
The Icon Analyst / 1

February 1992
Number 10

In-Depth Coverage of the Icon Programming Language

system("rm ∗")

which deletes all files in the current working directory under
UNIX.

It’s not so much that you’d do this intentionally, but if the
argument of system() is constructed in a complicated way, it
may not come out as you expect. If the results are destructive,
the consequences can be disastrous.

One trick we like to use when developing programs that
use system() is to add the line

system := write

at the beginning of the program, which changes the value of
system to the function write(). Then instead of actually calling
the function system(), you get to see the argument with which
it’s called. And it covers all uses of system() with a single,
easily removed line.

While system() lets you do many useful things from
inside a running program, it has its limitations. The output of
a command invoked by system() doesn’t come back to your
program. It goes to standard output or maybe standard error
output unless you direct it to a file in the argument of system(),
as in

system("ls ∗.icn >file.lst")

 You can, of course, open and read a file to which you’ve
directed the output of a command, but that’s awkward.

Because of the way some operating systems work,
system() may not always do what it would from the command
line. For example, in UNIX,

system("chdir /usr/bin")

doesn’t return with your current working directory changed to
/usr/bin; the former current working directory is restored after
executing in the shell for the system() command.

Another problem with system() is the value it returns,
which is the exit code for the command it invokes. In theory,
a nonzero exit code (on most operating systems) indicates
some kind of error, while a zero exit code indicates successful
completion of the command. For example, in UNIX, the diff
command, which looks for differences in files, returns an exit
code of 0 if the files are the same but an exit code of 1 otherwise.
This might be used as

if system("diff " || file1 || " " || file2) = 0 then
 write(file1, " and ", file2, " are the same")

Getting to the System

As a programming language matures, its computational
repertoire tends to grow in response to user requests for more
functionality. That’s certainly true of Icon: Version 6 had 48
functions; Version 8 has 89.

The area of most demand for increased functionality is in
access to operating-system facilities. Many such needs can be
handled through the system() function.

The system() Function

The system() function in Icon (which just calls the
corresponding C library routine) provides a gateway to the
operating system command line. On most platforms, the argu-
ment of system() can be anything you’d type on a command
line.

Since command-line facilities are necessarily operating-
system dependent, the things you can do via system() and the
syntax you use vary from system to system. For example, in
UNIX, you can use

system("ls ∗.icn")

to get a listing of all files with the suffix .icn in the current
working directory, while in MS-DOS, you’d use

system("dir .icn")

to get a similar result.

Using system() can be dangerous. You can do things
like

 In this issue …

Getting to the System … 1

Procedural Encapsulation … 3

The Anatomy of a Program … 4

Writing Bullet-Proof Programs … 9

Programming Tips … 12

What’s Coming Up … 12

2 / The Icon Analyst

Not all programs return useful exit codes. For example,
the UNIX program ls, which lists specified files, returns the
exit code 0 whether or not there is any file that matches the
specification (at least it does on the system we use).

Worse yet, exit codes are unreliable. It’s up to the
program you call via system() to return both an appropriate
and reliable exit code. Not all do.

The system() function is not supported on all platforms
on which Icon runs. It requires (at least) an operating system
with a command-line interpreter. While most operating sys-
tems have a command-line interpreter, even if it is an optional
alternative to a visual interface, not all do. The Macintosh is
notable for the lack of a command-line interpreter. Even if
there is a command-line interpreter, the system() function
may not be provided in the C library for the compiler Icon
uses. For example, the MPW sub-system for the Macintosh
has a command-line interpreter, but MPW C does not support
system().

Even if a C library supports system(), it may not always
work properly. Most C compilers for MS-DOS include sys-
tem() in their libraries, but there may be problems in using it.
The problem in MS-DOS usually is the limited amount of
memory available. If there’s not enough room for
COMMAND.COM, which system() uses, the system()
function may fail silently or, worse, hang your computer.

On UNIX platforms, on the other hand, system() is
reliable and generally works very well.

In any event, it’s worth testing the functionality of
system() on your platform before investing in its use. And, of
course, system() is anything but portable.

Pipes

For operating systems that support pipes (such as UNIX
and OS/2), there’s even more you can do from within an Icon
program. Not only can you invoke shell commands using
pipes, but you can read or write to pipes.

(Note that the MS-DOS idea of pipes — writing the
output of a program to a temporary file and then reading that
file in another program — is bogus).

You open a pipe just like you open a file, but instead of
giving the name of a file, you give a shell command in the
same style as for system(). You also need to specify "p" as an
open option.

