; LETTER = (lcase_ ucase_)
line_ = 3; WPAT = (BREAK(LETTER) SPAN(LETTER) . WORD)
line_ = 4; COUNT = TABLE("")

L.1
line_ = 5; TEXT = INPUT :F(L.2)

L.3
line_ = 6; TEXT WPAT = "" :F(L.4)
line_ = 7; COUNT[WORD] = COUNT[WORD] + 1 :(L.3)

L.4 :(L.1)
L.2

line_ = 8; RESULT = SORT(COUNT) :F(L.7)
line_ = 9; OUTPUT = "word count"
line_ = 10; OUTPUT = ""
line_ = 11; I = 0

L.5
line_ = 13; I = I + 1
line_ = 15; OUTPUT = (RPAD(RESULT[I,1],15) RESULT[I,2]) :S(L.5)

L.6 :(L.8)
L.7

line_ = 17; OUTPUT = "There are no words"
L.8

line_ = 18; MAIN = "" :(RETURN)
L.9

line_ = 0
lcase_ = "abcdefghijklmnopqrstuvwxyz"
ucase_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
&TRACE = 1
DEFINE("ETRACE_(i)")
&ERRLIMIT = 1
TRACE("ERRTYPE","KEYWORD",,"ETRACE_")
MAIN() :(END)

ETRACE_
stno_ = &LASTNO
errtext_ = TRIM(REPLACE(&ERRTEXT,ucase_,lcase_))
OUTPUT = "***** Error Termination *****"
OUTPUT = "   Rebus source line number: " line_
OUTPUT = "   SNOBOL4 statement number: " stno_
OUTPUT = "   SNOBOL4 error number: " &ERRTYPE
OUTPUT = '    SNOBOL4 error text: "' errtext_ '"' :(END)

NOMAIN_ OUTPUT = "***** No main procedure *****" :(END)

END

Figure 4. Output of Rebus Preprocessor
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lowing. But probably not. Rebus is just another of
those many programming languages that have a
few good ideas but never “made it”.

Actually, Rebus is not dead. Although the
Icon Project decided it could not afford to support
Rebus, Mark Emmer at Catspaw, Inc. developed
an MS-DOS version that still is available, both from
Catspaw and electronically from the Icon Project.
Source code is available and it should be possible to
get Rebus working again on other platforms.

Incidentally, the name Rebus was chosen for
its meaning and is not an acronym. ICURYY!
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Output written to a window scrolls automati-
cally, just as if the window were a typical terminal
text screen. When a window is full, text flows off
the top to make room for more at the bottom.

Text also can be read from a window, as
illustrated by

repeat {
   writes(&window, "command? ")
   case read(&window) of {
      "quit": exit()
      "continue": break
      "erase": XEraseArea()
      }
   }

Note the use of writes() so that the text entered by
the user is on the same line as "command? " and
follows it.

The window must be the first argument when
reading and writing to a window, since the default
first argument of output is &output and the de-
fault first argument for reading is &input.

Positioning Text

X-Icon maintains a position at which text is
written. The horizontal text position is advanced
as characters are written, and a newline character
causes the vertical position to advance. Text posi-
tion can be specified in terms of rows and columns
and is one-based. That is, a character in the upper-
left corner of a window is at row 1 and column 1.
This is the position at which the first character is
written after a window is opened if the text posi-
tion is not changed. Rows are counted from top to
bottom in a window, and columns are counted
from left to right.

The function XGotoRC(r, c) sets the window
location to row r and column c and can be used to
set a specific row-column position. For example,
XGotoRC(1,1) sets the location to the upper-left
corner of the window, and text written subse-
quently starts there.

The function XGotoXY(x, y) can be used to set
the text position to a specific x-y pixel location.
Pixel positioning can be useful in placing text more
precisely than row-column positioning allows. Note
that the arguments in XGotoRC() and XGotoXY()
specify horizontal and vertical positions in differ-
ent orders.

Warning: The keywords &x, &y, &row, and
&col refer to the location at which events occur.

Text in X-Icon

When you think of X-Icon, you’re likely to
think of drawing and images, not text. Text is,
however, an important aspect of many graphic
applications. It is fundamental to word processing
and desktop publishing, and some text appears in
almost all graphic applications.

