Algorithms

Definition: Algorithm

Example(s):
The Framework

1. — means that the solution can be described by an algorithm
 (a) — the algorithm is efficient
 (b) — no efficient solution algorithm is known

2. — no algorithm will ever describe the solution

Algorithm Characteristics (1 / 2)
Six Desirable algorithm characteristics:

1. Input —

2. Output —

3. Generality —
Example: Tooth-brushing Algorithm

1. Grab the toothpaste
2. Uncap the toothpaste
3. Grab your toothbrush
4. Squeeze toothpaste onto your toothbrush
5. Brush your teeth
Example: Decimal to Base X Conversion

INPUT:
- n
 Base 10 value to be converted
- base
 Destination number system

OUTPUT:
- digit()
 digit(0) holds LSD of result

```
quotient <-- n
i <-- 0
while quotient does not equal 0:
  digit(i) <-- quotient modulo base
  quotient <-- the floor of quotient/base
  increment i by 1
end while
```

Some Sample Iterative Algorithms (2 / 3)

What is the cost to evaluate $f(x) = 2x^3 - 4x^2 + 3x + 6$?
Example: Horner’s Algorithm for Polynomial Evaluation

INPUT:
- x Value used to evaluate the polynomial
- n Largest exponent
- $a(0) \ldots a(n)$ Coefficients of $x^0 \ldots x^n$

OUTPUT:
- result Evaluation of the polynomial

```plaintext
result <-- a(n)
index <-- n - 1
while index >= 0:
    result <-- x * result + a(index)
    decrement index by 1
end while
output result
```

Recursive Definitions (1 / 2)

Definition: Recursive Definition

A complete recursive definition has three parts:

(a) The ______________ determines how trivial cases are to be handled.

(b) The ______________ describes complex problem instances in terms of simpler instances.

(c) The ______________ provides bounds on the definition.
Recursive Algorithms

Definition: Recursive Algorithm

Control Structures in Programming Languages
Example: Factorials (1 / 3)

Definition: Factorial

The factorial of \(n \in \mathbb{Z}^* \), denoted \(n! \), is the product of all integers 1 through \(n \), where \(0! = 1 \).

An iterative factorial algorithm is easy to create:

```
product <-- 1
while n is larger than 1:
    product <-- product * n
    n <-- n - 1
end while
output product
```

Example: Factorials (2 / 3)

Factorials can be easily computed recursively:

\[
4! = 4 \cdot 3 \cdot 2 \cdot 1
\]

\[
4! = 4 \cdot 3!
\]

But what are the Basis, Inductive, and Extremal clauses?
Example: Factorials (3 / 3)

Recursive pseudocode algorithm:

```plaintext
subprogram factorial ( given: n ) returns: n!
    if n is 0
        return 1
    else
        answer <-- n * factorial(n-1)
        return answer
    endif
end subprogram
```

Can We Prove Our Algorithm? (1 / 2)

Conjecture: `factorial(n) returns n!`.
Another Structural Induction Proof (1 / 4)

Conjecture: In a binary tree, the number of null references equals one more than the number of nodes in the tree, for all non-empty binary trees.
Example: Fibonacci Sequence (1 / 2)

Definition: Fibonacci Sequence

The n^{th} term of the Fibonacci Sequence is the sum of terms $n - 1$ and $n - 2$, where $F(0) = 0$ and $F(1) = 1$.

Recursively generating terms of the sequence is easy . . .

```
subprogram fibonacci ( given: n ) returns: n-th term
    if n is 0 or 1
        return n
    else
        return fibonacci(n-1) + fibonacci(n-2)
    end if
end subprogram
```
Example: Fibonacci Sequence (2 / 2)

...but inefficient!

Consider this tree of invocations resulting from `fibonacci(5)`:

\[
\begin{array}{c}
 f(5) \\
 f(4) + f(3) \\
 f(3) + f(2) \\
 f(2) + f(1) \\
 f(1) + f(0)
\end{array}
\]

Example: Euclidean Algorithm for GCDs

Theorem: \(\text{GCD}(a,b) = \text{GCD}(b,a \% b) \)

Recursive pseudocode algorithm:

```plaintext
subprogram GCD (given: a, b) returns: gcd(a, b)
    if a is 0, return b endif
    if b is 0, return a endif
    answer <-- GCD(b, a \% b)
    return answer
end subprogram
```
Example: Sums Of Odd Positive Integers (1 / 2)

\[\mathbb{Z}^+: 1 \ 2 \ 3 \ 4 \ \ldots \ n \ \frac{(m+1)}{2} \]
\[o: 1 \ 3 \ 5 \ 7 \ \ldots \ 2n - 1 \ m \]

Let \(\text{oddsum}(\text{term}) \) represent the sum of \(o(1) \) through \(o(\text{term}) \).

Base: \(\text{oddsum}(1) = 1 \)

General: \(\text{oddsum}(\text{term}) = \text{oddsum}(\text{term}-1) + 2\times\text{term} - 1 \)

Example: Sums Of Odd Positive Integers (2 / 2)

Recursive implementation, using pseudocode:

```
subprogram oddsum (given: term)
    returns: sum from 1 through term of (2i-1)
    if term is 1, return 1
    otherwise
        answer <-- oddsum(term-1) + 2\times\text{term} - 1
        return answer
    end if
end subprogram
```
Conjecture: \(\text{oddsum}(t) \) produces \(\sum_{i=1}^{t} (2i - 1) \), \(\forall t \geq 1 \)

Proof (by structural induction):

Basis: At \(t = 1 \), the algorithm returns 1, and \(\sum_{i=1}^{1} (2i - 1) = 1 \). OK!

Inductive: If \(\text{oddsum}(t) \) returns \(\sum_{i=1}^{t} (2i - 1) \),

then \(\text{oddsum}(t + 1) \) returns \(\sum_{i=1}^{t+1} (2i - 1) \).

(Continues . . .)

When given \(t + 1 \), \(\text{oddsum}(t) \) returns

\[
\text{oddsum}(t) + [2(t + 1) - 1] = \text{oddsum}(t) + (2t + 1).
\]

By the Inductive Hypothesis, \(\text{oddsum}(t) = \sum_{i=1}^{t} (2i - 1) \).

Substituting, \(\text{oddsum}(t + 1) \) returns \(\sum_{i=1}^{t+1} (2i - 1) + (2t + 1) \).

\(2t + 1 \) is the \((t + 1)^{st} \) term of the sequence; thus

\[
\sum_{i=1}^{t} (2i - 1) + (2t + 1) = \sum_{i=1}^{t+1} (2i - 1).
\]

Therefore, \(\text{oddsum}(t) \) produces \(\sum_{i=1}^{t} (2i - 1) \), \(\forall t \geq 1 \).