For example, if you want to get the names of the files in
the current working directory that have the suffix .icn, and
you’re running UNIX, the following will do:

names := open("ls ∗.icn", "rp")

The "r" is optional; a pipe (or file) is opened for reading unless
you specify otherwise. The value of names is now an Icon file
and every time you read from it, you can another line from the
shell command

ls ∗.icn

(When the output of ls goes to a pipe, as it does here, the file
names are given one per line.) For example,

namelist := []
while push(namelist, read(names))

creates a list of all the files in the current working directory
that have the suffix .icn.

Writing to a pipe is done in a similar fashion. For
example,

sorter := open("sort", "pw")

opens a pipe to sort with the output going to standard output.
Subsequently,

while write(sorter, process())

sorts the lines produced by process().

You might ask why it’s worth going to all of the trouble
to do this with a pipe, when you can just write to standard
output and pipe that output through sort, as in

prog | sort

One advantage of piping the output through sort from inside
the program itself is that sorting becomes part of the program
— you don’t have to remember to pipe the output of the
program through sort every time you run the program.

A command opened as a pipe (or as the argument to
system()) can contain pipes. For example, in UNIX

sorter := open("grep Section | sort", "pw")

sorts only those lines that contain the substring Section.

Don’t overlook the fact that you can compile and run an
Icon program from inside another one using either system()
or a pipe. Here’s a silly example:

run := open("icont –s – –x", "pw")

write(run,"procedure main();write(\"hello\");end")

close(run)

For a not-so-silly example of this kind of use of pipes,
see interpe.icn in the Icon program library.

There are a few things you should know about pipes. A
pipe cannot be opened for both reading and writing in Icon.
Open pipes count toward the maximum number of files that
can be open simultaneously. Furthermore, having more open
pipes than your platform can support often leads to unpredict-
able failures in spawned processes. You should close a pipe
when you’re through using it. The result of closing a pipe is the
exit code for the shell invoked.

If you’re not accustomed to using pipes, it may take you
a while to get used to the idea and perhaps a little longer to
fully appreciate the possibilities. And if you’re using Icon on
a platform that doesn’t support pipes, you may well become
envious of those that do.

The Icon Analyst / 3

sion in this way. One is that there is only a single instance of
the expression, but its values can be generated in as many
places in a program as they are needed, using only calls to the
procedure.

Another advantage of procedural encapsulation is that
an expression can be parameterized, as in

procedure digits(i, j)

 suspend |(i to j)

end

There’s a third, less obvious, use for procedural encap-
sulation: Procedures, unlike expressions, are data values.
Therefore you can assign a procedure to a variable, store it in
a structure, pass it as an argument to another procedure, and
so on. We’ll have more to say about this in a future issue of the
Analyst.

Before going on, we need to qualify our statement about
the equivalence of the result sequences for an expression and
a call of a procedure that encapsulates it. This statement is true
only if the expression is independent, by which we mean that
its result sequence does not depend on the time and place it is
evaluated or on factors outside the expression itself. For
example,

|(0 to 3)

is independent, but

|(0 to &line)

and

|read()

are not.

Procedural encapsulation can be extended in a number
of ways. For example, expressions can be added before or
after the suspension to record information, provide diagnos-
tics, and so on. One model for this is

Procedural Encapsulation

In an earlier article on result sequences [1], we dis-
cussed the use of sequences as a programming tool — think-
ing in terms of sequences of values.

For this purpose, a sequence takes on a special meaning.
It’s almost like a value, although you can’t treat it that way in
Icon. You need, instead, to deal with expressions that can
generate sequences of values.

An expression isn’t a data object either, and the results
it produces can be obtained only at the place in the program
that it appears.

On the other hand, if you’re programming in terms of
sequences, you may want to use the same or similar sequences
at different places in your program. One way to handle this is
to duplicate the expression for a sequence at all the places it’s
needed. This not only is extra work, but it also has the usual
problems with code duplication: it’s error-prone, it’s hard to
maintain, and it increases program size.

One way of using an expression in more than one place
in a program is to “capture” it with a co-expression, which is
a data value. In some cases, this may be the best thing to do,
but co-expressions are not generators and if you want to
generate the values from a co-expression like you would from
the expression itself, you need to use repeated alternation and
worry about refreshing the co-expression for its next use.
Another problem with co-expressions is the large amount of
memory they require. And co-expressions are not supported
for all implementations of Icon.

There is yet another method of capturing an expression
as a data value: procedural encapsulation. This method is
based on the observation that for a given expression expr and
a procedure declaration

procedure p()

 suspend expr

end

the result sequences for expr and p() are the same.