The File Model of Windows

In order to understand how to use text in
windows, it’s necessary to understand how X-Icon
treats windows. A window, created by open()
with the mode "x", is an extension of Icon’s file
data type. (Windows have type "window", not
"file", so that they can be easily distinguished
when programming.) When a window is created,
it is opened for both reading and writing. Icon’s
functions for reading and writing can be used for a
window just as if it were an ordinary file. An
example is:

&window := open("text", "x") |
   stop("∗∗∗ cannot open window")

while write(&window, read())

which fills the window from standard input.
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Changing the values of these keywords does not
change the location at which text is written.

There is a text cursor that indicates the current
window location at which text will be written. This
cursor normally is invisible, but can be made vis-
ible by setting the attribute cursor to on, either
when a window is opened or by XAttrib():

XAttrib("cursor=on")

The text cursor is an underscore and does not
blink. Consequently, it may be difficult to locate in
a large window filled with text or if the text con-
tains underscores.

Fonts

One advantage of using X-Icon in textual
applications is the availability of various text fonts.
A font, as defined in X, is a set of characters in a
particular style and size. The style distinguishes
the appearance of the characters and includes not
only the general characteristics of the characters
(their “face” or “family”) but also whether they are
normal (roman), italic, bold, and so forth.

In this article, most of the text is in a font from
the Palatino family, while program material is in a
font in the Frutiger family. The differences in the
appearances of the two fonts allow program mate-
rial to be easily distinguished from the body of the
text.

Fonts are complicated; immensely compli-
cated. There are thousands of them, including ones
in various languages and some consisting of sym-
bols and “pi” characters for special purposes. Es-
thetics play a very important part in font usage.
This is somewhat diminished in graphic applica-
tions, since the resolution of computer displays is
too low to get really attractive results. In any event,
you don’t have to be a font expert to use fonts in X-
Icon in useful and attractive ways.

Fonts can be divided into two general classes:
monospaced ones, like Courier , in which every
character has the same width, and proportionally
spaced fonts like Palatino, in which characters
have different widths according to their visual
width (an i being narrower than, for example, an
o).

Monospaced fonts are holdovers from type-
writers, line printers, and computer terminals, for
which the printing technology made fixed spacing
necessary. Monospaced fonts have two distinct
advantages: the characters line up in columns and
layout is simple.

Proportionally spaced fonts are more visually
attractive and easier to read than monospaced
fonts, and are, of course, used for most printed
material. They also allow more characters to be
displayed in a given space than monospaced fonts
do.

In X, fonts have string names. Some font
names are simple, like fixed, which is a utilitarian
monospaced font of an average size. In general,
however, X identifies fonts with “names” that con-
tain many dash-prefixed fields, such as the vendor,
the family, various style attributes, the pixel size,
and a few other things that are of interest only to
specialists [1]. An example is shown in Figure 1.

Such font names are pretty daunting. Fortu-
nately you usually don’t have to specify fonts
precisely this way; wild cards (∗) can be used for
fields you don’t care about. For example,

–∗–∗–∗–∗–∗–∗–10–∗–∗–∗–∗–∗–∗–∗

specifies fonts that are 10 pixels high.
There also are some short font names in addi-

tion to "fixed". Still, font specification in X is
painful. It may (or may not) help you to know that
the X Consortium had reasons for using this method
of font identification [1]. In any event, you’re stuck
with it, although there is some help for font selec-
tion. See the procedure XBestFont() in xbfont.icn
in the Icon program library, and run tryfont to see
how it works.

If font names weren’t bad enough, fonts re-
side on the X server and vary from server to server.
The same font may have different names on differ-
ent servers and more than one name on a specific
server. Workstation servers usually have several
hundred different fonts, but the specific ones vary
from platform to platform. X-terminal servers may
only have a few fonts. The result is that you can’t
count on what fonts will be available when your X-

–adobe–new century schoolbook–bold–i–normal––14–100–100–100–p–88–iso8859–1

Figure 1. An X Font Name
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Icon program runs, unless its always runs on the
same server. The one thing you can count on is that
a server will have at least one font. We think (but
are not certain) that the font fixed is always avail-
able (and X-Icon won’t run if it isn’t).

A font can be specified when a window is
opened, as in

&window := open("text", "x",
   "font=lucidasans–12") |
      stop("∗∗∗ cannot open window")

If no font is specified, fixed is provided. If a font is
specified but not available, open() fails.

The current font can be determined by using
XFont(), as in

write("The font is ", XFont())

or set by supplying a font name, as in

XFont("fixed")

XFont(s) fails if not s is not the name of an available
font.

