Recurrence Relations & Recursion

Computer Science has recursion.

Mathematics has recurrence relations.

Example(s):
Recurrence Relations

Definition: Recurrence Relation

Example(s):

Solving Recurrence Relations
Linear Homogeneous Recurrence Relations

Definition: Linear Homogeneous Recurrence Relation
With Constant Coefficients (LHRRWCC) Of Degree k

Example(s):

Solving LHRRWCCs Of Degree 2 (1 / 2)
Theorem: Assume a characteristic equation
\[w^2 - c_1w - c_2 = 0 \] with \(c_1, c_2 \in \mathbb{R} \) and roots \(r_1 \) and \(r_2 \) such that \(r_1 \neq r_2 \). The sequence \(\{R(n)\} \) is a solution to \(R(n) = c_1R(n-1) + c_2R(n-2) \) iff
\[R(n) = \alpha_1r_1^n + \alpha_2r_2^n \] where \(n \in \mathbb{Z}^* \) and \(\alpha_1, \alpha_2 \in \mathbb{R} \).

Solution Procedure: LHRRWCCs of Degree 2

1. Identify \(c_1 \) & \(c_2 \) and create the characteristic equation
 \[w^2 - c_1w - c_2 = 0 \]

2. Insert the roots of the characteristic equation \((r_1 \& r_2) \)
 into the closed-form expression \(R(n) = \alpha_1r_1^n + \alpha_2r_2^n \)

3. Using the initial conditions, create two equations in two unknowns \((\alpha_1 \text{ and } \alpha_2) \)

4. Solve for \(\alpha_1 \) and \(\alpha_2 \) to complete the solution
Example: Solving a LHRRWCC of Degree 2

Solve: \(R(n) = 3R(n - 1) - 2R(n - 2) \)
where \(R(0) = 200 \) and \(R(1) = 220 \).

“Divide & Conquer” Recurrence Relations (1 / 2)

Background:

From the Latin *Divide Et Impera* ("divide and rule")
Solving Divide & Conquer Rec. Relations (1 / 6)

“Find The Pattern” (a.k.a. Iterative (or Backward) Substitutions)

Example(s):
Conjecture: \(S(n) = k \cdot \log_2 n + 1 \)
Solving Divide & Conquer Rec. Relations (4 / 6)

Example(s):

Solving Divide & Conquer Rec. Relations (5 / 6)
Solving Divide & Conquer Rec. Relations (6 / 6)

Conjecture: \(Q(n) = \frac{n(n+1)}{2} \)

Approximate Solutions to Rec. Relations (1 / 2)

Theorem: (The Master Theorem) Given a recursive function of the form \(T(n) = a \cdot T(n/b) + c \cdot n^d \), where:

- \(T(n) \) is an increasing function,
- \(n = b^k \),
- \(k \) is an integer \(> 0 \),
- \(a \) is a real \(\geq 1 \),
- \(b \) is an integer \(> 1 \),
- \(c \) is a real \(> 0 \), and
- \(d \) is a real \(\geq 0 \), then:

\[
 f(n) = \begin{cases}
 O(n^d) & \text{if } a < b^d \\
 O(n^d \cdot \log_2 n) & \text{if } a = b^d \\
 O(n^{\log_b a}) & \text{if } a > b^d
\end{cases}
\]

Proof: Rosen 7/e, Exercises 29-33 of Section 8.3.
Example(s):

Binary Search’s recurrence: \(S(n) = S\left(\frac{n}{2}\right) + k \)

Recall: We determined \(S(n) = k \cdot \log_2 n + 1 \Rightarrow O(\log_2 n) \)

From the Master Theorem: \(T(n) = a \cdot T\left(\frac{n}{b}\right) + c \cdot n^d \)

For Bin. Search, \(a = 1, \quad b = 2, \quad c = k, \quad \text{and} \quad d = 0 \)

The 2nd case applies: \(a = b^d \quad (1 = 2^0) \)

Therefore, \(S(n) \) is \(O(n^d \cdot \log_2 n) \), or \(O(\log_2 n) \).

⇒ We got it right!

Note: Master Theorem doesn’t fit Quicksort’s worst case.