For example, the expression

|(0 to 3)

generates the digits 0 through 3 endlessly: 0, 1, 2, 3, 0, 1, 2, 3,
… If this expression is encapsulated in a procedure

procedure digits()

 suspend |(0 to 3)

end

then

digits()

also generates 0, 1, 2, 3, 0, 1, 2, 3, …

There are several reasons for encapsulating an expres-

4 / The Icon Analyst

It may seem a little strange to subscript a table with a
procedure, but procedures are values and a table can be
subscripted by any kind of value.

Just to take this a little further, here’s how you could
write out the counts of procedure resumptions:

cntlist := sort(count, 3)
while write(image(get(cntlist)), " : ", get(cntlist))

Finally, don’t forget “evaluation sandwiches” [2]. You
might find a use for something like this:

procedure p()

 suspend 2(before, expr, after)

end

References

1. “Result Sequences”, The Icon Analyst 7, August 1991,
pp. 5-8.

2. “Evaluation Sandwiches”, The Icon Analyst 6, June
1991, pp. 8-10.

Downloading Icon Material

Most implementations of Icon are available for
downloading electronically:

BBS: (602) 621-2283

FTP: cs.arizona.edu (cd /icon)

procedure p()

 prolog

 suspend expr

 epilog

end

All kinds of things are possible here. An example is

procedure p()
 static limit

 initial limit := 0

 limit +:= 1
 if limit > 10 then fail

 suspend expr

end

which shuts down the use of expr after 10 calls of p().

Don’t forget that suspend has an optional do clause
like the one for every. You don’t see it used often, possibly
because it wasn’t added to Icon until Version 7. Here’s an
example of its use:

global p_count

procedure p()
 initial p_count := 0

 suspend expr do
 p_count +:= 1

end

Here p() has the same result sequence as expr, but a
count of the total number of times p_count() is resumed is
kept in a global variable.

If you want to do this for several procedures, you could
keep the counts in a table that is subscripted by procedures:

global count
...

count := table(0)
...

procedure q()

suspend expr do
 count[q] +:= 1

end

The Anatomy of a Program —

A Recognizer Generator

Several of our readers have suggested that we include
detailed analyses of complete Icon programs as a regular
feature of the Analyst. We’ve been reluctant to do this, since
an adequate evaluation of even a fairly short program takes a
lot of space. It also requires special knowledge to understand
many programs; there aren’t that many programs that are
suitable for analysis in a newsletter like this one.

Another, less-obvious problem is that when we study a
program carefully, we almost always can find ways to im-
prove it.

Trying to describe a program intensifies this problem.
It seems inappropriate to devote space in the Analyst to a
program that can be made better, so we work on improving the
program. But when we start to write about it again, we find
more things to improve. Somehow, this process seems not to
terminate.

We’ve finally bitten the bullet and are describing here
a program that certainly is not perfect, but we’re to the point
where we don’t see how to improve it and our guilty con-
science for never quite getting this article done has taken the
day.

There are many ways to approach the description of a
program. The approach here is top-down, starting with a
description of the problem, showing what’s needed to solve it,
proceeding to the organization of the program, and finally
describing programming details.

The Icon Analyst / 5

The Structure of a Production

The problem is a conceptually simple one: Analyze
each production in the grammar and construct a correspond-
ing recognizing procedure.

String scanning is the obvious tool to use for the
analysis of the productions, but some care is needed to avoid
a messy, bug-ridden program.

The analysis should be organized around the syntax of
productions, which have the form

production ➛ < name > ::= rhs

where rhs stands for “right-hand side”. A right-hand side in
turn is a sequence of alternatives separated by vertical bars:

rhs ➛ alt | alt | … | alt

and an alternative is a sequence of symbols:

alt ➛ sym sym … sym

The point here is that the hierarchical structure of a
production should be reflected in the structure of its analysis.

Transforming a Production

The components of a production as described above
also need to be transformed to produce a recognizing proce-
dure. Following the method described in Reference 1, the
transformation is:

τ(< name > ::= rhs) = procedure name()

 suspend τ(rhs)

end

τ(alt | alt | … | alt) = τ(alt) | τ(alt) | … | τ(alt)

τ(sym sym … sym) = (τ(sym) || τ(sym) || … || τ(sym))

τ(terminal) = ="terminal"

τ(nonterminal) = nonterminal()

Organization of the Program

The hierarchical structure of a production is reflected in
a hierarchy of procedures that analyze and transform a pro-
duction:

transprod() transform a production

 ↓
transalts() transform the alternatives

 ↓
transseq() transform a sequence of symbols

 ↓
transsym() transform a symbol

The Problem

In the second edition of the Icon language book [1],
there’s a method for converting a context-free phrase-struc-
ture grammar into a recursive-descent recognizer for the
corresponding language. Despite the problems with recur-
sive-descent methods, such a recognizer actually can be
useful, and it’s only a short step to a parser, which has more
uses. You’ll find some examples in the Icon program library.