Font Characteristics

For many purposes, it is sufficient to pick a
font and write text just as you would to a terminal.
For some purposes, however, additional charac-
teristics of fonts may be useful. Figure 2 shows the
font-dependent attributes that are associated with
characters.

base line
ascent

descent

height

width

Figure 2. Font Attributes

The base line is the line on which a character
“sits” — the y coordinate of the current text posi-
tion. The ascent portion is above the base line,
while the descent portion is below. In most fonts,
only a few characters, such as g, p, and y, actually

go below the base line.
As shown in Figure 2, there typically is space

above, below, and to the sides of the pixels that
comprise a character. This prevents characters from
running together. How much space there is and
where it is varies from font to font. Many fonts
have all the space between characters at the right,
so that a character written in column 1 touches the
left edge of the window, which is visually unattrac-
tive.

The height of a font is no guarantee of how tall
characters are. For example, a T in Palatino is
considerably taller than a T in Zapf Chancery in the
same size (T ).

The term leading refers to the distance be-
tween the base lines of text written on successive
lines. Writing a newline character starts a new line
and advances the horizontal position for text by
the amount of the leading. The leading associated
with a font normally is the same as the font height
(the line spacing having been considered in the
font design).

The various characteristics of a font are avail-
able in attributes that are set when the font is
selected:

fheight height of the font
fwidth width of characters in the font
ascent extent above the base line
descent extent below the base line
leading distance between base lines

All values are in pixels. The first four attributes are
properties of the font and cannot be changed.

In the case of a proportionally spaced font,
fwidth is the width of the widest character, which
normally is M or W. Columns for proportionally
spaced fonts are based on fwidth, although, of
course, characters in proportionally spaced fonts
usually do not line up in columns.

Downloading Icon Material

Most implementations of Icon are available for
downloading electronically:

RBBS:  (602) 621-2283

FTP: cs.arizona.edu (cd /icon)
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The leading can be changed to adjust the
space between lines. For example

XAttrib("leading=" || 2 ∗ XAttrib("fheight"))

produces “double spacing”.

Text Width

For a monospaced font, the width of a string
when written is just the character width times the
number of characters in the string. For a propor-
tionally spaced font, however, the width of a string
when written obviously is more complicated.

The function XTextWidth(s) returns the width
(in pixels) of the string s in the current font.

Drawing Strings

In addition to writing text to a window, you
also can draw strings using

XDrawString(x, y, s)

which draws the string s starting at the specified
pixel location. XDrawString() only draws the char-
acters of the foreground pixels, not the background
color that normally fills the “space” around text
when it is written.

Strings that are drawn look the same as strings
that are written. The primary reason for drawing a
string rather than writing it is to take advantage of
drawing attributes, and in particular to be able to
erase text. If the drawop attribute is "reverse", as
in

XAttrib("drawop=reverse")

then a string drawn a second time at the same
position erases the first one. For example,

every x := 20 to 100 do {
      XDrawString(x, x, "Hello!")
      XFlush()
      delay(1)
      XDrawString(x, x, "Hello!")
      }

XDrawString(x, x, "Hello!")

moves "Hello!" diagonally on the window, leav-
ing a final copy at the end.

Reference
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Anatomy of a Program — Timing
Icon Expressions

In the first two issues of the Analyst, we
described a program, empg (“expression mea-
surement program generator”), for timing Icon
expressions.

This program has evolved somewhat since
then and we’ve picked it for a case study in pro-
gram design. This also gives us a change to correct
some earlier errors.

Designing this program presents interesting
problems. One is figuring out how to get correct
and accurate timings. The program also writes
another program, which raises several issues.

The Program Model

The first question is one of basic design. A
person wanting to know how much time it takes to
evaluate various expressions probably would like
to be able to run the timing program interactively,
typing in expressions and getting the results.

There’s no way to do that directly in Icon,
since Icon does not have facilities for run-time
translation of Icon code. On platforms that support
the system() function, it’s possible to give the ap-
pearance of run-time translation by writing a pro-
gram to a file and then translating and executing
that file. Except on the fastest platforms, however,
the overhead for this on a per-expression basis
makes the processing intolerably slow. Further-
more, the idea of entering expressions and getting
timings interactively turns out not to be so appeal-
ing anyway; it takes too long to do the actual
timings for reasons explained in the next section.