We’ll use a slightly more general form of syntax de-
scription than that given in the book: a version of Backus-
Naur Form in which nonterminal symbols are enclosed in
angular brackets and alternatives are separated by vertical
bars. If you’re not familiar with BNF, see the classic reference
[2] or one of the numerous books on formal languages and
syntax description.

A simple grammar that illustrates this syntax-descrip-
tion notation is

<plist> ::= [] | [<args>] | [<plist>]
<args> ::= , | ,<plist> | ,<args>

Each line contains a definition, or production, that
defines a nonterminal symbol. <plist> and <args> are
nonterminal symbols, ::= stands for “is defined to be”, and
vertical bars separate alternatives as mentioned above. All
other symbols (here brackets and commas) are terminal
symbols that stand for themselves.

The language defined by <plist> contains strings such
as "[,[]]", "[,,,]", and "[[]]".

A recognizer for <plist>, produced by the method
described in Reference 1, is shown in the box below.

procedure plist_()
 suspend {
 (="[]") | (="[" || args() || ="]") | (="[" || plist() || ="]")
 }
end

procedure args_()
 suspend {
 (=",") | (="," || plist()) | (="," || args())
 }
end

procedure main()
 while line := read() do {
 writes(image(line))
 if line ? (plist() & pos(0)) then
 write(": accepted")
 else write(": rejected")
 }
end

A Recognizer for <plist>

6 / The Icon Analyst

with the position now at the first character of the right-hand
side.

Since a right-hand side is a sequence of alternatives
separated by vertical bars, a loop is the natural control struc-
ture to use. Since vertical bars separate alternatives, an
alternative is matched by

tab(upto('|') | 0)

This construction is generally useful when items are separated
by some marker but there’s no marker after the last one. It
matches up to the separator or else matches the remainder of
the subject.

If there were no transformation to apply to the subject,
the analysis loop would look like this:

repeat {
 tab(upto('|') | 0) ? transseq()
 move(1) | break
 }

where

move(1) | break

either moves past the separator or terminates the loop in the
case of the last alternative.

To construct the required output, however, parentheses
are needed around each alternative and vertical bars are
needed between them. The complete procedure, therefore, is
a bit more complicated:

procedure transalts()

 writes(" ")
 repeat {
 writes(" (")
 tab(upto('|') | 0) ? transseq()
 if move(1) then writes(") |")
 else {
 write(")")
 return
 }
 }

end

Note that an alternation symbol is only written when there is
another alternative to process.

Now on to transseq(). Since it’s invoked as a matching
procedure in

 tab(upto('|') | 0) ? transseq()

the scanning environment for transseq() is just the current
alternative. There is a question of how to terminate the loop:
by checking in transseq() or having transsym() fail. To
allow for the possibility of an empty alternative (that’s per-
fectly reasonable), it turns out to be more convenient for
transseq() to check when transsym() has processed the last
symbol. Note that the symbols for concatenation are provided
only when there is another symbol to process:

Writing the Program

There are two main issues in actually writing the pro-
gram: (1) how to perform the analysis and (2) how to produce
the required transformed output.

We’ve chosen a style of analysis that uses string scan-
ning exclusively and in which “matching” procedures do the
work. These matching procedures operate in the context of a
scanning environment that is established before they are
called. For example, the transformation loop in the main
program could be written as

while line := read() do
 transprod(line)

but we’ve chosen to write it instead as

while line := read() do
 line ? transprod()

The choice here is mostly a matter of personal preference. We
can’t say one way is better than the other. One reason we chose
the second form is because it has a flavor of pattern matching
that we think is interesting and is not used as often as it might
be.

Thus, the procedure transprod() is called with the
appropriate scanning environment already in place.
transprod() needs to get the name of the nonterminal symbol
being defined by the production, write a procedure heading,
provide the “shell” for suspension, call tranalts() to transform
the alternatives, and then finish off the procedure declaration:

procedure transprod()

 {
 ="<" &
 write("procedure ", tab(many(nchars)), "()") &
 =">::="
 } | error()

 write(" suspend {")
 transalts()
 write(" }")
 write("end")

 return

end

The global variable nchars contains a cset of the
characters that are acceptable in a nonterminal name. Note
that in writing the procedure heading, the second argument of
write() is the result of string scanning, inserting the name in
the proper place in the procedure declaration. Conjunction is
used to bind the three expressions involved in analyzing the
production into a single unit, so that only one call of error() is
needed. In this program, an error in the syntax of a production
terminates program execution. (It’s hard to imagine how to
recover from such an error in a useful way.)