Consequently, empg  is designed to read a
sequence of expressions from standard input —
either from a file or from the keyboard — and
create a program that, when run, times the expres-
sions and writes out the results. Thus, there are two
steps: (1) running empg and (2) translating and
running the program that empg produces.

Measuring Execution Time

On platforms with multiprocessing operat-
ing systems and particularly with multiple users,
the value reported by the system clock for an
individual process may vary, depending on the
computational load or even on the nature of the
computation. In our Sparc environment, we have

observed timing differences of as much as 20%.
There’s not much you can do about this except to
take several timings and average them. And to
realize that timing figures are not going to be
precise.

There are, however, some things to consider
to avoid misleading or simply incorrect results.
Since the clock resolution in most computers is low
compared to the time it takes to execute a typical
Icon expression, getting anything resembling ac-
curate timing dictates that an expression be ex-
ecuted many times and an average time computed.
On a typical platform, it may be necessary to ex-
ecute an expression as many as 10,000 times in
order to get a meaningful result. Consequently,
empg needs to write a loop that evaluates an
expression repeatedly.

In Icon, the natural way to do this is with an
every loop, such as

stime := &time
every 1 to limit do expr
write(real(&time – stime) / limit)

where expr is the expression to be timed. (Note
that &time gives elapsed CPU time in millisecods
— the time spent in computation — not wall-clock
time.)

Assuming that limit is large enough to avoid
misleading results from low clock resolution and
that the time needed to assign the starting time and
take the difference with the time after the loop ends
is insignificant, this looks like a good start. How-
ever, if expr is a simple expression, a significant
part of the elapsed time may be in the overhead for
the loop. So to get reasonable results, you might
compute the loop overhead as follows:

stime := &time
every 1 to limit
overhead := (&time – stime) / limit

That’s not bad for a first attempt, but you
might wonder if omitting the do clause makes the
loop faster. Indeed it does. And for timing simple
expressions, computing loop overhead in this way
gives misleading results. We’ll come back to how
you might find this out. For now we’ll just tell you
that it’s the case.

What to do? One possibility is to compute the
overhead with the simplest expression that you
can imagine and figure that the results for other
expressions will just be off by a little. One possibil-
ity is
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stime := &time
every 1 to limit do &null
overhead := (&time – stime) / limit

This assumes that &null is fast (which it is; more on
that later). But is &null faster than, say, a simple
variable reference? And suppose you want to time
some other fast expression or even &null. You
could try other simple expressions in place of
&null, but there’s always the same bind; you can’t
hope to get accurate timings for simple expressions
by this method.

To do any better, you need to look at the code
the produced by icont, the translator for the Icon
interpreter. (The optimizing Icon compiler is an-
other matter altogether; we’ll stick to the inter-
preter here.)

It’s easy to get the code produced by icont
and it doesn’t take a lot of knowledge to discover
what’s needed for our purposes. Just run icont
with its –c option to preserve the intermediate
“ucode” files it produces [1]. If you do this, you’ll
see that the ucode generated for

every 1 to limit

looks something like this (the details of ucode may
vary depending on the version of Icon you’re us-
ing, but the essential features are the same for all
versions):

mark0
pnull
int 0
var 0
push1
line 2
toby
pop
efail

while the ucode for

every 1 to limit do expr

looks like this:

mark0
pnull
int 0
var 0
push1
line 2
toby
pop

mark0
<code for expr>
unmark
efail

This shows why the omission of the do clause
makes a difference. (It’s not necessary to know
what the mark0 and unmark do; it’s enough to
know there are extra instructions.)

Incidentally, depending on how you arrange
the lines of your source code, you may get more or
fewer line instructions. This actually is not a prob-
lem for timing, since line instructions do not end
up in the “icode” file that is produced by Icon’s
linker, which is what is actually ”executed”.

At this point, you may be wondering just how
to compute the overhead so that the timing for any
expression is correct. You might think of

every 1 to limit do {
   &null
   }

for overhead computation and

every 1 to limit do {
   &null
   expr
   }

for timing expr. The braces are unnecessary in the
first case and are included only to emphasize the
relationship between the two expressions. In case
you are wondering, braces do not produce any
ucode.