What’s next is the procedure transalts(). It is called
with the same scanning environment as for transprod() but

The Icon Analyst / 7

procedure transseq()

 repeat {
 transsym()
 if not pos(0) then writes(" || ")
 else return
 }

end

As noted above, there are two kinds of symbols and the
translations are quite different in the two cases. Analysis and
transformation of a nonterminal symbol involves a straight-
forward scanning expression with conjunction again used to
bind the component sub-expressions. A terminal symbol, on
the other hand, requires a prefix equals sign and enclosing
quotes:

procedure transsym()

 if ="<" then {
 {
 writes(tab(many(nchars)), "()") &
 =">"
 } | error()
 }
 else writes("=", image(tab(upto('<') | 0)))

 return

end

The function image() is handy for producing the enclosing
quotes — otherwise, escaped quotes in literal strings are
required. These are hard to read and easy to get wrong. But
image() does more. If a terminal symbol is a character that is
significant syntactically in an Icon quoted literal, image()
provides an escape sequence for it. Thus, a terminal symbol
can be, for example, a quotation mark without causing any
problems.

 Note that if several terminal symbols occur in a row,
they are combined into a single matching expression. For
example, abcd gets transformed into

 ="abcd"

rather than

 ="a" || ="b" || ="c" || ="d"

as specified formally in the transformation given earlier. The
result is the same and the first form is, of course, not only more
compact but more efficient.

That’s about it. There are a few more things that need to
be taken care of in the complete program, such as writing out
a main procedure that reads in lines and determines whether
or not they are sentences in the grammar. It’s also necessary
to identify the “goal” nonterminal symbol, which we’ve
chosen to be the one for the first production. The complete
program is shown in the boxes on the next two pages.

Retrospective

If you look at the program, you may notice that there’s
not a single concatenation. Everything is arranged so that the
output is written as the productions are analyzed. This is an
example of the use of output to avoid concatenation within the
program as described in Reference 3.

This didn’t happen by accident. The program that
appears here was originally written many years ago. The first
version (which worked as well as this one) was a little horror.
Its organization was confused, the use of string scanning was
complicated and poorly structured, and most of the output for
the recognizing procedures was built up using concatenation
and only written out after the analysis of a production was
complete.

Over the years, the program was incrementally im-
proved and even completely rewritten several times. After the
organization was made more logical, the use of string scan-
ning was improved. Finally, we became interested in what
amounted to a puzzle: “Could the program be written without
any concatenation?” Considering the concomitant analysis
and transformation, that clearly should be possible, and once
we were convinced of that, it wasn’t hard to do.

The evolution of this program parallels our personal
development of skill and style in writing Icon programs. It’s
not that it took so long to arrive at the final (?) version of the
program — we now can come much closer to producing a
reasonable program on the first try.

We recommend refinement and rewriting as tools for
learning to program well, not just for improving specific
programs.

Finally, we have to admit that although we started out
to write this article with a program we thought was in very
good shape, we found many things to improve before this
article was done. And now that the article is done, we’ve
thought of more improvements and generalizations. But we
have to stop somewhere.

Incidentally, just as refining and rewriting are good
ways to learn to program better, writing about a program is an
excellent way to find improvements. In having to explain
every little aspect of a program, you are forced to focus on
things you never really think about when you’re just trying to
get a program to work.

What Else?

What more could be done to the program here? Several
things come to mind:

• Since the output of this program is another program,
it might be useful to have a way to “pass through” Icon code
from the input to the recognizer generator to its output. (If you
can’t think of a use for such a feature, we’ll show one an
upcoming issue of the Analyst.)

8 / The Icon Analyst

global goal # nonterminal goal name
global nchars # characters allowed in a name

#
Translate a grammar into a recognizer.
#

procedure main()
 local line # a line of input

 nchars := &letters ++ '_'

 while line := read() do { # process lines of input
 line ? transprod() # transform the production
 } # end while

 write("procedure main()") # write out the main procedure
 write(" while line := read() do {")
 write(" writes(image(line))")
 write(" if line ? (", goal, "() & pos(0)) then ")
 write(" write(\": accepted\")")
 write(" else write(\": rejected\")")
 write(" }")
 write("end")

end

#
Transform a production.
#

procedure transprod()
 local sym # the symbol being defined

 {
 ="<" & # begin the procedure declaration
 write("procedure ", sym := tab(many(nchars)), "()") &
 =">::=" # skip definition symbols
 } | error() # catch syntactic error
 write(" suspend {") # begin the suspend expression
 transalts() # transform the alternatives
 write(" }") # end the suspend expression
 write("end") # end the procedure declaration
 write() # space between declarations
 /goal := sym # first symbol is goal

 return

end

#
Transform a sequence of alternatives.
#

procedure transalts()

 writes(" ") # write indentation
 repeat { # process alternatives
 writes(" (") # open parenthesis for alternative
 tab(upto('|') | 0) ? transseq() # transform the symbols