It looks like the difference in the code for these
two loops should be just the code for expr. But if
you compare the ucode for the do clauses in the
first and second loops, you’ll see that there are
some extra instructions in the second loop around
the instructions for the keyword. These have to do
with bounded expressions, which prevent control
backtracking from one expression in a compound
expression into a former expression:

     First do clause:

mark0
keywd 34
unmark
efail

     Second do clause:

mark0
mark L4
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keywd 34
unmark

lab L4
<code for expr>
unmark
efail

Is there a way to get rid of the extra ucode?
Well, control backtracking is not prevented in con-
junction. Indeed, the ucode for an expression like

expr1 & expr2

is

<code for expr1>
pop

<code for expr2>

where the pop instruction merely gets rid of the
result produced by expr1. Surely the time it takes
to execute the pop instruction can’t be significant.

This suggests that the loop overhead should
be determined by

every 1 to limit do e1
   &null

and the timing of expr should be done by

every 1 to limit do e2
   &null & expr

If we use the notation t(e) to denote the time it
takes to execute expression e, then we have

t(e1) = Θlimit + t(&null)
t(e2) = Θlimit + t(&null) + t(pop) + t(expr)

where Θ
limit

 is the time for executing the loop limit
times. Consequently,

t(e2) – t(e1) = t(expr) + t(pop)

As suggested above, you might think that
t(pop) could be ignored; all it does is pop a value
off the interpreter’s evaluation stack, which can’t
take much time compared to the time for an entire
Icon expression. Actually, t(pop) is not insignifi-
cant. The problem is that although popping a value
off the interpreter’s evaluation stack is fast, pop is
a virtual machine instruction that must be fetched,
decoded, and executed in software, much the same
way real machine instructions are fetched, de-
coded, and executed in hardware [2]. Even though
the execution of pop itself is fast, the fetch and
decode operations take enough time that they need

to be considered.
In fact, if you look at the implementation of

the Icon interpreter closely, you’ll find that the
code for &null is treated specially. At the icode
level, it doesn’t involve a keyword look-up like
most other keywords — it just pushes a null value
on the evaluation stack. Considering the overhead
for fetching and decoding, the time to execute the
Icon expression &null is only a little more than the
time to execute the virtual-machine instruction
pop. That is,

t(pop) ≅ t(&null)

Going back to the loop e2, consider timing
&null:

every 1 to limit do e3
   &null & &null

so that

t(e3) = Θ
limit

 + 2 × t(&null) + t(pop)

Consequently,

t(e3) − t(e1) = t(&null) + t(pop) ≅ 2 × t(pop)

or

t(pop) ≅ (t(e3) – t(e1)) / 2

and hence, with some simple algebra

t(expr) ≅ t(e2) – (t(e1) + t(e3)) / 2

Program Design

Now that we know how to get a good ap-
proximation to the time required to evaluate an
expression, it’s time to deal with the problem of
writing the program to process the expressions to
be timed and actually producing the timing code.

We’re now into the design of empg and ques-
tions about its functionality. A user of empg is
certainly going to want to time several expressions
in a “batch”.

A simple and natural format for input is one
expression per line. (If we want to generalize this
later to allow multi-line expressions, that shouldn’t
be hard.) Consequently, at an elementary level,
empg will process input lines and output the Icon
code for timing each one.

If you think about this simple model for a
moment, you’ll see more is needed. For example,
there needs to be a way to initialize variables that
are used in expressions to be timed. Suppose, for
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but it’s used on EBCDIC platforms to begin two-
character sequences that represent characters that
are not available on many IBM terminals. And,
starting with Version 8.10 of Icon, the dollar sign is
used by the preprocessor. Another possibility is
the grave accent( ‘), but it’s barely visible. There is
one other character, however — the percent sign
(%), and we’ll use it with hopes that yet another
line differentiator is not needed. Or that someone
does not decide to add a prefix % operator to Icon.

Actually, the situation is not all that bad. It
would be easy enough for a user of empg to work
around the first-character restriction by putting a
blank in front of an expression that is to be timed in
a loop.

Using %, a declaration in empg’s input looks
like this:

%procedure max(i, j)
%   return (i < j) | i
%end

We deliberately ignored the pound sign (#),
even though it cannot appear at the beginning of an
Icon expression, since it might be confused with a
comment. And the user of empg might like to
include comments in the input files. Thus, this
character has another natural use. Note that a
comment in the output of empg can be obtained by
using %#, as in

%# max(i, j) returns the maximum of i and j.

since, as you would expect, lines beginning with a
% will be written out by empg with just the %
removed.