A Recognizer Generator (continued on next page)

• We’ve made a lot out of avoiding
unnecessary concatenation. Here we’ve used
the “output as a weak form of concatenation”
ploy. Can you think of a way to avoid concat-
enation in the recognizer? Hint: It only re-
quires changing a couple of characters in the
recognizer generator.

• As shown in Reference 1, it’s easy to
convert a recursive-descent recognizer to a
recursive-descent parser using lists to build a
parse tree. That’s a good exercise, but if you
try it, you might think about using records for
nonterminal types instead of using just lists.

• The main procedure provided for the
recognizer here needs revising for a parser.
While you’re at it, provide a way for a person
creating a parser to specify a main procedure.

• Using the present syntax for produc-
tions, the right-hand side metacharacters <, >,
and | are excluded from the set of terminal
symbols. Provide a way for specifying these
characters as terminal symbols. Hint: One way
to do this is to provide an escape mechanism.
There’s a more general and elegant approach.
Look at rsg.icn in the Icon program library to
see how this can be done in an entirely differ-
ent way.

• There is no way of grouping symbols
in the right-hand sides of productions. It would
be useful if this could be done. For example,

<expr>::=<term><addop><expr>|<term>

could be written as

<expr>::=<term>(<addop><expr>|<empty>)

which not only is more compact, but would
avoid backtracking and re-matching for
<term> if it’s not followed by an <addop>.
Note that parentheses become metacharacters
in this scheme.

Incidentally, we put in <empty> only
for clarity. It’s not necessary; the recognizer
generator handles an empty alternative cor-
rectly. Thus, the production could be written
as

 <expr>::=<term>(<addop><expr>|)

which looks peculiar but poses no processing
problems.

And Around Again

Having posed these problems, we’ll now
have to solve them ourselves.

The result may be in the Icon program
library before this issue of the Analyst is
published.

The Icon Analyst / 9

A Recognizer Generator (concluded)

 if move(1) then writes(") |") # if more, close the parentheses
and add the altrnation

 else {
 write(")") # no more, close the parentheses
 return
 } # end else
 } # end repeat

end

#
Transform a sequence of symbols.
#

procedure transseq()

 repeat {
 transsym() # process a symbol
 if not pos(0) then writes(" || ") # if more, provide concatenation
 else return # else get out and return
 } # end repeat

end

#
Transform a symbol.
#

procedure transsym()

 if ="<" then { # if it's a nonterminal
 { # write it with suffix
 writes(tab(many(nchars)), "()") &
 =">" # get rid of closing bracket
 } | error() # or catch the error
 } # end then

otherwise transform nonterminal
 else writes("=", image(tab(upto('<') | 0)))

 return

end

#
Issue error message and terminate execution.
#

procedure error()

 stop("∗∗∗ malformed production: ", tab(0))

end

References

1. The Icon Programming Lan-
guage, second edition, Ralph E.
Griswold and Madge T. Griswold,
Prentice Hall, Englewood Cliffs,
New Jersey, 1990, pages 180-186.

2. “The Syntax and Semantics of
the Proposed International Alge-
braic Language of the Zurich ACM-
GAMM Conference,” Backus, J.,
Proceedings of the International
Conference on Information Pro-
cessing, 1959, pp. 125-132.

3. “String Allocation”, The Icon
Analyst 9, pp. 4-7.

Writing Bullet-Proof
Programs

If you’re using Icon to write
an application for use by another
person, you may need to give more
attention than you otherwise might
to making your program “bullet-
proof” so that invalid data or a user
error doesn’t cause the application
to crash.

If the application is critical,
the importance of crash-resistance
is obvious. Consider an application
that is updating a data base and
terminates with an error because
there isn’t enough memory to sort a
table.

Even if the application is not
critical in this sense, termination
because of a run-time error can be
very perplexing to a user who may
know little or nothing about pro-
gramming, much less what makes
Icon tick.

The first requirement for writ-
ing a bullet-proof program is cor-
rectness. Easy to say. Despite the
efforts of legions of software engineers, most programs con-
tain errors, and all large, complex ones do.

But, as noted above, not all run-time errors result from
programming errors. They may occur because of inadequate
resources. Even if we pretend that Icon itself has no bugs,
there are some aspects of its implementation that can cause

problems. There are things you can do to reduce the chances
of getting into trouble because of them.

From time to time, we’ll discuss topics related to these
matters. In this article, we start with two topics, one dealing
with program correctness and another dealing with how to
turn potential run-time errors into detectable expression fail-
ure.

10 / The Icon Analyst

If the value of input is null before open() is called, as it is
likely to be, no assignment is made to input if open() fails,
and the value of input still is null. A null argument to read()
defaults to standard input. Instead of reading from the ex-
pected file, read() waits for standard input. If standard input
comes from the keyboard, the program appears to hang when,
in fact, it is just waiting. A panicked user who thinks the
program is in a loop may interrupt execution of the program,
perhaps at a very unfortunate time. Advice: If you think your
program is in a loop, try entering an end of file from the
keyboard before interrupting the program.

It’s easy enough to check for failure in open():

output := open(filename, "w") |
 stop("∗∗∗ cannot open " , filename)

An abstraction such as Open(name, attrib), which does the
same thing as open(name, attrib), but terminates with an
error if opening the file fails, is a useful way of avoiding these
problems without having to write a lot of code every place a
file is opened. A procedure to do this is:

procedure Open(filename, attrib)

 return open(filename, attrib) |
 stop("∗∗∗ cannot open ", filename)

end

Error Conversion

It may be reasonable to terminate with an error message
if a file cannot be opened, but it may be disastrous to let a
program terminate if sorting a table fails because of inad-
equate memory as mentioned at the beginning of this article.
In such an critical situation, error conversion may be the
solution.

Error conversion, which converts a run-time error to
expression failure, is a crude and broad-brush tool. It applies
to all run-time errors (or almost all; see the next section). You
can’t specify that you want only certain kinds of errors to be
converted to expression failure.

The indiscriminate nature of error conversion some-
times causes problems. It can cause failure at unexpected
places. Such failure may go undetected or introduce ambigu-
ous failure, both of which are well-known causes of program-
ming errors in Icon.

For example, if error conversion is in effect,

while write(read())

Back Issues

Back issues of The Icon Analyst are available
for $5 each. This price includes shipping in the
United States, Canada, and Mexico. Add $2 per
order for airmail postage to other countries.

Opening Files

One of the most common programming errors is not
checking for failure when attempting to open a file. Misspell-
ing is a common problem when the file name is provided by
the user. Failure also may occur when opening a file for
reading because it isn’t there (although maybe it should be) or
because the application lacks permission to read the file
(possibly because of a mistake in assigning permissions).
Failure also may occur when attempting to open a file for
writing because the application lacks the necessary permis-
sion.

Failure in opening a file also can occur because you
forgot to close files that were previously opened, leaving no
more available file descriptors. This problem is common and
insidious in its effects.

We recently had some personal experience with this.
We have a on-line transaction system for processing orders
for Icon material. It’s written in Icon and does all kinds of
things, including producing packing lists and mailing labels,
as well as updating a data base that contains information about
orders. This program had been working for over two years
without a problem until one afternoon Robyn Austin, who
handles Icon orders, had an unusually large number of orders
to enter in one session. The program crashed, leaving things
in disarray.

The cause of the problem was too many open files.
Several files are opened and closed for each transaction, but
one of them wasn’t closed, so a file descriptor was consumed
for each transaction. The fact that the program had been
running for over two years without the problem arising is a
reminder not to assume any program is free of bugs.

There are all kinds of other reasons why attempting to
open a file can fail. A common mistake in application pro-
grams is the specification of a local path name instead of a full
path name, so that the program runs properly for the developer
in one area but fails when run in another area by the user.

Whatever the reason, if failure goes undetected when an
attempt is made to open a file, all kinds of things can happen.
If you’re lucky, the program will terminate quickly with an
error. If you’re not, you may think you’re writing data when
you’re not. Consider the following program segment:

output := open(filename, "w")

while write(output, read(input))

If open() fails, no value is assigned to output. Unless some-
thing has been assigned to output previously, it has the null
value. The null value as the first argument to write() is taken
as an empty string (not a file). So data from standard input is
written to standard output instead of to the intended file. A
user may be annoyed as well as baffled.

Something slightly different happens when failure oc-
curs on opening a file for input. Consider

input := open(filename, "r")

while write(output, read(input))

The Icon Analyst / 11

may not do what it seems to do. The loop may end because of
an end of file on input, which is what you’d expect. But the
loop also may terminate because of an error in reading or
writing. A reading error could be bad media or a hardware
problem — less likely these days than it used to be, but still
possible, especially on personal computers. A writing error
also can occur because of lack of file space, especially when
output is directed to a floppy disk.