Next Time

It’s taken us four pages just to get this far —
and we’ve not even produced a single line of code
for empg itself. We’ll put off the remainder of this
case study until the next issue of the Analyst,
where we’ll consider how the program actually is
written. We’ll give a complete listing of the pro-
gram there.
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example, you want to time list subscripting, as in

L := list(10)
L[1]

It’s possible, of course, to just time both ex-
pressions in loops — a correct value for L will be left
over after the first expression is executed in a loop.
But this is very time-consuming and there are some
kinds of initializations that cannot be done if ex-
ecuted repeatedly (can you think of examples?).

This suggests that empg should provide a
way to evaluate specified expressions just once as
opposed to evaluating all expressions in loops.
Consequently, there needs to be some way to tell
the two cases apart.

There are many possible ways to handle this,
like a command syntax or an initialization section
in the input to empg. We’ll use something simple,
if inelegant, and let the first character of a line serve
as an indicator of what kind of code is to be gener-
ated for the rest of the line. Using the first character
makes the program simpler, since string scanning
in Icon proceeds naturally from left to right and
consequently it’s known what to do with the rest of
the line before it’s encountered.

It also would be convenient for the user of
empg not to have to do anything special about the
case that’s likely to be the most common: timing
expressions in a loop. This suggests identifying
expressions to be evaluated only once by a charac-
ter that cannot occur at the beginning of an Icon
expression. One such character is the colon, so
we’ll say, somewhat arbitrarily, that an input line
that begins with a colon indicates that the remain-
der of the line is an expression that is to be evalu-
ated only once. For the example above, the input
then would be

:L := list(10)
L[1]

It’s not enough to provide for expressions that
are to be evaluated only once. Suppose you want to
use a procedure or a record in an expression to be
timed. A facility for handling declarations is needed.
That’s simple enough. We’ll just pick another char-
acter that can’t occur at the beginning of an expres-
sion to identify lines of input that comprise decla-
rations.

If you look at Icon’s syntax closely, you’ll see
there aren’t many good choices — we’ve almost
boxed ourselves in by the syntactic device we’ve
picked. The dollar sign ($) looks like a good choice,
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What’s Coming Up

In the next issue of the Analyst, we’ll de-
scribe the last “lost language” in our series —
Seque, in which sequences are data objects.

We’ll also continue our series on X-Icon with
an article on handling events — mouse click and
text entered in windows. And we’ll finish the
anatomy of empg.

Subscription Renewal

For many of you, this is the last issue or next-
to-last issue in your present subscription to the
Analyst. If so, you’ll find a subscription renewal
form in the center of this issue.

With the next issue, we’ll be starting the fourth
year of the Analyst. We have lots of interesting
articles coming up. In addition to those mentioned
for the next issue in What’s Coming Up below,
we’ll continue the series of articles describing how
to program in X-Icon: manipulating images, deal-
ing with color, building user interfaces, and so
forth.  We also have articles in the works on string
invocation, programmer-defined control opera-
tions, recursive-descent parsing, prototyping, de-
bugging, using random numbers, names and vari-
ables, and writing program monitors and visual-
ization tools.

Renew now so that you won’t miss an issue.
Your prompt renewal also helps us manage our
resources.

From the Wizards

It’s been a while
since we’ve seen a use
of Icon that deserves
the “wizard” label.
Here’s one from K’vin
D’Vries.

He wanted to de-
termine whether a
value was less than 0,
greater to zero, or equal
to zero.

 The obvious method
is

if i < 0 then expr1
else if i > 0 then expr2
else expr3

But he thought a case expression would be
more compact and clearer. The temptation is to
write

case i of {
   <0: expr1
   >0: expr2
   0: expr3
   }

This, however, is syntactically incorrect, since <0
and >0 aren’t complete expressions.

K’vin observed, however, that the following
will do:

case i of {
   0 > i: expr1
   0 < i: expr2
   0: expr3
   }

This works because 0 > i and 0 < i, like all Icon
comparison operations, produce the value of their
right operands if they succeed.

You might argue that this is tricky and that it’s
easy to make a mistake by writing, for example,
i < 0 instead of 0 > i. Of course, that’s true, but
experienced Icon programmers constantly make
use of the value returned by comparison operators,
as in i < j < k, which succeeds if and only if j is
strictly between i and k.

And we think the “D’Vries Device” is so
clever that it deserves your consideration. Think of
all the similar things you can do.

Back Issues

Back issues of The Icon Analyst are avail-
able for $5 each. This price includes ship-
ping in the United States, Canada, and
Mexico. Add $2 per order for airmail post-
age to other countries.