Since there’s nothing to distinguish between these
cases, a loop that terminates because of an error may give the
erroneous appearance of a successful file copy.

In the situation above, a simple solution is

&error := 1

while write(read())

if &error = 0 then stop("Error occurred in copying")

A slightly more sophisticated approach is to use an
error-checking procedure that allows the user to decide what
to do:

procedure ErrorCheck(line, file, message)

 write("Error occurred ", message)
 write(" error: ", &errornumber)
 write(" line: ", line)
 write(" file : ", file)
 write(" cause: ", &errortext)
 write(" offending value: ", image(&errorvalue))
 writes("Do you want to continue? (n) ")
 if map(read() == "y" | "yes") then return
 else exit(&errornumber)

end

Then the loop and check above could be written

&error := 1

while write(read())

if &error = 0 then
 ErrorCheck(&line, &file, "in copying")

The Limitations of Error Conversion

Although most run-time errors, including inadequate
storage to create an object, can be converted to failure, there
are a few that cannot:

• Start-up errors — problems that occur before program
execution actually begins.

• Errors that are trapped by the system on which Icon
runs. Division by zero is a typical example. The reason such
errors cannot be converted to failure is that the implementa-
tion of Icon loses contact of where it was when the error
occurred.

• Errors for which conversion to failure would have an
inordinate impact on the implementation and performance of

Icon. There are a few of these, but you’re not likely to run into
them in practice. One is inadequate space for converting a
large integer to a string. Another occurs in dereferencing if a
subscripted string-valued variable has changed to another
type. An example is:

x := "abc"
x[2] := ((x := []) & "B")

Such a construction is rather unlikely — and a programming
error, in any event.

The Icon Analyst

Madge T. Griswold and Ralph E. Griswold
Editors

The Icon Analyst is published six times a year. A
one-year subscription is $25 in the United States,
Canada, and Mexico and $35 elsewhere. To sub-
scribe, contact

Icon Project
Department of Computer Science
Gould-Simpson Building
The University of Arizona
Tucson, Arizona 85721
U.S.A.

voice: (602) 621-8448
fax: (602) 621-4246

Electronic mail may be sent to:

icon-project@cs.arizona.edu

or

...{uunet,allegra,noao}!arizona!icon-project

and

© 1992 by Madge T. Griswold and Ralph E. Griswold
All rights reserved.

The Bright Forest Company
 Tucson Arizona

12 / The Icon Analyst

succeeds if any of the strings in words contains an uppercase
letter. Similarly,

every write(
 !words ? {
 upto(&ucase) &
 tab(0)
 }
)

writes all the words containing an uppercase letter. Note that
upto() itself does not change the position in the subject, so
tab(0) matches the entire subject. Constructions like these
work for sets and records as well.

With these possibilities in mind, the loop at the begin-
ning of this article can be recast more compactly as

!&input ? {
 ="Section " &
 name := tab(0)
 }

This is a case where the element-generation operation applied
to a file works very naturally. A line from standard input is
generated and the analysis expression is applied to it. If the
analysis expression succeeds, the entire expression succeeds
and no more lines are read. If the analysis expression fails,
however, the element-generator operation is resumed to pro-
duce another line from the input file, and so on. Note that if
there isn’t a line that begins with "Section ", the entire input
file is consumed. A test should be added to determine if the
entire expression succeeds or fails.

What’s Coming Up

We’ve made a point from time to time about the
importance of choosing good representations for data that is
manipulated by Icon programs. In the next issue of the
Analyst, we’ll present a case study showing the conse-
quences of different data representations. The results may
surprise you.

We’ll also have an article on modeling Icon functions
using procedures — a process that can help you learn more
about exactly what Icon functions do.

The next issue also has an article on command-line
arguments; how they can be used to pass data into a program
and to specify processing options.

Programming
 Tips

The Generality of String Scanning

The subject of a scanning expression is a string, usually
provided as the value of an identifier, as in

while line := read() do
 line ? {
 if ="Section " then {
 name := tab(0)
 break
 }
 }

which skips to a line in standard input that starts with the string
"Section ".

It’s worth remembering, however, that the subject of
string scanning doesn’t have to be such a simple expression —
it can be any expression, even a generator. For example,

(line1 | line2 | line3) ? find(token1 | token2)

succeeds if one of line1, line2, or line3 contains either
token1 or token2. Since the analysis expression tries all
possibilities on the current subject, this scanning expression
only goes on to line2 if neither token1 nor token2 is con-
tained in line1, and so on.

A generator as the subject is particularly useful for
examining all the values in a structure. For example, if words
is a list of strings,

!words ? upto(&ucase)

